51
|
Okubo S, Miyamoto M, Ito D, Takami K, Ashida K. Albumin and apolipoprotein H mRNAs in human plasma as potential clinical biomarkers of liver injury: analyses of plasma liver-specific mRNAs in patients with liver injury. Biomarkers 2016; 21:353-62. [PMID: 26901698 DOI: 10.3109/1354750x.2016.1141987] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
CONTEXT Plasma liver-specific mRNAs are useful biomarkers of hepatotoxicity in rats. OBJECTIVE To investigate the potential application of liver-specific mRNAs as biomarkers for liver injury in humans. METHODS We determined the plasma levels of liver-specific mRNAs by real-time qRT-PCR in healthy donors and patients with liver injury. RESULTS Plasma levels of albumin (ALB) and apolipoprotein H (APOH) mRNAs increased in patients with elevated serum alanine aminotransferase. These mRNAs also increased in plasma after transcatheter arterial chemoembolization, which induces specific injury to liver. CONCLUSIONS We demonstrated the potential application of plasma ALB and APOH mRNAs as clinical biomarkers for liver injury.
Collapse
Affiliation(s)
- Shingo Okubo
- a Drug Safety Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , Fujisawa , Japan and
| | - Makoto Miyamoto
- a Drug Safety Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , Fujisawa , Japan and
| | - Dai Ito
- b Department of Gastroenterology and Hepatology , Osakafu Saiseikai Nakatsu Hospital , Osaka , Japan
| | - Kenji Takami
- a Drug Safety Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited , Fujisawa , Japan and
| | - Kiyoshi Ashida
- b Department of Gastroenterology and Hepatology , Osakafu Saiseikai Nakatsu Hospital , Osaka , Japan
| |
Collapse
|
52
|
Tumor-Associated CSF MicroRNAs for the Prediction and Evaluation of CNS Malignancies. Int J Mol Sci 2015; 16:29103-19. [PMID: 26690130 PMCID: PMC4691097 DOI: 10.3390/ijms161226150] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 01/15/2023] Open
Abstract
Cerebrospinal fluid (CSF) is a readily reachable body fluid that is reflective of the underlying pathological state of the central nervous system (CNS). Hence it has been targeted for biomarker discovery for a variety of neurological disorders. CSF is also the major route for seeding metastases of CNS malignancies and its analysis could be informative for diagnosis and risk stratification of brain cancers. Recently, modern high-throughput, microRNAs (miRNAs) measuring technology has enabled sensitive detection of distinct miRNAs that are bio-chemicallystable in the CSF and can distinguish between different types of CNS cancers. Owing to the fact that a CSF specimen can be obtained with relative ease, analysis of CSF miRNAs could be a promising contribution to clinical practice. In this review, we examine the current scientific knowledge on tumor associated CSF miRNAs that could guide diagnosis of different brain cancer types, or could be helpful in predicting disease progression and therapy response. Finally, we highlight their potential applications clinically as biomarkers and discuss limitations.
Collapse
|
53
|
Van Giau V, An SSA. Emergence of exosomal miRNAs as a diagnostic biomarker for Alzheimer's disease. J Neurol Sci 2015; 360:141-52. [PMID: 26723991 DOI: 10.1016/j.jns.2015.12.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/10/2015] [Accepted: 12/02/2015] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is the most common progressive degenerative disorder, and is characterized by memory loss and cognitive decline. It is a complex disorder with both environmental and genetic components. Current diagnosis of AD is based primarily on the analysis of the patient's cognitive function using imaging techniques and the biochemical analyses of bodily fluids. Efforts have been made to develop not only an effective therapeutic, but also a diagnostic capable of identifying AD before the onset of irreversible neurological damage. The molecular content of exosomes is a fingerprint of the releasing cell type and its status. A significant body of literature has demonstrated that molecular constituents of exosomes, especially exosomal proteins and microRNAs (miRNAs), hold great promise as novel biomarkers for clinical diagnosis. In addition, expression profiling of miRNAs found in nanovesicles has revealed diagnostic potential in neurodegenerative diseases. Currently, exosomal miRNAs within biological fluids are known as good disease-related markers, and have emerged as a powerful tool for solving many difficulties in both the diagnosis and treatment of AD patients. In this review, we reviewed recent advances in the research of exosomal biomarkers as well as exosomal miRNAs, summarized of actively used approaches to identifying potential miRNA biomarkers through mouse models and their potential application in clinical diagnostics in AD. We also supply a comprehensive overview of the formation, function, and isolation of exosomes.
Collapse
Affiliation(s)
- Vo Van Giau
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam, South Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam, South Korea.
| |
Collapse
|
54
|
Abdullaev SA, Minkabirova GM, Bezlepkin VG, Gaziev AI. Cell-free DNA in the urine of rats exposed to ionizing radiation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:297-304. [PMID: 25935210 DOI: 10.1007/s00411-015-0599-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
Investigation of cell-free DNA (cf-DNA) in body fluids, as a potential biomarker for assessing the effect of ionizing radiation on the organism, is of considerable interest. We investigated changes in the contents of cell-free mitochondrial DNA (cf-mtDNA) and cell-free nuclear DNA (cf-nDNA) in the urine of X-ray-exposed rats. Assays of cf-mtDNA and cf-nDNA were performed by a real-time PCR in rat urine collected before and after irradiation of animals with doses of 3 and 5 Gy. We also determined the presence of mutations in urine cf-mtDNA, as recognized by Surveyor nuclease. A sharp increase in cf-mtDNA and cf-nDNA in the urine of irradiated rats was observed within 24 h after exposure, followed by a decrease to normal levels. In all cases, the contents of cf-mtDNA fragment copies (estimated by gene tRNA) were significantly higher than those of cf-nDNA estimated by gene GAPDH. A certain portion of mutant cf-mtDNA fragments was detected in the urine of exposed rats, whereas they were absent in the urine of the same animals before irradiation. These preliminary data also suggest that the increased levels of urine cf-mtDNA and cf-nDNA may be a potential biomarker for noninvasive assessment of how the organism responds to ionizing radiation influence.
