51
|
Liu T, Jiang W, Han D, Yu L. DNAJC25 is downregulated in hepatocellular carcinoma and is a novel tumor suppressor gene. Oncol Lett 2012. [PMID: 23205125 DOI: 10.3892/ol.2012.903] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HSP40, also known as DnaJ, is one of the subfamilies of the heat shock protein family. DnaJ/Hsp40 proteins act as co-chaperones by binding to the chaperone Hsp70 through their J domain and stimulating ATP hydrolysis to aid protein translation, folding, unfolding, translocation and degradation. They are implicated in various human diseases, including neurodegenerative disorders and cancer. In the present study, we cloned and identified a new gene, DnaJ (HSP40) homolog, subfamily C, member 25 (DNAJC25), which is localized to the cytoplasm. Real-time PCR revealed that the expression of DNAJC25 is particularly high in the liver and is down-regulated in hepatocellular carcinoma (HCC) compared with adjacent normal tissues. The overexpression of DNAJC25 led to an inhibition of colony growth both in quantity and size. Flow cytometry analysis indicated that DNAJC25 also significantly increased cell apoptosis. Our data, therefore, indicate that DNAJC25 plays an important role in hepatocellular carcinogenesis, and should be further studied as a potential tumor suppressor candidate.
Collapse
Affiliation(s)
- Tingting Liu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | | | | | | |
Collapse
|
52
|
Calabrò E, Condello S, Currò M, Ferlazzo N, Caccamo D, Magazù S, Ientile R. Modulation of heat shock protein response in SH-SY5Y by mobile phone microwaves. World J Biol Chem 2012; 3:34-40. [PMID: 22371824 PMCID: PMC3286792 DOI: 10.4331/wjbc.v3.i2.34] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 09/19/2011] [Accepted: 09/26/2011] [Indexed: 02/05/2023] Open
Abstract
AIM To investigate putative biological damage caused by GSM mobile phone frequencies by assessing electromagnetic fields during mobile phone working. METHODS Neuron-like cells, obtained by retinoic-acid-induced differentiation of human neuroblastoma SH-SY5Y cells, were exposed for 2 h and 4 h to microwaves at 1800 MHz frequency bands. RESULTS Cell stress response was evaluated by MTT assay as well as changes in the heat shock protein expression (Hsp20, Hsp27 and Hsp70) and caspase-3 activity levels, as biomarkers of apoptotic pathway. Under our experimental conditions, neither cell viability nor Hsp27 expression nor caspase-3 activity was significantly changed. Interestingly, a significant decrease in Hsp20 expression was observed at both times of exposure, whereas Hsp70 levels were significantly increased only after 4 h exposure. CONCLUSION The modulation of the expression of Hsps in neuronal cells can be an early response to radiofrequency microwaves.
Collapse
Affiliation(s)
- Emanuele Calabrò
- Emanuele Calabrò, Salvatore Magazù, Department of Physics, University of Messina, 98166 Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
53
|
The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy. Biomaterials 2012; 33:2961-70. [PMID: 22245557 DOI: 10.1016/j.biomaterials.2011.12.052] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 12/30/2011] [Indexed: 11/19/2022]
Abstract
Breast tumors contain a small population of tumor initiating stem-like cells, termed breast cancer stem cells (BCSCs). These cells, which are refractory to chemotherapy and radiotherapy, are thought to persist following treatment and drive tumor recurrence. We examined whether BCSCs are similarly resistant to hyperthermic therapy, and whether nanoparticles could be used to overcome this resistance. Using a model of triple-negative breast cancer stem cells, we show that BCSCs are markedly resistant to traditional hyperthermia and become enriched in the surviving cell population following treatment. In contrast, BCSCs are sensitive to nanotube-mediated thermal treatment and lose their long-term proliferative capacity after nanotube-mediated thermal therapy. Moreover, use of this therapy in vivo promotes complete tumor regression and long-term survival of mice bearing cancer stem cell-driven breast tumors. Mechanistically, nanotube thermal therapy promotes rapid membrane permeabilization and necrosis of BCSCs. These data suggest that nanotube-mediated thermal treatment can simultaneously eliminate both the differentiated cells that constitute the bulk of a tumor and the BCSCs that drive tumor growth and recurrence.
Collapse
|
54
|
Rylander MN, Stafford RJ, Hazle J, Whitney J, Diller KR. Heat shock protein expression and temperature distribution in prostate tumours treated with laser irradiation and nanoshells. Int J Hyperthermia 2011; 27:791-801. [DOI: 10.3109/02656736.2011.607485] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
55
|
Kaur P, Hurwitz MD, Krishnan S, Asea A. Combined hyperthermia and radiotherapy for the treatment of cancer. Cancers (Basel) 2011; 3:3799-823. [PMID: 24213112 PMCID: PMC3763397 DOI: 10.3390/cancers3043799] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/23/2011] [Accepted: 09/23/2011] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy is used to treat approximately 50% of all cancer patients, with varying success. Radiation therapy has become an integral part of modern treatment strategies for many types of cancer in recent decades, but is associated with a risk of long-term adverse effects. Of these side effects, cardiac complications are particularly relevant since they not only adversely affect quality of life but can also be potentially life-threatening. The dose of ionizing radiation that can be given to the tumor is determined by the sensitivity of the surrounding normal tissues. Strategies to improve radiotherapy therefore aim to increase the effect on the tumor or to decrease the effects on normal tissues, which must be achieved without sensitizing the normal tissues in the first approach and without protecting the tumor in the second approach. Hyperthermia is a potent sensitizer of cell killing by ionizing radiation (IR), which can be attributed to the fact that heat is a pleiotropic damaging agent, affecting multiple cell components to varying degrees by altering protein structures, thus influencing the DNA damage response. Hyperthermia induces heat shock protein 70 (Hsp70; HSPA1A) synthesis and enhances telomerase activity. HSPA1A expression is associated with radioresistance. Inactivation of HSPA1A and telomerase increases residual DNA DSBs post IR exposure, which correlates with increased cell killing, supporting the role of HSPA1A and telomerase in IR-induced DNA damage repair. Thus, hyperthermia influences several molecular parameters involved in sensitizing tumor cells to radiation and can enhance the potential of targeted radiotherapy. Therapy-inducible vectors are useful for conditional expression of therapeutic genes in gene therapy, which is based on the control of gene expression by conventional treatment modalities. The understanding of the molecular response of cells and tissues to ionizing radiation has lead to a new appreciation of the exploitable genetic alterations in tumors and the development of treatments combining pharmacological interventions with ionizing radiation that more specifically target either tumor or normal tissue, leading to improvements in efficacy.
