51
|
Cardoso F, Paluch-Shimon S, Schumacher-Wulf E, Matos L, Gelmon K, Aapro MS, Bajpai J, Barrios CH, Bergh J, Bergsten-Nordström E, Biganzoli L, Cardoso MJ, Carey LA, Chavez-MacGregor M, Chidebe R, Cortés J, Curigliano G, Dent RA, El Saghir NS, Eniu A, Fallowfield L, Francis PA, Franco Millan SX, Gilchrist J, Gligorov J, Gradishar WJ, Haidinger R, Harbeck N, Hu X, Kaur R, Kiely B, Kim SB, Koppikar S, Kuper-Hommel MJJ, Lecouvet FE, Mason G, Mertz SA, Mueller V, Myerson C, Neciosup S, Offersen BV, Ohno S, Pagani O, Partridge AH, Penault-Llorca F, Prat A, Rugo HS, Senkus E, Sledge GW, Swain SM, Thomssen C, Vorobiof DA, Vuylsteke P, Wiseman T, Xu B, Costa A, Norton L, Winer EP. 6th and 7th International consensus guidelines for the management of advanced breast cancer (ABC guidelines 6 and 7). Breast 2024; 76:103756. [PMID: 38896983 PMCID: PMC11231614 DOI: 10.1016/j.breast.2024.103756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
This manuscript describes the Advanced Breast Cancer (ABC) international consensus guidelines updated at the last two ABC international consensus conferences (ABC 6 in 2021, virtual, and ABC 7 in 2023, in Lisbon, Portugal), organized by the ABC Global Alliance. It provides the main recommendations on how to best manage patients with advanced breast cancer (inoperable locally advanced or metastatic), of all breast cancer subtypes, as well as palliative and supportive care. These guidelines are based on available evidence or on expert opinion when a higher level of evidence is lacking. Each guideline is accompanied by the level of evidence (LoE), grade of recommendation (GoR) and percentage of consensus reached at the consensus conferences. Updated diagnostic and treatment algorithms are also provided. The guidelines represent the best management options for patients living with ABC globally, assuming accessibility to all available therapies. Their adaptation (i.e. resource-stratified guidelines) is often needed in settings where access to care is limited.
Collapse
Affiliation(s)
- Fatima Cardoso
- Breast Unit, Champalimaud Clinical Centre/Champalimaud Foundation, and ABC Global Alliance, Lisbon, Portugal.
| | - Shani Paluch-Shimon
- Hadassah University Hospital - Sharett Institute of Oncology, Jerusalem, Israel
| | | | - Leonor Matos
- Breast Unit, Champalimaud Clinical Centre/Champalimaud Foundation, Lisbon, Portugal
| | - Karen Gelmon
- BC Cancer Agency, Department of Medical Oncology, Vancouver, Canada
| | - Matti S Aapro
- Cancer Center, Clinique de Genolier, Genolier, Switzerland
| | | | - Carlos H Barrios
- Latin American Cooperative Oncology Group (LACOG), Grupo Oncoclínicas, Porto Alegre, Brazil
| | - Jonas Bergh
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | | | - Laura Biganzoli
- Department of Oncology, Hospital of Prato - Azienda USL Toscana Centro Prato, Italy and European Society of Breast Cancer Specialists (EUSOMA), Italy
| | - Maria João Cardoso
- Breast Unit, Champalimaud Clinical Centre/Champalimaud Foundation and Lisbon University, Faculty of Medicine, Lisbon, Portugal
| | - Lisa A Carey
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, USA
| | - Mariana Chavez-MacGregor
- Health Services Research, Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, USA and American Society of Clinical Oncology (ASCO), Houston, USA
| | | | - Javier Cortés
- International Breast Cancer Center (IBCC), Madrid and Barcelona, Spain
| | - Giuseppe Curigliano
- European Institute of Oncology, IRCCS, Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy
| | | | - Nagi S El Saghir
- NK Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Alexandru Eniu
- Hôpital Riviera-Chablais, Vaud-Valais Rennaz, Switzerland and European School of Oncology (ESO), United Kingdom
| | - Lesley Fallowfield
- Brighton & Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Prudence A Francis
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Sir Peter MacCallum Department of Oncology, University of Melbourne, Australia
| | | | | | - Joseph Gligorov
- Department of Medical Oncology, Cancer Est APHP Tenon, University Paris VI, Nice/St Paul Guidelines, Paris, France
| | - William J Gradishar
- Northwestern Medicine, Illinois, USA and National Comprehensive Cancer Network (NCCN), USA
| | | | - Nadia Harbeck
- Breast Centre, University of Munich, Munich and Arbeitsgemeinschaft Gynäkologische Onkologie, Kommission Mamma (AGO Guidelines), Germany