Collapse
Affiliation(s)
- Serazhutdin A Abdullaev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science (RAS), Pushchino, Moscow Region, 142290, Russia,
| | | | | | | |
Collapse
|
55
|
Ramezani A, Devaney JM, Cohen S, Wing MR, Scott R, Knoblach S, Singhal R, Howard L, Kopp JB, Raj DS. Circulating and urinary microRNA profile in focal segmental glomerulosclerosis: a pilot study. Eur J Clin Invest 2015; 45:394-404. [PMID: 25682967 PMCID: PMC4903079 DOI: 10.1111/eci.12420] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/06/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are noncoding RNA molecules that play important roles in the pathogenesis of various kidney diseases. We investigated whether patients with minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS) have distinct circulating and urinary miRNA expression profiles that could lead to potential development of noninvasive biomarkers of the disease. MATERIALS AND METHODS Exosome miRNAs were extracted from plasma and urine samples of patients with primary FSGS (n = 16) or MCD (n = 5) and healthy controls (n = 5). Differences in miRNA abundance were examined using Affymetrix GeneChip miRNA 3.0 arrays. QRT-PCR was used to validate the findings from the array. RESULTS Comparison analysis of FSGS versus MCD revealed 126 and 155 differentially expressed miRNAs in plasma and in urine, respectively. Only 38 of these miRNAs were previously cited, whereas the remaining miRNAs have not been described. Comparison analysis showed that a significant number of miRNAs were downregulated in both plasma and urine samples of patients with FSGS compared to those with MCD. Plasma levels of miR-30b, miR-30c, miR-34b, miR-34c and miR-342 and urine levels of mir-1225-5p were upregulated in patients with MCD compared to patients with FSGS and controls (P < 0.001). Urinary levels of mir-1915 and miR-663 were downregulated in patients with FSGS compared to MCD and controls (P < 0.001), whereas the urinary levels of miR-155 were upregulated in patients with FSGS when compared to patients with MCD and controls (P < 0.005). CONCLUSIONS Patients with FSGS and MCD have a unique circulating and urinary miRNA profile. The diagnostic and prognostic potential of miRNAs in FSGS and MCD warrants further studies.
Collapse
Affiliation(s)
- Ali Ramezani
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Channavajjhala SK, Rossato M, Morandini F, Castagna A, Pizzolo F, Bazzoni F, Olivieri O. Optimizing the purification and analysis of miRNAs from urinary exosomes. Clin Chem Lab Med 2014; 52:345-54. [PMID: 24101370 DOI: 10.1515/cclm-2013-0562] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/27/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND Exosomes are cytoplasm containing vesicles released by many cells that can be found in several biological fluids including urine. Urinary exosomes are released from every segment of the nephron, are detectable in urine, constitutively contain RNA (small RNAs and mRNAs) and harbor unique subset of proteins, reflecting their cellular source. METHODS With the aim of establishing the optimal protocol for high throughput analysis of exosomal miRNAs, we compared three different urinary exosomes isolation methods and six RNA extraction techniques. Exosomal RNA yield, size and quality were assessed respectively by specific staining with fluorescent dye, capillary electrophoresis and analysis of spectrophotometric parameters. MiRNAs detection and abundance was determined by RT-qPCR. RESULTS Among the exosomes isolation methods, Ultrafiltration resulted to be the most suited. The highest exosomal RNA yield quantified by RiboGreen® staining was obtained with the combination of TRI Reagent™ with miRNeasy®, followed by TRI Reagent™, SeraMir™, miRCURY™, mirVana™ and miRNeasy®; but after a multivariate analysis, SeraMir™ scored as the method of choice in terms of miRNA yield, purity and RT-qPCR miRNAs quantification accuracy. Storage conditions were also analyzed, showing that the relative abundance of urinary exosomal miRNAs is not influenced by urine freezing. CONCLUSIONS The selection of appropriate urinary exosomal miRNA isolation method was dependent on various validation results. Ultrafiltration in combination with SeraMir™ exoRNA columns represents the optimal procedure for a rapid, cost-effective and efficient purification of miRNAs from urinary exosomes, perfectly suited for further applicative research in the field of miRNAs in kidney physiology and pathology.
Collapse
|
57
|
Urine miRNA in nephrotic syndrome. Clin Chim Acta 2014; 436:308-13. [PMID: 24992527 DOI: 10.1016/j.cca.2014.06.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/18/2014] [Accepted: 06/18/2014] [Indexed: 12/27/2022]
Abstract
Nephrotic syndrome is a common problem in clinical nephrology. In general, nephrotic syndrome is pathognomonic of glomerular disease, but the underlying pathological etiology is highly variable. Although kidney biopsy is the standard method to classify the histology and determine the extent of renal scarring, it is an invasive procedure with potential complications, and is generally not suitable for serial monitoring. MicroRNAs (miRNAs) are short noncoding RNA molecules that regulate gene expression. Recent studies show that the urinary levels of several miRNAs are significantly changed in nephrotic syndrome; some appear to be disease specific, others being damage related. Specifically, urinary miR-192 level is lower in patients with diabetic nephropathy than other causes of nephrotic syndrome, while patients with minimal change nephropathy or focal glomerulosclerosis had higher urinary miR-200c level than those with other diagnosis. Elevated urinary miR-21, miR-216a, and miR-494 levels may predict a high risk of disease progression and renal function loss, irrespective of the histological diagnosis. Furthermore, a number of small scale studies suggest that the urinary levels of certain miRNA targets may assist in the diagnosis and assessment of disease activity in patients with lupus nephritis. Since miRNA in urinary sediment is relatively stable and easily quantified, it has the potential to be developed as biomarkers for disease diagnosis and monitoring. However, available published evidence is limited to small scale studies. Further research is urgently needed in many areas.
Collapse
|
58
|
Sarhan RM, Kamel HH, Saad GA, Ahmed OA. Evaluation of three extraction methods for molecular detection of Schistosoma mansoni infection in human urine and serum samples. J Parasit Dis 2013; 39:499-507. [PMID: 26345060 DOI: 10.1007/s12639-013-0385-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/28/2013] [Indexed: 11/28/2022] Open
Abstract
The diagnostic techniques based on polymerase chain reaction (PCR) for the detection of Schistosoma spp. DNA in stool, serum, plasma and urine has shown high sensitivity and specificity solving the problems for the low worm burdens and low transmission rates facing the routine microscopic diagnosis. Since PCR assays require efficient unbiased procedures of extraction and purification of nucleic acids. This study compared the efficiencies of simple, manual and feasible DNA extraction methods; a salting out and resin method, phenol/chloroform method to a commercial extraction kit through PCR analysis of human urine and serum samples spiked with known amounts of adult Schistosoma mansoni DNA confirmed by the application on real samples from patients. In artificially spiked urine gradient, the best mean diagnostic performance was that of salting out and resin then phenol/chloroform and last for the commercial kit. All three methods gave positive results in all tested urine samples which insures comparable high efficiency for DNA detection. In artificially spiked serum gradient, the highest mean diagnostic performance was obtained by the kit then salting out and resin and last by phenol chloroform. In patients' urine samples the phenol/chloroform method showed the highest mean diagnostic performance followed by the resin and then the kit. Using patients' serum samples the resin method showed equal mean diagnostic performance with the phenol/chloroform method which was higher compared to the kit. As regards sensitivity from urine samples the resin and phenol/chloroform showed equal results using artificial gradients and patients' samples. In serum samples the resin and phenol/chloroform showed equal results using artificial gradients while the resin showed better results in patients' samples. It is recommended to extract DNA from urine samples and to use the salting out and resin as a manual DNA extraction method from patients' samples for the molecular diagnosis of Schistosoma mansoni infection.