Collapse
Affiliation(s)
- Punit Kaur
- Department of Pathology, Scott & White Hospital and the Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA; E-Mail:
| | - Mark D. Hurwitz
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, MA 02115, USA; E-Mail:
| | - Sunil Krishnan
- Department of Radiation Oncology, The University of Texas MD Anderson Medical Center, Houston, TX 77030, USA; E-Mail:
| | - Alexzander Asea
- Department of Pathology, Scott & White Hospital and the Texas A&M Health Science Center, College of Medicine, Temple, TX 76504, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: or ; Tel: +1 (254) 743-0201; Fax: +1 (254) 743-0247
| |
Collapse
|
56
|
Huang HC, Yang Y, Nanda A, Koria P, Rege K. Synergistic administration of photothermal therapy and chemotherapy to cancer cells using polypeptide-based degradable plasmonic matrices. Nanomedicine (Lond) 2011; 6:459-73. [PMID: 21542685 DOI: 10.2217/nnm.10.133] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Resistance of cancer cells to hyperthermic temperatures and spatial limitations of nanoparticle-induced hyperthermia necessitates the identification of effective combination treatments that can enhance the efficacy of this treatment. Here we show that novel polypeptide-based degradable plasmonic matrices can be employed for simultaneous administration of hyperthermia and chemotherapeutic drugs as an effective combination treatment that can overcome cancer cell resistance to hyperthermia. METHOD Novel gold nanorod elastin-like polypeptide matrices were generated and characterized. The matrices were also loaded with the heat-shock protein (HSP)90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), currently in clinical trials for different malignancies, in order to deliver a combination of hyperthermia and chemotherapy. RESULTS Laser irradiation of cells cultured over the plasmonic matrices (without 17-AAG) resulted in the death of cells directly in the path of the laser, while cells outside the laser path did not show any loss of viability. Such spatial limitations, in concert with expression of prosurvival HSPs, reduce the efficacy of hyperthermia treatment. 17-AAG-gold nanorod-polypeptide matrices demonstrated minimal leaching of the drug to surrounding media. The combination of hyperthermic temperatures and the release of 17-AAG from the matrix, both induced by laser irradiation, resulted in significant (>90%) death of cancer cells, while 'single treatments' (i.e., hyperthermia alone and 17-AAG alone) demonstrated minimal loss of cancer cell viability (<10%). CONCLUSION Simultaneous administration of hyperthermia and HSP inhibitor release from plasmonic matrices is a powerful approach for the ablation of malignant cells and can be extended to different combinations of nanoparticles and chemotherapeutic drugs for a variety of malignancies.
Collapse
Affiliation(s)
- Huang-Chiao Huang
- Chemical Engineering, Arizona State University, Tempe, AZ 85287-6106, USA
| | | | | | | | | |
Collapse
|
57
|
Chen Y, Youn P, Furgeson DY. Thermo-targeted drug delivery of geldanamycin to hyperthermic tumor margins with diblock elastin-based biopolymers. J Control Release 2011; 155:175-83. [PMID: 21846483 DOI: 10.1016/j.jconrel.2011.07.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/19/2011] [Accepted: 07/29/2011] [Indexed: 02/06/2023]
Abstract
The tumor margins are the barrier to hepatocellular carcinoma (HCC) eradication for tumors>3 cm. Indeed, inadequately treated tumor margins commonly result in local and regional HCC recurrence with increased size and mass. Tumor recurrence is a common problem with chemotherapy, radiotherapy, thermal ablation, and/or surgical resection, by the inability to properly treat the tumor core and the tumor margins. Here we present novel thermosensitive biopolymer-drug conjugates for thermo-targeted chemotherapy at hyperthermic isotherms produced by focal, locoregional thermal ablation. The chemotherapeutic target is heat shock protein 90 (HSP90), a key molecular chaperone of several, and potent pro-oncogenic pathways including Akt, Raf-1, and mutated p53 that is upregulated in HCC. To inhibit HSP90, we have chosen geldanamycin (GA), a potent HSP90 inhibitor. GA has gained significant attention for its low IC50 ~ 1 nM and inhibition of Akt and Raf-1, amongst other critical pro-oncogenic pathways. Despite such evidence, clinical trials of GA have not shown promise due to off-target toxicity and poor formulation design. Here, we propose using diblock elastin-based biopolymers as a Ringsdorf macromolecular GA solubilizer--a new generation containing functional poly(Asp)/(Glu) blocks for facile drug conjugation and an ELP block for thermo-targeting of hyperthermic ablative margins. GA release is controlled by pH-sensitive, covalent hydrazone bonds with the biopolymer backbone to avoid systemic toxicity and off-target effects. The resultant biopolymer-conjugates form stable nanoconstructs and display tunable, acute phase transitions at high temperatures. Drug release kinetics are favorable with or without the presence of serum. Thermo-targeted chemotherapy and synchronous thermal ablation provide a unique opportunity for simultaneous destruction of the HCC ablative margins and tumor core for focal, locoregional control of HCC.
Collapse
MESH Headings
- Ablation Techniques
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/therapeutic use
- Benzoquinones/administration & dosage
- Benzoquinones/chemistry
- Benzoquinones/therapeutic use
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/surgery
- Drug Carriers/chemistry
- Drug Stability
- Elastin/chemistry
- Elastin/genetics
- HSP90 Heat-Shock Proteins/antagonists & inhibitors
- HSP90 Heat-Shock Proteins/genetics
- Hot Temperature
- Humans
- Hydrophobic and Hydrophilic Interactions
- Kinetics
- Lactams, Macrocyclic/administration & dosage
- Lactams, Macrocyclic/chemistry
- Lactams, Macrocyclic/therapeutic use
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/surgery
- Microscopy, Electron, Transmission
- Molecular Structure
- Oligonucleotides/chemistry
- Oligonucleotides/genetics
- Particle Size
- Phase Transition
- Solubility
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Streptomyces/genetics
- Surface Properties
- Transition Temperature
Collapse
|
58
|
Cui M, Zhang QZ, Yao ZJ, Zhang ZH. Molecular cloning and expression analysis of heat-shock protein 70 in orange-spotted grouper Epinephelus coioides following heat shock and Vibrio alginolyticus challenge. JOURNAL OF FISH BIOLOGY 2011; 79:486-501. [PMID: 21781104 DOI: 10.1111/j.1095-8649.2011.03045.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this study, the complementary (c)DNA encoding heat-shock protein 70 (Hsp70) of orange-spotted grouper Epinephelus coioides (OsgHsp70) was cloned. OsgHsp70 was 2206 bp and encoded 652 amino acids with predicted molecular mass of 70·89 kDa and theoretical isoelectric point of 5·48. Three Hsp70 family signatures, bipartite nuclear localization signal sequence (NLS) and cytoplasmic characteristic motif (EEVD) were observed in the OsgHsp70, which shared high similarity in amino-acid sequences with the Hsp70 gene of other vertebrates. The results indicated that the OsgHsp70 is a member of the heat-shock protein 70 family. The Hsp70 messenger (m)RNA expressions were quantified by real-time PCR following heat shock, bacterial infection and immunization with formalin-killed Vibrio alginolyticus, a kind of bacterial pathogen that causes septicaemia. Hsp70 mRNA expression in gill, kidney, spleen, thymus gland, muscle and total-blood samples increased at first and then decreased gradually following heat shock. A similar time-dependent pattern was observed following V. alginolyticus pathogen challenge, in which Hsp70 mRNA expression peaked at 24 h after live bacterial infection and 3 days after dead bacterial vaccination. The results indicated that the Hsp70 gene was inducible and involved in the fish immune response.