| | - Xichun Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ranjit Kaur
- Breast Cancer Welfare Association, Petaling Jaya, Malaysia
| | - Belinda Kiely
- NHMRC Clinical Trials Centre, Sydney Medical School, Sydney, Australia
| | - Sung-Bae Kim
- Asan Medical Centre, Department of Oncology, Seoul, South Korea
| | - Smruti Koppikar
- Lilavati Hospital and Research Centre, Bombay Hospital Institute of Medical Sciences, Asian Cancer Institute, Mumbai, India
| | - Marion J J Kuper-Hommel
- Te Whatu Ora Waikato, Midland Regional Cancer Centre, NZ ABC Guidelines, Hamilton, New Zealand
| | - Frédéric E Lecouvet
- Department of Radiology, Institut Roi Albert II and Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Ginny Mason
- Inflammatory Breast Cancer Research Foundation, West Lafayette, USA
| | - Shirley A Mertz
- MBC US Alliance and Metastatic Breast Cancer Network US, Inverness, USA
| | - Volkmar Mueller
- University Medical Center Hamburg-Eppendorf, Hamburg and Arbeitsgemeinschaft Gynäkologische Onkologie, Kommission Mamma (AGO Guidelines), Germany
| | | | - Silvia Neciosup
- Department of Medical Oncology, National Institute of Neoplastic Diseases, Lima, ABC Latin America Guidelines, Peru
| | - Birgitte V Offersen
- Department of Oncology, Aarhus University Hospital, Aarhus, European Society for Radiotherapy and Oncology (ESTRO), Denmark
| | - Shinji Ohno
- Breast Oncology Centre, Cancer Institute Hospital, Tokyo, Japan
| | - Olivia Pagani
- Hôpital Riviera-Chablais, Vaud-Valais Rennaz, Switzerland
| | - Ann H Partridge
- Dana-Farber Cancer Institute, Department of Medical Oncology and Division of Breast Oncology, Boston, USA and American Society of Clinical Oncology (ASCO), USA
| | - Frédérique Penault-Llorca
- Centre Jean Perrin, Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000, Clermont Ferrand, Nice/St Paul Guidelines, France
| | - Aleix Prat
- Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Hope S Rugo
- Breast Oncology and Clinical Trials Education, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, USA
| | - Elzbieta Senkus
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland
| | - George W Sledge
- Division of Oncology, Stanford School of Medicine, Stanford, USA
| | - Sandra M Swain
- Georgetown University Lombardi Comprehensive Cancer Center and MedStar Health, Washington DC, USA
| | - Christoph Thomssen
- Department of Gynaecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale) and Arbeitsgemeinschaft Gynäkologische Onkologie, Kommission Mamma (AGO Guidelines), Germany
| | | | - Peter Vuylsteke
- University of Botswana, Gaborone, Botswana and CHU UCL Namur Hospital, UCLouvain, Belgium
| | - Theresa Wiseman
- The Royal Marsden NHS Foundation Trust, University of Southampton, United Kingdom and European Oncology Nursing Society (EONS), United Kingdom
| | - Binghe Xu
- Department of Medical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Alberto Costa
- European School of Oncology, Milan, Italy and Bellinzona, Switzerland
| | - Larry Norton
- Breast Cancer Programs, Memorial Sloan-Kettering Cancer Centre, New York, USA
| | - Eric P Winer
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
52
|
Yadav S, Couch FJ, Domchek SM. Germline Genetic Testing for Hereditary Breast and Ovarian Cancer: Current Concepts in Risk Evaluation. Cold Spring Harb Perspect Med 2024; 14:a041318. [PMID: 38151326 PMCID: PMC11293548 DOI: 10.1101/cshperspect.a041318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Our understanding of hereditary breast and ovarian cancer has significantly improved over the past two decades. In addition to BRCA1/2, pathogenic variants in several other DNA-repair genes have been shown to increase the risks of breast and ovarian cancer. The magnitude of cancer risk is impacted not only by the gene involved, but also by family history of cancer, polygenic risk scores, and, in certain genes, pathogenic variant type or location. While estimates of breast and ovarian cancer risk associated with pathogenic variants are available, these are predominantly based on studies of high-risk populations with young age at diagnosis of cancer, multiple primary cancers, or family history of cancer. More recently, breast cancer risk for germline pathogenic variant carriers has been estimated from population-based studies. Here, we provide a review of the field of germline genetic testing and risk evaluation for hereditary breast and ovarian cancers in high-risk and population-based settings.