Collapse
Affiliation(s)
- Rania M Sarhan
- Department of Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hanan H Kamel
- Department of Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ghada A Saad
- Department of Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ossama A Ahmed
- Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
59
|
Jain S, Wojdacz TK, Su YH. Challenges for the application of DNA methylation biomarkers in molecular diagnostic testing for cancer. Expert Rev Mol Diagn 2013; 13:283-94. [PMID: 23570406 DOI: 10.1586/erm.13.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aberrant DNA methylation is ubiquitous in human cancer and has been shown to occur early during carcinogenesis, thus providing attractive potential biomarkers for the early detection of cancer. The introduction of genome-wide DNA methylation analysis comparing tumor and nonmalignant tissues resulted in the discovery of many regions that undergo aberrant methylation during carcinogenesis. Those regions can potentially be used as biomarkers for cancer detection. However, a biomarker will be useful for screening or early detection of cancer only if it can be detected in a noninvasive or minimally invasive fashion without tissue biopsy. The authors discuss the challenges in translating DNA methylation biomarkers to cancer diagnosis - including obstacles in assay development, tissue-specific methylation load on tumor suppressor genes, detecting markers with sufficient sensitivity and specificity in the periphery, and ways in which these obstacles can be overcome.
Collapse
Affiliation(s)
- Surbhi Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 18901, USA
| | | | | |
Collapse
|
60
|
Cnops L, Soentjens P, Clerinx J, Van Esbroeck M. A Schistosoma haematobium-specific real-time PCR for diagnosis of urogenital schistosomiasis in serum samples of international travelers and migrants. PLoS Negl Trop Dis 2013; 7:e2413. [PMID: 24009791 PMCID: PMC3757062 DOI: 10.1371/journal.pntd.0002413] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 07/27/2013] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Diagnosis of urogenital schistosomiasis by microscopy and serological tests may be elusive in travelers due to low egg load and the absence of seroconversion upon arrival. There is need for a more sensitive diagnostic test. Therefore, we developed a real-time PCR targeting the Schistosoma haematobium-specific Dra1 sequence. METHODOLOGY/PRINCIPAL FINDINGS The PCR was evaluated on urine (n = 111), stool (n = 84) and serum samples (n = 135), and one biopsy from travelers and migrants with confirmed or suspected schistosomiasis. PCR revealed a positive result in 7/7 urine samples, 11/11 stool samples and 1/1 biopsy containing S. haematobium eggs as demonstrated by microscopy and in 22/23 serum samples from patients with a parasitological confirmed S. haematobium infection. S. haematobium DNA was additionally detected by PCR in 7 urine, 3 stool and 5 serum samples of patients suspected of having schistosomiasis without egg excretion in urine and feces. None of these suspected patients demonstrated other parasitic infections except one with Blastocystis hominis and Entamoeba cyst in a fecal sample. The PCR was negative in all stool samples containing S. mansoni eggs (n = 21) and in all serum samples of patients with a microscopically confirmed S. mansoni (n = 22), Ascaris lumbricoides (n = 1), Ancylostomidae (n = 1), Strongyloides stercoralis (n = 1) or Trichuris trichuria infection (n = 1). The PCR demonstrated a high specificity, reproducibility and analytical sensitivity (0.5 eggs per gram of feces). CONCLUSION/SIGNIFICANCE The real-time PCR targeting the Dra1 sequence for S. haematobium-specific detection in urine, feces, and particularly serum, is a promising tool to confirm the diagnosis, also during the acute phase of urogenital schistosomiasis.
Collapse
Affiliation(s)
- Lieselotte Cnops
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
| | | | | | | |
Collapse
|
61
|
Cheng L, Quek CYJ, Sun X, Bellingham SA, Hill AF. The detection of microRNA associated with Alzheimer's disease in biological fluids using next-generation sequencing technologies. Front Genet 2013; 4:150. [PMID: 23964286 PMCID: PMC3737441 DOI: 10.3389/fgene.2013.00150] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/21/2013] [Indexed: 02/06/2023] Open
Abstract
Diagnostic tools for neurodegenerative diseases such as Alzheimer's disease (AD) currently involve subjective neuropsychological testing and specialized brain imaging techniques. While definitive diagnosis requires a pathological brain evaluation at autopsy, neurodegenerative changes are believed to begin years before the clinical presentation of cognitive decline. Therefore, there is an essential need for reliable biomarkers to aid in the early detection of disease in order to implement preventative strategies. microRNAs (miRNA) are small non-coding RNA species that are involved in post-transcriptional gene regulation. Expression levels of miRNAs have potential as diagnostic biomarkers as they are known to circulate and tissue specific profiles can be identified in a number of bodily fluids such as plasma, CSF and urine. Recent developments in deep sequencing technology present a viable approach to develop biomarker discovery pipelines in order to profile miRNA signatures in bodily fluids specific to neurodegenerative diseases. Here we review the potential use of miRNA deep sequencing in biomarker identification from biological fluids and its translation into clinical practice.
Collapse
Affiliation(s)
- Lesley Cheng
- Department of Biochemistry and Molecular Biology, The University of Melbourne Melbourne, VIC, Australia ; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Melbourne, VIC, Australia
| | | | | | | | | |
Collapse
|
62
|
Yang Y, Xiao L, Li J, Kanwar YS, Liu F, Sun L. Urine miRNAs: potential biomarkers for monitoring progression of early stages of diabetic nephropathy. Med Hypotheses 2013; 81:274-8. [PMID: 23683774 PMCID: PMC3706533 DOI: 10.1016/j.mehy.2013.04.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 03/19/2013] [Accepted: 04/16/2013] [Indexed: 12/23/2022]
Abstract
With a steep increase in the incidence of type 1 and 2 diabetes globally, diabetic nephropathy (DN) has now become the leading cause of renal failure in the world. There are no suitable biomarkers for the diagnosis of early stages of DN. In recent years, tremendous efforts are being made worldwide to delineate the role of micro RNAs in the pathogenesis of DN. Circulating miRNAs in serum, plasma, urine and other body fluids, which reflect a response to various pathophysiological stresses, are being investigated in the context of diabetic nephropathy. Delineation of the changes in miRNA levels in patients with DN may lead to a better understanding of the progression of the disease. We present here an exhaustive survey of the miRNA literature, highlighting various studies performed over the last decade. The aim is to assess if changes in various miRNAs could correlate with the progression of diabetic nephropathy. Based on the survey, we found that miRNA-377, miRNA-192, miRNA-216/217 and miRNA-144 are increased in body fluids of patients with DN, while miRNA-21 and miRNA-375 are decreased. Overall, there are a very few miRNAs that are kidney specific, and although significant differences were observed in the urinary excretion of certain miRNAs, they were not correlative to their levels in the blood or plasma. Thus, it is completely plausible that urine-specific miRNAs could serve as novel biomarkers for the diagnosis of early stages of diabetic nephropathy.