Collapse
Affiliation(s)
- M Cui
- Institute of Hydrobiology, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, 601 West Huangpu Road, Guangzhou 510632, China
| | | | | | | |
Collapse
|
59
|
Mackanos MA, Helms M, Kalish F, Contag CH. Image-guided genomic analysis of tissue response to laser-induced thermal stress. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:058001. [PMID: 21639585 PMCID: PMC3107838 DOI: 10.1117/1.3573387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 03/07/2011] [Accepted: 03/09/2011] [Indexed: 05/30/2023]
Abstract
The cytoprotective response to thermal injury is characterized by transcriptional activation of "heat shock proteins" (hsp) and proinflammatory proteins. Expression of these proteins may predict cellular survival. Microarray analyses were performed to identify spatially distinct gene expression patterns responding to thermal injury. Laser injury zones were identified by expression of a transgene reporter comprised of the 70 kD hsp gene and the firefly luciferase coding sequence. Zones included the laser spot, the surrounding region where hsp70-luc expression was increased, and a region adjacent to the surrounding region. A total of 145 genes were up-regulated in the laser irradiated region, while 69 were up-regulated in the adjacent region. At 7 hours the chemokine Cxcl3 was the highest expressed gene in the laser spot (24 fold) and adjacent region (32 fold). Chemokines were the most common up-regulated genes identified. Microarray gene expression was successfully validated using qRT- polymerase chain reaction for selected genes of interest. The early response genes are likely involved in cytoprotection and initiation of the healing response. Their regulatory elements will benefit creating the next generation reporter mice and controlling expression of therapeutic proteins. The identified genes serve as drug development targets that may prevent acute tissue damage and accelerate healing.
Collapse
Affiliation(s)
- Mark A Mackanos
- Department of Pediatrics, Stanford University School of Medicine, Clark Center E-150, 318 Campus Drive, Stanford, California 94305-5427, USA
| | | | | | | |
Collapse
|
60
|
Cui XB, Yu ZY, Wang W, Zheng YQ, Liu W, Li LX. Co-Inhibition of HSP70/HSP90 Synergistically Sensitizes Nasopharyngeal Carcinoma Cells to Thermotherapy. Integr Cancer Ther 2011; 11:61-7. [PMID: 21498475 DOI: 10.1177/1534735411399900] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The upregulation of both HSP70 and HSP90 frequently compromises the effects of thermotherapy. The co-inhibition of HSP70/HSP90 may be preferable to enhance the effects of thermotherapy on nasopharyngeal carcinoma cells. The changes of HSP70 and HSP90 were detected after thermotherapy in human nasopharyngeal cancer cell HNE1. 17-Dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) and quercetin were used to inhibit the activity of HSP90 and HSP70. The enhanced effects were evaluated in vitro and in vivo. Both HSP70 and HSP90 were upregulated promptly in HNE1 after thermotherapy. Single inhibition of HSP70 resulted in overexpression and delayed descent of HSP90. The co-inhibition of HSP70/HSP90 with quercetin plus 17-DMAG significantly increased apoptosis in hyperthermia-treated HNE1 cells both in vitro and in vivo. The co-inhibition of HSP70/HSP90 synergistically sensitizes nasopharyngeal carcinoma cells to hyperthermia.
Collapse
Affiliation(s)
- Xiao-bo Cui
- Inner Mongolia Medical College Hospital, Hohhot, Inner Mongolia, People’s Republic of China
| | - Zhao-yan Yu
- Inner Mongolia Medical College Hospital, Hohhot, Inner Mongolia, People’s Republic of China
| | - Wei Wang
- Inner Mongolia Medical College Hospital, Hohhot, Inner Mongolia, People’s Republic of China
| | - Yan-qiu Zheng
- Inner Mongolia Medical College Hospital, Hohhot, Inner Mongolia, People’s Republic of China
| | - Wei Liu
- Inner Mongolia Medical College Hospital, Hohhot, Inner Mongolia, People’s Republic of China
| | - Ling-xiang Li
- Inner Mongolia Medical College Hospital, Hohhot, Inner Mongolia, People’s Republic of China
| |
Collapse
|
61
|
He X. Thermostability of biological systems: fundamentals, challenges, and quantification. Open Biomed Eng J 2011; 5:47-73. [PMID: 21769301 PMCID: PMC3137158 DOI: 10.2174/1874120701105010047] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 12/25/2022] Open
Abstract
This review examines the fundamentals and challenges in engineering/understanding the thermostability of biological systems over a wide temperature range (from the cryogenic to hyperthermic regimen). Applications of the bio-thermostability engineering to either destroy unwanted or stabilize useful biologicals for the treatment of diseases in modern medicine are first introduced. Studies on the biological responses to cryogenic and hyperthermic temperatures for the various applications are reviewed to understand the mechanism of thermal (both cryo and hyperthermic) injury and its quantification at the molecular, cellular and tissue/organ levels. Methods for quantifying the thermophysical processes of the various applications are then summarized accounting for the effect of blood perfusion, metabolism, water transport across cell plasma membrane, and phase transition (both equilibrium and non-equilibrium such as ice formation and glass transition) of water. The review concludes with a summary of the status quo and future perspectives in engineering the thermostability of biological systems.