Collapse
Affiliation(s)
- Siddhartha Yadav
- Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55901, USA
| | - Susan M Domchek
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
53
|
Daly GR, Naidoo S, Alabdulrahman M, McGrath J, Dowling GP, AlRawashdeh MM, Hill ADK, Varešlija D, Young L. Screening and Testing for Homologous Recombination Repair Deficiency (HRD) in Breast Cancer: an Overview of the Current Global Landscape. Curr Oncol Rep 2024; 26:890-903. [PMID: 38822929 PMCID: PMC11300621 DOI: 10.1007/s11912-024-01560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
PURPOSE OF REVIEW Homologous recombination repair deficiency (HRD) increases breast cancer susceptibility and influences both prophylactic and active management of breast cancer. This review evaluates HRD testing and the therapeutic implications of HRD in a global context. RECENT FINDINGS Ongoing research efforts have highlighted the importance of HRD beyond BRCA1/2 as a potential therapeutic target in breast cancer. However, despite the improved affordability of next-generation sequencing (NGS) and the discovery of PARP inhibitors, economic and geographical barriers in access to HRD testing and breast cancer screening do not allow all patients to benefit from the personalized treatment approach they provide. Advancements in HRD testing modalities and targeted therapeutics enable tailored breast cancer management. However, inequalities in access to testing and optimized treatments are contributing to widening health disparities globally.
Collapse
Affiliation(s)
- Gordon R Daly
- The Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
- The Department of Surgery, Beaumont Hospital, Dublin, Ireland.
| | - Sindhuja Naidoo
- The Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Mohammad Alabdulrahman
- The Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Jason McGrath
- The Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Gavin P Dowling
- The Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- The Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Maen M AlRawashdeh
- The Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Arnold D K Hill
- The Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- The Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Damir Varešlija
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Beaumont RCSI Cancer Centre, Beaumont Hospital, Dublin, Ireland
| | - Leonie Young
- The Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Beaumont RCSI Cancer Centre, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
54
|
Lebedeva A, Veselovsky E, Kavun A, Belova E, Grigoreva T, Orlov P, Subbotovskaya A, Shipunov M, Mashkov O, Bilalov F, Shatalov P, Kaprin A, Shegai P, Diuzhev Z, Migiaev O, Vytnova N, Mileyko V, Ivanov M. Untapped Potential of Poly(ADP-Ribose) Polymerase Inhibitors: Lessons Learned From the Real-World Clinical Homologous Recombination Repair Mutation Testing. World J Oncol 2024; 15:562-578. [PMID: 38993246 PMCID: PMC11236374 DOI: 10.14740/wjon1820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/29/2024] [Indexed: 07/13/2024] Open
Abstract
Background Testing for homologous recombination deficiency (HRD) mutations is pivotal to assess individual risk, to proact preventive measures in healthy carriers and to tailor treatments for cancer patients. Increasing prominence of poly(ADP-ribose) polymerase (PARP) inhibitors with remarkable impact on molecular-selected patient survival across diverse nosologies, ingrains testing for BRCA genes and beyond in clinical practice. Nevertheless, testing strategies remain a question of debate. While several pathogenic BRCA1/2 gene variants have been described as founder pathogenic mutations frequently found in patients from Russia, other homologous recombination repair (HRR) genes have not been sufficiently explored. In this study, we present real-world data of routine HRR gene testing in Russia. Methods We evaluated clinical and sequencing data from cancer patients who had germline/somatic next-generation