Collapse
Affiliation(s)
- Yeyi Yang
- Department of Nephropathy, The Second Xiangya Hospital, Kidney Institute of Central South University, Changsha, Hunan Province, China 410011
| | - Li Xiao
- Department of Nephropathy, The Second Xiangya Hospital, Kidney Institute of Central South University, Changsha, Hunan Province, China 410011
| | - Jun Li
- Department of Nephropathy, The Second Xiangya Hospital, Kidney Institute of Central South University, Changsha, Hunan Province, China 410011
| | - Yashpal S. Kanwar
- Departments of Pathology & Medicine, Northwestern University, Chicago, Illinois, USA
| | - Fuyou Liu
- Department of Nephropathy, The Second Xiangya Hospital, Kidney Institute of Central South University, Changsha, Hunan Province, China 410011
| | - Lin Sun
- Department of Nephropathy, The Second Xiangya Hospital, Kidney Institute of Central South University, Changsha, Hunan Province, China 410011
| |
Collapse
|
63
|
Bordelon H, Russ PK, Wright DW, Haselton FR. A magnetic bead-based method for concentrating DNA from human urine for downstream detection. PLoS One 2013; 8:e68369. [PMID: 23861895 PMCID: PMC3704639 DOI: 10.1371/journal.pone.0068369] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/30/2013] [Indexed: 11/24/2022] Open
Abstract
Due to the presence of PCR inhibitors, PCR cannot be used directly on most clinical samples, including human urine, without pre-treatment. A magnetic bead-based strategy is one potential method to collect biomarkers from urine samples and separate the biomarkers from PCR inhibitors. In this report, a 1 mL urine sample was mixed within the bulb of a transfer pipette containing lyophilized nucleic acid-silica adsorption buffer and silica-coated magnetic beads. After mixing, the sample was transferred from the pipette bulb to a small diameter tube, and captured biomarkers were concentrated using magnetic entrainment of beads through pre-arrayed wash solutions separated by small air gaps. Feasibility was tested using synthetic segments of the 140 bp tuberculosis IS6110 DNA sequence spiked into pooled human urine samples. DNA recovery was evaluated by qPCR. Despite the presence of spiked DNA, no DNA was detectable in unextracted urine samples, presumably due to the presence of PCR inhibitors. However, following extraction with the magnetic bead-based method, we found that ∼50% of spiked TB DNA was recovered from human urine containing roughly 5×103 to 5×108 copies of IS6110 DNA. In addition, the DNA was concentrated approximately ten-fold into water. The final concentration of DNA in the eluate was 5×106, 14×106, and 8×106 copies/µL for 1, 3, and 5 mL urine samples, respectively. Lyophilized and freshly prepared reagents within the transfer pipette produced similar results, suggesting that long-term storage without refrigeration is possible. DNA recovery increased with the length of the spiked DNA segments from 10±0.9% for a 75 bp DNA sequence to 42±4% for a 100 bp segment and 58±9% for a 140 bp segment. The estimated LOD was 77 copies of DNA/µL of urine. The strategy presented here provides a simple means to achieve high nucleic acid recovery from easily obtained urine samples, which does not contain inhibitors of PCR.
Collapse
Affiliation(s)
- Hali Bordelon
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Patricia K. Russ
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - David W. Wright
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Frederick R. Haselton
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
64
|
Okubo S, Miyamoto M, Takami K, Kanki M, Ono A, Nakatsu N, Yamada H, Ohno Y, Urushidani T. Identification of novel liver-specific mRNAs in plasma for biomarkers of drug-induced liver injury and quantitative evaluation in rats treated with various hepatotoxic compounds. Toxicol Sci 2013; 132:21-31. [PMID: 23288050 DOI: 10.1093/toxsci/kfs340] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Circulating liver-specific mRNAs such as albumin (Alb) and α-1-microglobulin/bikunin precursor (Ambp) have been reported to be potential biomarkers for drug-induced liver injury (DILI). We identified novel circulating liver-specific mRNAs and quantified them, together with the two previously reported mRNAs, in plasma from rats treated with various hepatotoxicants to validate circulating liver-specific mRNAs as biomarkers for DILI. Among six genes selected from the database, high liver specificity of apolipoprotein h (Apoh) and group-specific component (Gc) mRNAs were confirmed by reverse transcription (RT)-PCR and the copy numbers of these mRNAs elevated in plasma from rats treated with thioacetamide. Liver-specific mRNAs (Alb, Ambp, Apoh, and Gc) were quantified by real-time RT-PCR in plasma from rats with single dosing of seven hepatotoxicants. There were noticeable interindividual and intercompound variabilities in the severity of liver injury. The levels of four mRNAs increased almost in parallel and correlated with changes in the alanine aminotransferase (ALT) values and the hepatocellular necrosis scores at 24h after dosing. It was noteworthy that the magnitude of the increases in mRNA levels was greater than that in the ALT value. Time course analysis within 24h after dosing revealed that the timing of the increase was different among mRNA species, and the plasma levels of Alb and Gc mRNAs increased substantially earlier than the ALT values, suggesting that patterns of changes in circulating liver-specific mRNAs indicate the progression of liver injury. These results strongly support the reliability and usefulness of the four circulating liver-specific mRNAs as biomarkers for DILI.
Collapse
Affiliation(s)
- Shingo Okubo
- Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Lan YF, Chen HH, Lai PF, Cheng CF, Huang YT, Lee YC, Chen TW, Lin H. MicroRNA-494 reduces ATF3 expression and promotes AKI. J Am Soc Nephrol 2012; 23:2012-23. [PMID: 23160513 DOI: 10.1681/asn.2012050438] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNA-494 mediates apoptosis and necrosis in several types of cells, but its renal target and potential role in AKI are unknown. Here, we found that microRNA-494 binds to the 3'UTR of activating transcription factor 3 (ATF3) and decreases its transcription. In mice, overexpression of microRNA-494 significantly attenuated the level of ATF3 and induced inflammatory mediators, such as IL-6, monocyte chemotactic protein-1, and P-selectin, after renal ischemia/reperfusion, exacerbating apoptosis and further decreasing renal function. Activation of NF-κB mediated this proinflammatory response. In this ischemia/reperfusion model, urinary levels of microRNA-494 increased significantly before the rise in serum creatinine. In humans, urinary microRNA-494 levels were 60-fold higher in patients with AKI than normal controls. In conclusion, upregulation of microRNA-494 contributes to inflammatory or adhesion molecule-induced kidney injury after ischemia/reperfusion by inhibiting expression of ATF3. Furthermore, microRNA-494 may be a specific and noninvasive biomarker for AKI.