Collapse
Affiliation(s)
- Xiaoming He
- Multiscale Biothermostability Engineering Laboratory, Department of Mechanical Engineering and Biomedical Engineering Program, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA
| |
Collapse
|
62
|
Denton ML, Noojin GD, Foltz MS, Clark CD, Estlack LE, Rockwell BA, Thomas RJ. Spatially correlated microthermography maps threshold temperature in laser-induced damage. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:036003. [PMID: 21456867 DOI: 10.1117/1.3548881] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We measured threshold temperatures for cell death resulting from short (0.1-1.0 s) 514-nm laser exposures using an in vitro retinal model. Real-time thermal imaging at sub-cellular resolution provides temperature information that is spatially correlated with cells at the boundary of cell death, as indicate by post-exposure fluorescence images. Our measurements indicate markedly similar temperatures, not only around individual boundaries (single exposure), but among all exposures of the same duration in a laser irradiance-independent fashion. Two different methods yield similar threshold temperatures with low variance. Considering the experimental uncertainties associated with the thermal camera, an average peak temperature of 53 ± 2 °C is found for laser exposures of 0.1, 0.25, and 1.0 s. Additionally, we find a linear relationship between laser exposure duration and time-averaged integrated temperature. The mean thermal profiles for cells at the boundary of death were assessed using the Arrhenius rate law using parameter sets (frequency factor and energy of activation) found in three different articles.
Collapse
Affiliation(s)
- Michael L Denton
- TASC, Inc., Biomedical Sciences and Technology Department, San Antonio, Texas 78235, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Rodríguez-Luccioni HL, Latorre-Esteves M, Méndez-Vega J, Soto O, Rodríguez AR, Rinaldi C, Torres-Lugo M. Enhanced reduction in cell viability by hyperthermia induced by magnetic nanoparticles. Int J Nanomedicine 2011; 6:373-80. [PMID: 21499427 PMCID: PMC3075903 DOI: 10.2147/ijn.s14613] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Indexed: 11/30/2022] Open
Abstract
Colloidal suspensions of iron oxide magnetic nanoparticles are known to dissipate energy when exposed to an oscillating magnetic field. Such energy dissipation can be employed to locally raise temperature inside a tumor between 41°C and 45°C (hyperthermia) to promote cell death, a treatment known as magnetic fluid hyperthermia (MFH). This work seeks to quantify differences between MFH and hot-water hyperthermia (HWH) in terms of reduction in cell viability using two cancer cell culture models, Caco-2 (human epithelial colorectal adenocarcinoma) and MCF-7 (human breast cancer). Magnetite nanoparticles were synthesized via the co-precipitation method and functionalized with adsorbed carboxymethyl dextran. Cytotoxicity studies indicated that in the absence of an oscillating magnetic field, cell viability was not affected at concentrations of up to 0.6 mg iron oxide/mL. MFH resulted in a significant decrease in cell viability when exposed to a magnetic field for 120 minutes and allowed to rest for 48 hours, compared with similar field applications, but with shorter resting time. The results presented here suggest that MFH most likely induces apoptosis in both cell types. When compared with HWH, MFH produced a significant reduction in cell viability, and these effects appear to be cell-type related.
Collapse
|
64
|
Fisher JW, Sarkar S, Buchanan CF, Szot CS, Whitney J, Hatcher HC, Torti SV, Rylander CG, Rylander MN. Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation. Cancer Res 2010; 70:9855-64. [PMID: 21098701 DOI: 10.1158/0008-5472.can-10-0250] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This study demonstrates the capability of multiwalled carbon nanotubes (MWNTs) coupled with laser irradiation to enhance treatment of cancer cells through enhanced and more controlled thermal deposition, increased tumor injury, and diminished heat shock protein (HSP) expression. We also explored the potential promise of MWNTs as drug delivery agents by observing the degree of intracellular uptake of these nanoparticles. To determine the heat generation capability of MWNTs, the absorption spectra and temperature rise during heating were measured. Higher optical absorption was observed for MWNTs in water compared with water alone. For identical laser parameters, MWNT-containing samples produced a significantly greater temperature elevation compared to samples treated with laser alone. Human prostate cancer (PC3) and murine renal carcinoma (RENCA) cells were irradiated with a 1,064-nm laser with an irradiance of 15.3 W/cm(2) for 2 heating durations (1.5 and 5 minutes) alone or in combination with MWNT inclusion. Cytotoxicity and HSP expression following laser heating was used to determine the efficacy of laser treatment alone or in combination with MWNTs. No toxicity was observed for MWNTs alone. Inclusion of MWNTs dramatically decreased cell viability and HSP expression when combined with laser irradiation. MWNT cell internalization was measured using fluorescence and transmission electron microscopy following incubation of MWNTs with cells. With increasing incubation duration, a greater number of MWNTs were observed in cellular vacuoles and nuclei. These findings offer an initial proof of concept for the application of MWNTs in cancer therapy.
Collapse
Affiliation(s)
- Jessica W Fisher
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Wang T, Yu Q, Chen J, Deng B, Qian L, Le Y. PP2A mediated AMPK inhibition promotes HSP70 expression in heat shock response. PLoS One 2010; 5. [PMID: 20957029 PMCID: PMC2948495 DOI: 10.1371/journal.pone.0013096] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 09/07/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Under stress, AMP-activated protein kinase (AMPK) plays a central role in energy balance, and the heat shock response is a protective mechanism for cell survival. The relationship between AMPK activity and heat shock protein (HSP) expression under stress is unclear. METHODOLOGY/PRINCIPAL FINDINGS We found that heat stress induced dephosphorylation of AMPKα subunit (AMPKα) in various cell types from human and rodent. In HepG2 cells, the dephosphorylation of AMPKα under heat stress in turn caused dephosphorylation of acetyl-CoA carboxylase and upregulation of phosphoenolpyruvate carboxykinase, two downstream targets of AMPK, confirming the inhibition of AMPK activity by heat stress. Treatment of HepG2 cells with phosphatase 2A (PP2A) inhibitor okadaic acid or inhibition of PP2A expression by RNA interference efficiently reversed heat stress-induced AMPKα dephosphorylation, suggesting that heat stress inhibited AMPK through activation of PP2A. Heat stress- and other HSP inducer (CdCl(2), celastrol, MG132)-induced HSP70 expression could be inhibited by AICAR, an AMPK specific activator. Inhibition of AMPKα expression by RNA interference reversed the inhibitory effect of AICAR on HSP70 expression under heat stress. These results indicate that AMPK inhibition under stress contribute to HSP70 expression. Mechanistic studies showed that activation of AMPK by AICAR had no effect on heat stress-induced HSF1 nuclear translocation, phosphorylation and binding with heat response element in the promoter region of HSP70 gene, but significantly decreased HSP70 mRNA stability. CONCLUSIONS/SIGNIFICANCE These results demonstrate that during heat shock response, PP2A mediated AMPK inhibition upregulates HSP70 expression at least partially through stabilizing its mRNA, which suggests a novel mechanism for HSP induction under stress.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Qiujing Yu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Juan Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Bo Deng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Lihua Qian
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Yingying Le
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China
- * E-mail: .