Collapse
Affiliation(s)
- Yi-Fan Lan
- PhD Program in Pharmacology and Toxicology, Tzu-Chi University, Hualien, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Cheng Y, Wang X, Yang J, Duan X, Yao Y, Shi X, Chen Z, Fan Z, Liu X, Qin S, Tang X, Zhang C. A translational study of urine miRNAs in acute myocardial infarction. J Mol Cell Cardiol 2012; 53:668-76. [PMID: 22921780 DOI: 10.1016/j.yjmcc.2012.08.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/19/2012] [Accepted: 08/08/2012] [Indexed: 01/01/2023]
Abstract
The currently used biomarkers for acute myocardial infarction (AMI) are blood creatinine phosphokinase-muscle band (CPK-MB), troponin-T (TnT), and troponin I (TnI). However, no good biomarkers are identified in urine after AMI, because these blood protein biomarkers are difficult to be filtered into urine. In this study, the role of urine microRNAs in the diagnosis of AMI and the mechanism involved were determined. We found that urine miR-1 was quickly increased in rats after AMI with peak at 24h after AMI, in which an over 50-fold increase was demonstrated. At 7 days after AMI, the urine miR-1 level was returned to the basal level. No miR-208 was found in normal urine. In urine from rats with AMI, miR-208 was easily detected. To determine the mechanism involved, we determined the levels of heart-released miR-1 in the liver, spleen and kidney after AMI in rats and found that the kidney was an important metabolic organ. To determine the renal elimination of blood miRNAs, we isolated serum exosomes from rats after AMI and injected these exosomes into the circulating blood of normal rats. We found that the urine miR-1 was significantly increased in exosome-injected animals. Moreover, PKH67-labeled exosomes injected into circulating blood could enter into the kidney tissues and cells, as well as urine. Furthermore, the levels of urine miR-1 were significantly increased in patients with AMI. The results suggest that urine miRNAs such as miR-1 could be novel urine biomarkers for AMI.
Collapse
Affiliation(s)
- Yunhui Cheng
- Rush University Cardiovascular Research Center and Department of Pharmacology, Rush Medical College, Rush University, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Wang Z, Lu Y, Han J. Peripheral blood microRNAs: A novel tool for diagnosing disease? Intractable Rare Dis Res 2012; 1:98-102. [PMID: 25343080 PMCID: PMC4204598 DOI: 10.5582/irdr.2012.v1.3.98] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/23/2012] [Accepted: 07/26/2012] [Indexed: 02/06/2023] Open
Abstract
Peripheral blood microRNAs (miRNAs) are endogenous, noncoding small RNAs present in blood. Because of their size, abundance, tissue specificity, and relative stability in peripheral circulation, they offer great promise of becoming a novel noninvasive biomarker. However, the mechanism by which they are secreted, their biological function, and the reason for the existence of extracellular miRNAs are largely unclear. This article describes advances in the study of the mechanism of origin and biological function of extracellular miRNAs along with approaches adopted by research and questions that remain. This work also discusses the potential for peripheral blood miRNAs to serve as a diagnostic tool.
Collapse
Affiliation(s)
- Ziqiang Wang
- Shandong Medicinal Biotechnology Center, Key Laboratory for Biotech-Drugs Ministry of Health, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Yanqin Lu
- Shandong Medicinal Biotechnology Center, Key Laboratory for Biotech-Drugs Ministry of Health, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Jinxiang Han
- Shandong Medicinal Biotechnology Center, Key Laboratory for Biotech-Drugs Ministry of Health, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- Address correspondence to: Dr. Jinxiang Han, Shandong Academy of Medical Sciences, No. 18877 Jing-shi Road, Ji'nan, 250062, Shandong, China. E-mail:
| |
Collapse
|
68
|
Saikumar J, Hoffmann D, Kim TM, Gonzalez VR, Zhang Q, Goering PL, Brown RP, Bijol V, Park PJ, Waikar SS, Vaidya VS. Expression, circulation, and excretion profile of microRNA-21, -155, and -18a following acute kidney injury. Toxicol Sci 2012; 129:256-67. [PMID: 22705808 DOI: 10.1093/toxsci/kfs210] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous noncoding RNA molecules that are involved in post-transcriptional gene silencing. Using global miRNA expression profiling, we found miR-21, -155, and 18a to be highly upregulated in rat kidneys following tubular injury induced by ischemia/reperfusion (I/R) or gentamicin administration. Mir-21 and -155 also showed decreased expression patterns in blood and urinary supernatants in both models of kidney injury. Furthermore, urinary levels of miR-21 increased 1.2-fold in patients with clinical diagnosis of acute kidney injury (AKI) (n = 22) as compared with healthy volunteers (n = 25) (p < 0.05), and miR-155 decreased 1.5-fold in patients with AKI (p < 0.01). We identified 29 messenger RNA core targets of these 3 miRNAs using the context likelihood of relatedness algorithm and found these predicted gene targets to be highly enriched for genes associated with apoptosis or cell proliferation. Taken together, these results suggest that miRNA-21 and -155 could potentially serve as translational biomarkers for detection of AKI and may play a critical role in the pathogenesis of kidney injury and tissue repair process.
Collapse
Affiliation(s)
- Janani Saikumar
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Enk MJ, Oliveira e Silva G, Rodrigues NB. Diagnostic accuracy and applicability of a PCR system for the detection of Schistosoma mansoni DNA in human urine samples from an endemic area. PLoS One 2012; 7:e38947. [PMID: 22701733 PMCID: PMC3372502 DOI: 10.1371/journal.pone.0038947] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 05/14/2012] [Indexed: 11/18/2022] Open
Abstract
Schistosomiasis caused by Schistosoma mansoni, one of the most neglected human parasitoses in Latin America and Africa, is routinely confirmed by microscopic visualization of eggs in stool. The main limitation of this diagnostic approach is its lack of sensitivity in detecting individual low worm burdens and consequently data on infection rates in low transmission settings are little reliable. According to the scientific literature, PCR assays are characterized by high sensitivity and specificity in detecting parasite DNA in biological samples. A simple and cost effective extraction method for DNA of Schistosoma mansoni from urine samples in combination with a conventional PCR assay was developed and applied in an endemic area. This urine based PCR system was tested for diagnostic accuracy among a population of a small village in an endemic area, comparing it to a reference test composed of three different parasitological techniques. The diagnostic parameters revealed a sensitivity of 100%, a specificity of 91.20%, positive and negative predictive values of 86.25% and 100%, respectively, and a test accuracy of 94.33%. Further statistical analysis showed a k index of 0.8806, indicating an excellent agreement between the reference test and the PCR system. Data obtained from the mouse model indicate the infection can be detected one week after cercariae penetration, opening a new perspective for early detection and patient management during this stage of the disease. The data indicate that this innovative PCR system provides a simple to handle and robust diagnostic tool for the detection of S. mansoni DNA from urine samples and a promising approach to overcome the diagnostic obstacles in low transmission settings. Furthermore the principals of this molecular technique, based on the examination of human urine samples may be useful for the diagnosis of other neglected tropical diseases that can be detected by trans-renal DNA.
Collapse
Affiliation(s)
- Martin Johannes Enk
- Laboratório de Esquistossomose, Centro de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil.
| | | | | |
Collapse
|
70
|
Song BP, Jain S, Lin SY, Chen Q, Block TM, Song W, Brenner DE, Su YH. Detection of hypermethylated vimentin in urine of patients with colorectal cancer. J Mol Diagn 2012; 14:112-9. [PMID: 22251609 DOI: 10.1016/j.jmoldx.2011.12.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/01/2011] [Accepted: 12/07/2011] [Indexed: 02/06/2023] Open
Abstract
We demonstrated previously that urine contains low-molecular-weight (LMW) (<300 bp), circulation-derived DNA that can be used to detect cancer-specific mutations if a tumor is present. The goal of this study was to develop an assay to detect the colorectal cancer (CRC)-associated, circulation-derived, epigenetic DNA marker hypermethylated vimentin gene (mVIM) in the urine of patients with CRC. An artificial 18-nucleotide DNA sequence was tagged at the 5' end of the primers of the first PCR cycle to increase the amplicon size, which was then integrated into the primers of the second PCR cycle. A quantitative MethyLight PCR-based assay targeting a 39-nucleotide template was developed and used to quantify mVIM in CRC tissues and matched urine samples. mVIM was detected in 75% of LMW urine DNA samples from patients with CRC (n = 20) and in 10% of urine samples of control subjects with no known neoplasia (n = 20); 12 of 17 LMW urine DNA samples (71%) but only 2 of 17 high-molecular-weight urine DNA samples (12%) from patients with mVIM-positive tissues contained detectable mVIM, suggesting that the mVIM detected in LMW urine DNA is derived from the circulation. The detection of mVIM in urine was significantly associated with CRC compared with controls (P < 0.0001, by Fisher's exact test). A potential urine test for CRC screening using epigenetic markers is discussed.
Collapse
Affiliation(s)
- Benjamin P Song
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 18901, USA
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Yang Q, Lu J, Wang S, Li H, Ge Q, Lu Z. Application of next-generation sequencing technology to profile the circulating microRNAs in the serum of preeclampsia versus normal pregnant women. Clin Chim Acta 2011; 412:2167-73. [DOI: 10.1016/j.cca.2011.07.029] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 07/29/2011] [Indexed: 12/28/2022]
|
72
|
Fuchs TC, Hewitt P. Biomarkers for drug-induced renal damage and nephrotoxicity-an overview for applied toxicology. AAPS JOURNAL 2011; 13:615-31. [PMID: 21969220 DOI: 10.1208/s12248-011-9301-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 09/12/2011] [Indexed: 01/08/2023]
Abstract
The detection of acute kidney injury (AKI) and the monitoring of chronic kidney disease (CKD) is becoming more important in industrialized countries. Because of the direct relation of kidney damage to the increasing age of the population, as well as the connection to other diseases like diabetes mellitus and congestive heart failure, renal diseases/failure has increased in the last decades. In addition, drug-induced kidney injury, especially of patients in intensive care units, is very often a cause of AKI. The need for diagnostic tools to identify drug-induced nephrotoxicity has been emphasized by the ICH-regulated agencies. This has lead to multiple national and international projects focusing on the identification of novel biomarkers to enhance drug development. Several parameters related to AKI or CKD are known and have been used for several decades. Most of these markers deliver information only when renal damage is well established, as is the case for serum creatinine. The field of molecular toxicology has spawned new options of the detection of nephrotoxicity. These new developments lead to the identification of urinary protein biomarkers, including Kim-1, clusterin, osteopontin or RPA-1, and other transcriptional biomarkers which enable the earlier detection of AKI and deliver further information about the area of nephron damage or the underlying mechanism. These biomarkers were mainly identified and qualified in rat but also for humans, several biomarkers have been described and now have to be validated. This review will give an overview of traditional and novel tools for the detection of renal damage.
Collapse
|
73
|
Abstract
Kidney diseases manifest in progressive loss of renal function, which ultimately leads to complete kidney failure. The mechanisms underlying the origins and progression of kidney diseases are not fully understood. Multiple factors involved in the pathogenesis of kidney diseases have made the traditional candidate gene approach of limited value toward full understanding of the molecular mechanisms of these diseases. A systems biology approach that integrates computational modeling with large-scale data gathering of the molecular changes could be useful in identifying the multiple interacting genes and their products that drive kidney diseases. Advances in biotechnology now make it possible to gather large data sets to characterize the role of the genome, epigenome, transcriptome, proteome, and metabolome in kidney diseases. When combined with computational analyses, these experimental approaches will provide a comprehensive understanding of the underlying biological processes. Multiscale analysis that connects the molecular interactions and cell biology of different kidney cells to renal physiology and pathology can be utilized to identify modules of biological and clinical importance that are perturbed in disease processes. This integration of experimental approaches and computational modeling is expected to generate new knowledge that can help to identify marker sets to guide the diagnosis, monitor disease progression, and identify new therapeutic targets.