| |
Collapse
|
66
|
Rylander MN, Feng Y, Zimmermann K, Diller KR. Measurement and mathematical modeling of thermally induced injury and heat shock protein expression kinetics in normal and cancerous prostate cells. Int J Hyperthermia 2010; 26:748-64. [DOI: 10.3109/02656736.2010.486778] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
67
|
Nandlall SD, Schiffter HA, Vonhoff S, Bazán-Peregrino M, Arora M, Coussios CC. Real-time optical measurement of biologically relevant thermal damage in tissue-mimicking hydrogels containing bovine serum albumin. Int J Hyperthermia 2010; 26:456-64. [DOI: 10.3109/02656731003789292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
68
|
Mitra A, Menezes ME, Shevde LA, Samant RS. DNAJB6 induces degradation of beta-catenin and causes partial reversal of mesenchymal phenotype. J Biol Chem 2010; 285:24686-94. [PMID: 20522561 DOI: 10.1074/jbc.m109.094847] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We showed that expression of MRJ (DNAJB6) protein is lost in invasive ductal carcinoma, and restoration of MRJ(L) restricts malignant behavior of breast cancer and melanoma cells. However, the signaling pathways influenced by MRJ(L) are largely unknown. Our observations revealed that MRJ(L) expression causes changes in cell morphology concomitant with down-regulation of several mesenchymal markers, viz. vimentin, N-cadherin, Twist, and Slug, and up-regulation of epithelial marker keratin 18. Importantly, MRJ(L) expression led to reduced levels of beta-catenin, an epithelial mesenchymal transition marker, and a critical player in the Wnt pathway. We found that MRJ(L) up-regulates expression of DKK1, a well known Wnt/beta-catenin signaling inhibitor, that causes degradation of beta-catenin. Re-expression of DNAJB6 alters the Wnt/beta-catenin signaling in cancer cells, leading to partial reversal of the mesenchymal phenotype. Thus, MRJ(L) may play a role in maintaining an epithelial phenotype, and inhibition of the Wnt/beta-catenin pathway may be one of the potential mechanisms contributing to the restriction of malignant behavior by MRJ(L).
Collapse
Affiliation(s)
- Aparna Mitra
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604, USA
| | | | | | | |
Collapse
|
69
|
Solazzo SA, Ahmed M, Schor-Bardach R, Yang W, Girnun GD, Rahmanuddin S, Levchenko T, Signoretti S, Spitz DR, Torchilin V, Goldberg SN. Liposomal doxorubicin increases radiofrequency ablation-induced tumor destruction by increasing cellular oxidative and nitrative stress and accelerating apoptotic pathways. Radiology 2010; 255:62-74. [PMID: 20160000 DOI: 10.1148/radiol.09091196] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To determine if oxidative and nitrative stress and/or apoptosis contribute to increased coagulation when combining radiofrequency (RF) ablation with liposomal doxorubicin. MATERIALS AND METHODS Animal care committee approval was obtained. R3230 mammary adenocarcinomas in Fischer rats were treated with either RF ablation (n = 43), 1 mg of intravenously injected liposomal doxorubicin (n = 26), or combined therapy (n = 30) and were compared with control subjects (n = 11). A subset of animals receiving combination therapy (n = 24) were treated in the presence or absence of N-acetylcysteine (NAC) administered 24 hours and 1 hour before RF ablation. Tumors were analyzed 2 minutes to 72 hours after treatment to determine the temporal range of response by using immunohistochemical staining of the apoptosis marker cleaved caspase-3, phosphorylated gammaH2AX, and HSP70 and of markers of oxidative and nitrative stress (8-hydroxydeoxyguanosine [8-OHdG], 4-hydroxynonenal [4-HNE]-modified proteins, and nitrotyrosine [NT]). Statistical analyses, including t tests and analysis of variance for comparisons where appropriate, were performed. RESULTS By 4 hours after RF ablation alone, a 0.48-mm +/- 0.13 (standard deviation) peripheral band with 57.0% +/- 7.3 cleaved caspase-3 positive cells was noted at the ablation margin, whereas a 0.73-mm +/- 0.18 band with 77.7% +/- 6.3 positivity was seen for combination therapy (P < .03 for both comparisons). Combination therapy caused increased and earlier staining for 4-HNE-modified proteins, 8-OHdG, NT, and gammaH2AX with colocalization to cleaved caspase-3 staining. A rim of increased HSP70 was identified peripheral to the area of cleaved caspase-3. Parameters of oxidative and nitrative stress were significantly inhibited by NAC 1 hour following RF ablation, resulting in decreased cleaved caspase-3 positivity (0.28-mm +/- 0.09 band of 25.9% +/- 7.4 positivity vs 0.59-mm +/- 0.11 band of 62.9% +/- 6.0 positivity, P < .001 for both comparisons). CONCLUSION Combining RF ablation with liposomal doxorubicin increases cell injury and apoptosis in the zone of increased coagulation by using a mechanism that involves oxidative and nitrative stress that leads to accelerated apoptosis.
Collapse
Affiliation(s)
- Stephanie A Solazzo
- Laboratory for Minimally Invasive Tumor Therapies, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Mitra A, Shevde LA, Samant RS. Multi-faceted role of HSP40 in cancer. Clin Exp Metastasis 2009; 26:559-67. [PMID: 19340594 DOI: 10.1007/s10585-009-9255-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 03/12/2009] [Indexed: 12/25/2022]
Abstract
HSP40 (DNAJ) is an understudied family of co-chaperones. The human genome codes for over 41 members of HSP40 family that reside at distinct intracellular locations. Despite their large numbers, little is known about their physiologic roles. Recent research has revealed involvement of some of the DNAJ family members in various types of cancers. In this article we summarize the information about the involvement of human DNAJ family members in various aspects of cancer biology. Furthermore we discuss the potential role of the J domain of DNAJ proteins in cancer biology.