Collapse
|
74
|
Shigehara K, Yokomuro S, Ishibashi O, Mizuguchi Y, Arima Y, Kawahigashi Y, Kanda T, Akagi I, Tajiri T, Yoshida H, Takizawa T, Uchida E. Real-time PCR-based analysis of the human bile microRNAome identifies miR-9 as a potential diagnostic biomarker for biliary tract cancer. PLoS One 2011; 6:e23584. [PMID: 21858175 PMCID: PMC3157401 DOI: 10.1371/journal.pone.0023584] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 07/21/2011] [Indexed: 12/21/2022] Open
Abstract
Biliary tract cancer (BTC) is often difficult to diagnose definitively, even through histological examination. MicroRNAs (miRNAs) regulate a variety of physiological processes. In recent years, it has been suggested that profiles for circulating miRNAs, as well as those for tissue miRNAs, have the potential to be used as diagnostic biomarkers for cancer. The aim of this study was to confirm the existence of miRNAs in human bile and to assess their potential as clinical biomarkers for BTC. We sampled bile from patients who underwent biliary drainage for biliary diseases such as BTC and choledocholithiasis. PCR-based miRNA detection and miRNA cloning were performed to identify bile miRNAs. Using high-throughput real-time PCR-based miRNA microarrays, the expression profiles of 667 miRNAs were compared in patients with malignant disease (n = 9) and age-matched patients with the benign disease choledocholithiasis (n = 9). We subsequently characterized bile miRNAs in terms of stability and localization. Through cloning and using PCR methods, we confirmed that miRNAs exist in bile. Differential analysis of bile miRNAs demonstrated that 10 of the 667 miRNAs were significantly more highly expressed in the malignant group than in the benign group at P<0.0005. Setting the specificity threshold to 100% showed that some miRNAs (miR-9, miR-302c*, miR-199a-3p and miR-222*) had a sensitivity level of 88.9%, and receiver-operating characteristic analysis demonstrated that miR-9 and miR-145* could be useful diagnostic markers for BTC. Moreover, we verified the long-term stability of miRNAs in bile, a characteristic that makes them suitable for diagnostic use in clinical settings. We also confirmed that bile miRNAs are localized to the malignant/benign biliary epithelia. These findings suggest that bile miRNAs could be informative biomarkers for hepatobiliary disease and that some miRNAs, particularly miR-9, may be helpful in the diagnosis and clinical management of BTC.
Collapse
Affiliation(s)
- Kengo Shigehara
- Department of Surgery for Organ Function and Biological Regulation, Nippon Medical School, Tokyo, Japan
| | - Shigeki Yokomuro
- Department of Surgery for Organ Function and Biological Regulation, Nippon Medical School, Tokyo, Japan
| | - Osamu Ishibashi
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo, Japan
| | - Yoshiaki Mizuguchi
- Department of Surgery for Organ Function and Biological Regulation, Nippon Medical School, Tokyo, Japan
| | - Yasuo Arima
- Department of Surgery for Organ Function and Biological Regulation, Nippon Medical School, Tokyo, Japan
| | - Yutaka Kawahigashi
- Department of Surgery for Organ Function and Biological Regulation, Nippon Medical School, Tokyo, Japan
| | - Tomohiro Kanda
- Department of Surgery for Organ Function and Biological Regulation, Nippon Medical School, Tokyo, Japan
| | - Ichiro Akagi
- Department of Surgery for Organ Function and Biological Regulation, Nippon Medical School, Tokyo, Japan
| | - Takashi Tajiri
- Department of Surgery for Organ Function and Biological Regulation, Nippon Medical School, Tokyo, Japan
| | - Hiroshi Yoshida
- Department of Surgery for Organ Function and Biological Regulation, Nippon Medical School, Tokyo, Japan
| | - Toshihiro Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo, Japan
| | - Eiji Uchida
- Department of Surgery for Organ Function and Biological Regulation, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
75
|
Pinto JLF, Fonseca FLA, Marsicano SR, Delgado PO, Sant'anna AVL, Coelho PG, Maeda P, Del Giglio A. Systemic chemotherapy-induced microsatellite instability in the mononuclear cell fraction of women with breast cancer can be reproduced in vitro and abrogated by amifostine. J Pharm Pharmacol 2011; 62:931-4. [PMID: 20636882 DOI: 10.1211/jpp.62.07.0015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Microsatellite instability (MSI) induction by alkylating agent-based chemotherapy (ACHT) may underlie both tumor resistance to chemotherapy and secondary leukaemias in cancer patients. We investigated if ACHT could induce MSI in tumor-derived plasma-circulating DNA (pfDNA) and in normal peripheral blood mononuclear (PBMN) cells. We also evaluated if amifostine could interfere with this process in an in-vitro model. METHODS MSI was determined in pfDNA, PBMN cells and urine cell-free DNA (ufDNA) of 33 breast cancer patients before and after ACHT. MCF-7 cells and PBMN from normal donors were exposed in vitro to melphalan, with or without amifostine. RESULTS We observed at least one MSI event in PBMN cells, pfDNA or ufDNA of 87, 80 and 80% of patients, respectively. In vitro, melphalan induced MSI in both MCF-7 and normal PBMN cells. In PBMN cells, ACHT-induced MSI occurred together with a significant decrease in the expression of the DNA mismatch repair gene hMSH2. Amifostine decreased hMSH2 expression and also prevented MSI induction only in normal PBMN cells. CONCLUSIONS ACHT induced MSI in PBMN cells and in tumour-derived pfDNA. Because of its protective effect against ACHT induction of MSI in normal PBMN cells in vitro, amifostine may be a potential agent for preventing secondary leukaemias in patients exposed to ACHT.
Collapse
|
76
|
Li JY, Yong TY, Michael MZ, Gleadle JM. Review: The role of microRNAs in kidney disease. Nephrology (Carlton) 2011; 15:599-608. [PMID: 20883280 DOI: 10.1111/j.1440-1797.2010.01363.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that modulate physiological and pathological processes by inhibiting target gene expression via blockade of protein translation or by inducing mRNA degradation. These miRNAs potentially regulate the expression of thousands of proteins. As a result, miRNAs have emerged rapidly as a major new area of biomedical research with relevance to kidney disease. MiRNA expression has been shown to differ between the kidney and other organs as well as between different kidney regions. Furthermore, miRNAs have been found to be functionally important in models of podocyte development, diabetic nephropathy and polycystic kidney disease. Of particular interest, podocyte-specific deletion of Dicer, a key enzyme in the biogenesis of miRNA, results in proteinuria and severe renal impairment in mice. One miRNA (miR-192) can also act as an effector of transforming growth factor-β activity in the high-glucose environment of diabetic nephropathy. Differential expression of miRNAs has been reported in kidney allograft rejection. It is anticipated that future studies involving miRNAs will generate new insights into the complex pathophysiology underlying various kidney diseases, generate diagnostic biomarkers and might be of value as therapeutic targets for progressive kidney diseases. The purpose of this review is to highlight key miRNA developments in kidney diseases and how this might influence the diagnosis and management of patients with kidney disease in the future.