Collapse
Affiliation(s)
- Aparna Mitra
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | | | | |
Collapse
|
71
|
Beckham JT, Wilmink GJ, Mackanos MA, Takahashi K, Contag CH, Takahashi T, Jansen ED. Role of HSP70 in cellular thermotolerance. Lasers Surg Med 2009; 40:704-15. [PMID: 19065555 DOI: 10.1002/lsm.20713] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVE Thermal pretreatment has been shown to condition tissue to a more severe secondary heat stress. In this research we examined the particular contribution of heat shock protein 70 (HSP70) in thermal preconditioning. STUDY DESIGN/MATERIALS AND METHODS For optimization of preshock exposures, a bioluminescent Hsp70-luciferase reporter system in NIH3T3 cells tracked the activation of the Hsp70 gene. Cells in 96-well plates were pretreated in a 43 degrees C water bath for 30 minutes, followed 4 hours later with a severe heat shock at 45 degrees C for 50 minutes. Bioluminescence was measured at 2, 4, 6, 8, and 10 hours after preshock only (PS) and at 4 hours after preshock with heatshock (PS+HS). Viability was assessed 48 hours later with a fluorescent viability dye. Preshock induced thermotolerance was then evaluated in hsp70-containing Murine Embryo Fibroblast (+/+) cells and Hsp70-deficient MEF cells (-/-) through an Arrhenius damage model across varying temperatures (44.5-46 degrees C). RESULTS A time gap of 4 hours between preconditioning and the thermal insult was shown to be the most effective for thermotolerance with statistical confidence of P<0.05. The benefit of preshocking was largely abrogated in Hsp70-deficient cells. The Arrhenius data showed that preshocking leads to increases in the activation energies, E(a), and increases in frequency factors, A. The frequency factor increase was significantly greater in Hsp70-deficient cells. CONCLUSION The data shows that HSP70 contributes significantly to cellular thermotolerance but there are other pathways that provide residual thermotolerance in cells deficient in Hsp70.
Collapse
Affiliation(s)
- Josh T Beckham
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Feng Y, Fuentes D, Hawkins A, Bass JM, Rylander MN. Optimization and real-time control for laser treatment of heterogeneous soft tissues. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2009; 198:1742-1750. [PMID: 20485457 PMCID: PMC2871336 DOI: 10.1016/j.cma.2008.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Predicting the outcome of thermotherapies in cancer treatment requires an accurate characterization of the bioheat transfer processes in soft tissues. Due to the biological and structural complexity of tumor (soft tissue) composition and vasculature, it is often very difficult to obtain reliable tissue properties that is one of the key factors for the accurate treatment outcome prediction. Efficient algorithms employing in vivo thermal measurements to determine heterogeneous thermal tissues properties in conjunction with a detailed sensitivity analysis can produce essential information for model development and optimal control. The goals of this paper are to present a general formulation of the bioheat transfer equation for heterogeneous soft tissues, review models and algorithms developed for cell damage, heat shock proteins, and soft tissues with nanoparticle inclusion, and demonstrate an overall computational strategy for developing a laser treatment framework with the ability to perform real-time robust calibrations and optimal control. This computational strategy can be applied to other thermotherapies using the heat source such as radio frequency or high intensity focused ultrasound.
Collapse
Affiliation(s)
- Yusheng Feng
- The University of Texas at San Antonio, Department of Mechanical Engineering, Computational Bioengineering and Nanotechnology Lab, San Antonio, TX 78249, USA
| | - David Fuentes
- The University of Texas at Austin, Institute for Computational Engineering and Sciences, Austin, TX 78712, USA
| | - Andrea Hawkins
- The University of Texas at Austin, Institute for Computational Engineering and Sciences, Austin, TX 78712, USA
| | - Jon M. Bass
- The University of Texas at Austin, Institute for Computational Engineering and Sciences, Austin, TX 78712, USA
| | - Marissa Nichole Rylander
- Virginia Tech, Department of Mechanical Engineering and School of Biomedical Engineering and Sciences, Blacksburg, VA 24061, USA
| |
Collapse
|
73
|
Feng Y, Fuentes D, Hawkins A, Bass J, Rylander MN, Elliott A, Shetty A, Stafford RJ, Oden JT. Nanoshell-mediated laser surgery simulation for prostate cancer treatment. ENGINEERING WITH COMPUTERS 2009; 25:3-13. [PMID: 20648233 PMCID: PMC2905827 DOI: 10.1007/s00366-008-0109-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Laser surgery, or laser-induced thermal therapy, is a minimally invasive alternative or adjuvant to surgical resection in treating tumors embedded in vital organs with poorly defined boundaries. Its use, however, is limited due to the lack of precise control of heating and slow rate of thermal diffusion in the tissue. Nanoparticles, such as nanoshells, can act as intense heat absorbers when they are injected into tumors. These nanoshells can enhance thermal energy deposition into target regions to improve the ability for destroying larger cancerous tissue volumes with lower thermal doses. The goal of this paper is to present an integrated computer model using a so-called nested-block optimization algorithm to simulate laser surgery and provide transient temperature field predictions. In particular, this algorithm aims to capture changes in optical and thermal properties due to nanoshell inclusion and tissue property variation during laser surgery. Numerical results show that this model is able to characterize variation of tissue properties for laser surgical procedures and predict transient temperature fields comparable to those measured by in vivo magnetic resonance temperature imaging techniques. Note that the computational approach presented in the study is quite general and can be applied to other types of nanoparticle inclusions.
Collapse
Affiliation(s)
- Yusheng Feng
- Computational Bioengineering and Nanotechnology Lab, Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Feng Y, Tinsley Oden J, Rylander MN. A two-state cell damage model under hyperthermic conditions: theory and in vitro experiments. J Biomech Eng 2008; 130:041016. [PMID: 18601458 DOI: 10.1115/1.2947320] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ultimate goal of cancer treatment utilizing thermotherapy is to eradicate tumors and minimize damage to surrounding host tissues. To achieve this goal, it is important to develop an accurate cell damage model to characterize the population of cell death under various thermal conditions. The traditional Arrhenius model is often used to characterize the damaged cell population under the assumption that the rate of cell damage is proportional to exp(-EaRT), where Ea is the activation energy, R is the universal gas constant, and T is the absolute temperature. However, this model is unable to capture transition phenomena over the entire hyperthermia and ablation temperature range, particularly during the initial stage of heating. Inspired by classical statistical thermodynamic principles, we propose a general two-state model to characterize the entire cell population with two distinct and measurable subpopulations of cells, in which each cell is in one of the two microstates, viable (live) and damaged (dead), respectively. The resulting cell viability can be expressed as C(tau,T)=exp(-Phi(tau,T)kT)(1+exp(-Phi(tau,T)kT)), where k is a constant. The in vitro cell viability experiments revealed that the function Phi(tau,T) can be defined as a function that is linear in exposure time tau when the temperature T is fixed, and linear as well in terms of the reciprocal of temperature T when the variable tau is held as constant. To determine parameters in the function Phi(tau,T), we use in vitro cell viability data from the experiments conducted with human prostate cancerous (PC3) and normal (RWPE-1) cells exposed to thermotherapeutic protocols to correlate with the proposed cell damage model. Very good agreement between experimental data and the derived damage model is obtained. In addition, the new two-state model has the advantage that is less sensitive and more robust due to its well behaved model parameters.
Collapse
Affiliation(s)
- Yusheng Feng
- Computational Bioengineering and Nanotechnology Laboratory, Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | | | | |
Collapse
|
75
|
Rainaldi G, Romano R, Indovina P, Ferrante A, Motta A, Indovina PL, Santini MT. Metabolomics using 1H-NMR of apoptosis and Necrosis in HL60 leukemia cells: differences between the two types of cell death and independence from the stimulus of apoptosis used. Radiat Res 2008; 169:170-80. [PMID: 18220461 DOI: 10.1667/rr0958.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 08/02/2007] [Indexed: 11/03/2022]
Abstract
High-resolution proton nuclear magnetic resonance ((1)H-NMR) spectroscopy was used to examine and compare the metabolic variations that occur in cells of the HL60 promyelocytic leukemia cell line after induction of apoptosis by ionizing radiation and the antineoplastic drug doxorubicin as well as after induction of necrosis by heating. Apoptosis and necrosis were confirmed by fluorescence microscopy using the chromatin stain Hoechst 33258, agarose gel electrophoresis of DNA, and determination of caspase 3 enzymatic activity. The 1H-NMR experiments revealed that the spectra of both samples containing apoptotic cells were characterized by the same trend of several important metabolites. Specifically, an increase in CH2 and CH3 mobile lipids, principally of CH2, decreases in glutamine and glutamate, choline-containing metabolites, taurine and reduced glutathione were observed. By contrast, the sample containing necrotic cells presented a completely different profile of 1H-NMR metabolites since it was characterized by a significant increase in all the metabolites examined, with the exception of CH2 mobile lipids, which remain unchanged, and reduced glutathione, which decreased. The results suggest that variations in 1H-NMR metabolites are specific to apoptosis independent of the physical or chemical nature of the stimulus used to induce this mode of cell death, while cells dying from necrosis are characterized by a completely different behavior of the same metabolites.
Collapse
Affiliation(s)
- Gabriella Rainaldi
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Instituto Superiore di Sanità, 00161 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
76
|
Pinsino A, Thorndyke MC, Matranga V. Coelomocytes and post-traumatic response in the common sea star Asterias rubens. Cell Stress Chaperones 2008; 12:331-41. [PMID: 18229452 DOI: 10.1379/csc-288.1] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Coelomocytes are recognized as the main cellular component of the echinoderm immune system. They are the first line of defense and their number and type can vary dramatically during infections or following injury. Sea stars have been used as a model system to study the regeneration process after autotomy or predation. In the present study we examined the cellular and biochemical responses of coelomocytes from the European sea star Asterias rubens to traumatic stress using immunochemical and biochemical approaches. In terms of trauma and post-traumatic stress period, here we consider the experimental arm amputation and the repair phase involved in the first 24 hours post-amputation, which mimicked a natural predation event. Four cell morphotypes were distinguishable in the coelomic fluid of both control and post-traumatic-stressed animals (phagocytes, amoebocytes, vibratile cells, hemocytes), but phagocytes were the major components, accounting for about 95% of the total population. Thus, the effects measured relate to the overall population of coelomocytes. A modest increase in the total number of freely circulating coelomocytes was observed 6 hours post-amputation. Interestingly, a monoclonal antibody (McAb) to a sea urchin embryo adhesion protein (toposome) cross-reacted with isolated sea star coelomocytes and stained the coelomic epithelium of control animals with an increase in trauma-stressed arms. In addition, coelomocytes from trauma-stressed animals showed a time-dependent increase in Hsp70 levels, as detected by both immunocytochemistry and immunoblotting within 24 hours after arm tip amputation, with a peak at 6 hours after amputation. Our findings indicate a clear role for coelomocytes and classic stress molecules in the post-traumatic stress associated with the early repair phase of regeneration.
Collapse
Affiliation(s)
- Annalisa Pinsino
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare Alberto Monroy, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | | | | |
Collapse
|
77
|
Lim JH, Park HS, Choi JK, Lee IS, Choi HJ. Isoorientin induces Nrf2 pathway-driven antioxidant response through phosphatidylinositol 3-kinase signaling. Arch Pharm Res 2008; 30:1590-8. [PMID: 18254247 DOI: 10.1007/bf02977329] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Because oxidative stress is involved in the pathogenesis of various chronic diseases and the aging process, antioxidants that can increase the intrinsic antioxidant potency are proposed as desirable therapeutic agents to counteract oxidative stress-related diseases. NF-E2-related factor-2 (Nrf2) is a transcription factor that regulates important antioxidant and phase II detoxification genes, and therefore, the molecule that regulates nuclear translocation of Nrf2 and the induction of antioxidative proteins is thought to be a promising candidate as a cytoprotective agent for oxidative stress. In the present study, we show that isoorientin (luteolin 6-C-beta-D-glucoside) obtained from the leaves of Sasa borealis upregulates and activates Nrf2, and has protective ability against oxidative damage caused by reactive oxygen intermediates in HepG2 cells. Isoorientin induces increase in the level of antioxidant enzyme proteins, especially NQO1, and the cytoprotective and antioxidative effects of isoorientin are PI3K/Akt pathway-dependent. Together with direct radical scavenging activity, the novel effect of isoorientin on the regulation of antioxidative gene expression provides attractive strategy to prevent diseases associated with oxidative stress and attenuate the progress of the diseases.