Collapse
Affiliation(s)
- Jordan Yz Li
- Departments of Renal Medicine, Flinders Medical Centre, Flinders University, Adelaide, South Australia, Australia
| | | | | | | |
Collapse
|
77
|
Lock EA. Sensitive and early markers of renal injury: where are we and what is the way forward? Toxicol Sci 2010; 116:1-4. [PMID: 20558414 DOI: 10.1093/toxsci/kfq128] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Edward A Lock
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
78
|
Wetmore BA, Brees DJ, Singh R, Watkins PB, Andersen ME, Loy J, Thomas RS. Quantitative analyses and transcriptomic profiling of circulating messenger RNAs as biomarkers of rat liver injury. Hepatology 2010; 51:2127-39. [PMID: 20235334 DOI: 10.1002/hep.23574] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
UNLABELLED Serum aminotransferases have been the clinical standard for evaluating liver injury for the past 50-60 years. These tissue enzymes lack specificity, also tracking injury to other tissues. New technologies assessing tissue-specific messenger RNA (mRNA) release into blood should provide greater specificity and permit indirect assessment of gene expression status of injured tissue. To evaluate the potential of circulating mRNAs as biomarkers of liver injury, rats were treated either with hepatotoxic doses of D-(+)-galactosamine (DGAL) or acetaminophen (APAP) or a myotoxic dose of bupivacaine HCl (BPVC). Plasma, serum, and liver samples were obtained from each rat. Serum alanine aminotransferase and aspartate aminotransferase were increased by all three compounds, whereas circulating liver-specific mRNAs were only increased by the hepatotoxicants. With APAP, liver-specific mRNAs were significantly increased in plasma at doses that had no effect on serum aminotransferases or liver histopathology. Characterization of the circulating mRNAs by sucrose density gradient centrifugation revealed that the liver-specific mRNAs were associated with both necrotic debris and microvesicles. DGAL treatment also induced a shift in the size of plasma microvesicles, consistent with active release of microvesicles following liver injury. Finally, gene expression microarray analysis of the plasma following DGAL and APAP treatment revealed chemical-specific profiles. CONCLUSION The comparative analysis of circulating liver mRNAs with traditional serum transaminases and histopathology indicated that the circulating liver mRNAs were more specific and more sensitive biomarkers of liver injury. Further, the possibility of identifying chemical-specific transcriptional profiles from circulating mRNAs could open a range of possibilities for identifying the etiology of drug/chemical-induced liver injury.
Collapse
Affiliation(s)
- Barbara A Wetmore
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709-2137, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Peter J, Green C, Hoelscher M, Mwaba P, Zumla A, Dheda K. Urine for the diagnosis of tuberculosis: current approaches, clinical applicability, and new developments. Curr Opin Pulm Med 2010; 16:262-70. [PMID: 20375787 PMCID: PMC5454484 DOI: 10.1097/mcp.0b013e328337f23a] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Urine is increasingly being investigated as a convenient clinical sample for the identification of mycobacterial products for the diagnosis of tuberculosis. The available literature on mycobacterial lipoarabinomannan (LAM) and urine mycobacterial DNA is reviewed. RECENT FINDINGS The available data, despite being extracted from heterogeneous clinical populations and different clinical subgroups, indicate that urine LAM has little diagnostic utility in unselected tuberculosis suspects; however, test characteristics improve in HIV-infected patients, particularly those with advanced immunosuppression (CD4 cell count <200 cells/microl). Methodologies for urine PCR for detection of mycobacterial DNA vary across studies and focus is on standardizing assays with respect to specimen collection, assay design, and processing methodology. SUMMARY Both the urine LAM and PCR for mycobacterial DNA are being evaluated in different geographical settings. Urine LAM currently offers little utility for the diagnosis of tuberculosis in unselected populations. However, urine LAM appears promising as a diagnostic tool in HIV-infected patients with CD4 cell counts less than 200 cells/microl in different clinical settings. Further developmental studies are required to enhance the performance of the assays, and their usefulness over sputum microscopy in HIV-infected patients with advanced immunosuppression requires definition in large cohort studies.
Collapse
Affiliation(s)
- Jonathan Peter
- Lung Infection and Immunity Unit, Division of Pulmonology and Clinical Immunology and UCT Lung Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | | | | | | | | | | |
Collapse
|
80
|
Kondratova VN, Botezatu IV, Shelepov VP, Lichtenstein AV. Isotachophoresis of nucleic acids in agarose gel rods. BIOCHEMISTRY (MOSCOW) 2009; 74:1285-8. [DOI: 10.1134/s0006297909110169] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
81
|
Green C, Huggett JF, Talbot E, Mwaba P, Reither K, Zumla AI. Rapid diagnosis of tuberculosis through the detection of mycobacterial DNA in urine by nucleic acid amplification methods. THE LANCET. INFECTIOUS DISEASES 2009; 9:505-11. [DOI: 10.1016/s1473-3099(09)70149-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
82
|
|
83
|
Shekhtman EM, Anne K, Melkonyan HS, Robbins DJ, Warsof SL, Umansky SR. Optimization of Transrenal DNA Analysis: Detection of Fetal DNA in Maternal Urine. Clin Chem 2009; 55:723-9. [DOI: 10.1373/clinchem.2008.113050] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Abstract
Background: Fragments of DNA from cells dying throughout the body are detectable in urine (transrenal DNA, or Tr-DNA). Our goal was the optimization of Tr-DNA isolation and detection techniques, using as a model the analysis of fetal DNA in maternal urine.
Methods: We isolated urinary DNA using a traditional silica-based method and using a new technique based on adsorption of cell-free nucleic acids on Q-Sepharose resin. The presence of Y chromosome–specific SRY (sex-determining region Y) sequences in urine of pregnant women was detected by conventional and real-time PCR using primers/probe sets designed for 25-, 39-, 65-, and 88-bp PCR targets.
Results: Method of DNA isolation and PCR target size affected fetal Tr-DNA detection. Assay diagnostic sensitivity increases as the PCR target is shortened. Shorter DNA fragments (50–150 bp) could be isolated by Q-resin–based technique, which also facilitated fetal Tr-DNA analysis. Using DNA isolated by Q-resin–based method and an “ultrashort” DNA target, we successfully detected SRY sequences in 78 of 82 urine samples from women pregnant with male fetuses (positive predictive value 87.6%). Eleven of 91 urine samples from women pregnant with female fetuses produced SRY false-positive results (negative predictive value 95.2%).
Conclusions: Single-copy fetal DNA sequences can be successfully detected in the urine of pregnant women when adequate methods for DNA isolation and analysis are applied. Strong precautions against sample contamination with male cells and DNA are necessary to avoid false-positive results.
Collapse
|
84
|
|