Collapse
Affiliation(s)
- Ju Hee Lim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, Korea
| | | | | | | | | |
Collapse
|
78
|
Kim SA, Chang S, Yoon JH, Ahn SG. TAT-Hsp40 inhibits oxidative stress-mediated cytotoxicity via the inhibition of Hsp70 ubiquitination. FEBS Lett 2008; 582:734-40. [DOI: 10.1016/j.febslet.2008.01.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/21/2008] [Accepted: 01/29/2008] [Indexed: 11/15/2022]
|
79
|
Lin HJ, Lai CC, Lee Chao PD, Fan SS, Tsai Y, Huang SY, Wan L, Tsai FJ. Aloe-emodin metabolites protected N-methyl-d-aspartate-treated retinal ganglion cells by Cu-Zn superoxide dismutase. J Ocul Pharmacol Ther 2007; 23:152-71. [PMID: 17444804 DOI: 10.1089/jop.2006.0118] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A high concentration of glutamate in the eyes not only activates N-methyl-D-aspartate (NMDA) receptors, but also is toxic to the retina ganglion cells (RGCs) in glaucomatous patients. Our previous study had found that aloe-emodin sulfates/glucuronides metabolites, an anthraquinone polyphenol, exerted a neuroprotective activity upon RGCs. In order to understand the mechanisms involved in this neuroprotective effect, this study aimed to determine the expressions of RNAs and proteins in various treatments. The proteins expressed in the control group, NMDA-treated group, and aloe-emodin metabolites-cotreated group were separated by two-dimensional gel electrophoresis (2-DE). Protein spots were excised from 2-DE and analyzed by nano-LC-MS/MS (nano-liquid chromatography with mass spectrometry; tandem MS). Quantitative polymerase chain reaction (Q-PCR) was used to investigate the RNA related to these proteins. There were 84 spots with significant differences in various treatments. Among the 84 spots, we identified 9 spots whose functions were closely related to regulate the apoptosis of cells. The results of Q-PCR were not completely unanimous with those of 2-DE. Our results suggested that aloe-emodin metabolites decreased NMDA-induced apoptosis of RGCs by preserving, and inducing, some proteins related to the antioxidation and regulation of cells' energy. Both the level of RNA and protein of superoxide dismutase (Cu-Zn) were significantly elevated after aloe-emodin metabolites were added. The mechanisms of neuroprotection are complicated, and involve not only the transcription and stability of mRNA, but also post-translation protein modifications, degradation, and protein-protein interaction.
Collapse
Affiliation(s)
- Hui-Ju Lin
- Department of Ophthalmology, China Medical University Hospital, Asia University, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Mazroui R, Di Marco S, Kaufman RJ, Gallouzi IE. Inhibition of the ubiquitin-proteasome system induces stress granule formation. Mol Biol Cell 2007; 18:2603-18. [PMID: 17475769 PMCID: PMC1924830 DOI: 10.1091/mbc.e06-12-1079] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The inhibition of the ubiquitin-dependent proteasome system (UPS) via specific drugs is one type of approach used to combat cancer. Although it has been suggested that UPS inhibition prevents the rapid decay of AU-rich element (ARE)-containing messages, very little is known about the cellular mechanisms leading to this effect. Here we establish a link between the inhibition of UPS activity, the formation of cytoplasmic stress granules (SGs), and mRNA metabolism. The assembly of the SGs requires the phosphorylation of the translation initiation factor eIF2alpha by a mechanism involving the stress kinase GCN2. On prolonged UPS inhibition and despite the maintenance of eIF2alpha phosphorylation, SGs disassemble and translation recovers in an Hsp72 protein-dependent manner. The formation of these SGs coincides with the disassembly of processing bodies (PBs), known as mRNA decay entities. As soon as the SGs assemble, they recruit ARE-containing messages such as p21(cip1) mRNA, which are stabilized under these conditions. Hence, our findings suggest that SGs could be considered as one of the players that mediate the early response of the cell to proteasome inhibitors by interfering temporarily with mRNA decay pathways.
Collapse
Affiliation(s)
- Rachid Mazroui
- *McGill University, Department of Biochemistry, Montreal, Quebec, H3G 1Y6, Canada; and
| | - Sergio Di Marco
- *McGill University, Department of Biochemistry, Montreal, Quebec, H3G 1Y6, Canada; and
| | - Randal J. Kaufman
- Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Imed-Eddine Gallouzi
- *McGill University, Department of Biochemistry, Montreal, Quebec, H3G 1Y6, Canada; and
| |
Collapse
|
81
|
Abstract
Nanotechnology is increasingly applied to the field of medicine, particularly for the treatment of cancer. In this regard, gold nanoparticles can mediate hyperthermia induction and kill tumor cells upon laser irradiation, thereby functioning as a 'thermal scalpel'. Recent developments in gold nanoparticle design have resulted in their absorption of energy in the near-infrared wavelength spectrum, which is best suited to tissue penetration and, thus, clinical application. Furthermore, to ensure accumulation of nanoparticles in neoplastic tissue, targeting ligands are being incorporated into the thermal scalpel schema. Examples of targeting ligands include antibodies and targeted gene therapy vectors. Therapeutic efficacy has been established in cell culture models for several developed thermal scalpel systems and a small number have demonstrated a therapeutic effect in animal models of cancer. Future considerations include analysis of the biodistribution and therapeutic efficacy of thermal scalpels using stringent models of cancer. Furthermore, the immunogenicity and toxicity of thermal scalpels must be established before clinical translation can be achieved.
Collapse
Affiliation(s)
- Maaike Everts
- University of Alabama at Birmingham, 901 19th Street South, BMRII-#512, Birmingham, AL 35294-2180, USA.
| |
Collapse
|
82
|
Rylander MN, Feng Y, Bass J, Diller KR. Heat shock protein expression and injury optimization for laser therapy design. Lasers Surg Med 2007; 39:731-46. [DOI: 10.1002/lsm.20546] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
83
|
Abstract
In all organisms there is an elevated synthesis of a select family of "stress proteins" in response to a broad array of environmentally driven stress vectors including elevated or depressed temperature, changes in pH, treatment with many classes of chemicals, ischemia, desiccation, and UV irradiation. The presence of stress proteins, often termed heat shock proteins (HSPs), has been recognized for more than four decades, and there is an extensive literature that addresses the structure and properties of HSPs, their function in normal and injured cells and tissues, and the molecular mechanisms of HSP expression in response to stress. Owing to this substantial aggregate of research, there is a growing appreciation of the potential for manipulating the magnitude and timing of elevated HSP expression to achieve targeted therapeutic objectives. The successful realization of this potential requires an understanding of the kinetics of the HSP expression process in response to sublethal stress regimens along with the ability to model the governing events in the process to design practical protocols that could be applied in therapeutic settings. Significant progress has been made in recent years in defining and developing capabilities in these two areas.
Collapse
Affiliation(s)
- Kenneth R Diller
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712-1084, USA.
| |
Collapse
|