sequencing (NGS) HRR gene testing in Russia (BRCA1/2/ATM/CHEK2, or 15 HRR genes). The primary objectives of this study were to evaluate the frequency of BRCA1/2 and non-BRCA gene mutations in real-world unselected patients from Russia, and to determine whether testing beyond BRCA1/2 is feasible. Results Data of 2,032 patients were collected from February 2021 to February 2023. Most had breast (n = 715, 35.2%), ovarian (n = 259, 12.7%), pancreatic (n = 85, 4.2%), or prostate cancer (n = 58, 2.9%). We observed 586 variants of uncertain significance (VUS) and 372 deleterious variants (DVs) across 487 patients, with 17.6% HRR-mutation positivity. HRR testing identified 120 (11.8%) BRCA1/2-positive, and 172 (16.9%) HRR-positive patients. With 51 DVs identified in 242 formalin-fixed paraffin-embedded (FFPE), testing for variant origin clarification was required in one case (0.4%). Most BRCA1/2 germline variants were DV (121 DVs, 26 VUS); in non-BRCA1/2 genes, VUS were ubiquitous (53 DVs, 132 VUS). In silico prediction identified additional 4.9% HRR and 1.2% BRCA1/2/ATM/CHEK2 mutation patients. Conclusions Our study represents one of the first reports about the incidence of DV and VUS in HRR genes, including genes beyond BRCA1/2, identified in cancer patients from Russia, assessed by NGS. In silico predictions of the observed HRR gene variants suggest that non-BRCA gene testing is likely to result in higher frequency of patients who are candidates for PARP inhibitor therapy. Continuing sequencing efforts should clarify interpretation of frequently observed non-BRCA VUS.
Collapse
Affiliation(s)
- Alexandra Lebedeva
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Egor Veselovsky
- OncoAtlas LLC, Moscow, Russia
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | | | - Ekaterina Belova
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Grigoreva
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Pavel Orlov
- The Federal Research Center for Fundamental and Translational Medicine (NIIECM FRC FTM), Novosibirsk, Russia
| | - Anna Subbotovskaya
- The Federal Research Center for Fundamental and Translational Medicine (NIIECM FRC FTM), Novosibirsk, Russia
| | - Maksim Shipunov
- The Federal Research Center for Fundamental and Translational Medicine (NIIECM FRC FTM), Novosibirsk, Russia
| | - Oleg Mashkov
- State Budgetary Institution of Healthcare Republican Medical Genetic Center, Ufa, Russia
| | - Fanil Bilalov
- State Budgetary Institution of Healthcare Republican Medical Genetic Center, Ufa, Russia
| | - Peter Shatalov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Andrey Kaprin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Peter Shegai
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | | | | | | | - Vladislav Mileyko
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maxim Ivanov
- OncoAtlas LLC, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
55
|
Piha-Paul SA, Tseng C, Leung CH, Yuan Y, Karp DD, Subbiah V, Hong D, Fu S, Naing A, Rodon J, Javle M, Ajani JA, Raghav KP, Somaiah N, Mills GB, Tsimberidou AM, Zheng X, Chen K, Meric-Bernstam F. Phase II study of talazoparib in advanced cancers with BRCA1/2, DNA repair, and PTEN alterations. NPJ Precis Oncol 2024; 8:166. [PMID: 39085400 PMCID: PMC11291882 DOI: 10.1038/s41698-024-00634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 07/09/2024] [Indexed: 08/02/2024] Open
Abstract
Cancer cells with BRCA1/2 deficiencies are sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors. We evaluated the efficacy of talazoparib in DNA-Damage Repair (DDR)-altered patients. In this phase II trial, patients were enrolled onto one of four cohorts based on molecular alterations: (1) somatic BRCA1/2, (2) other homologous recombination repair pathway, (3) PTEN and (4) germline BRCA1/2. The primary endpoint was a clinical benefit rate (CBR): complete response, partial response or stable disease ≥24 weeks. 79 patients with a median of 4 lines of therapy were enrolled. CBR for cohorts 1-4 were: 32.5%, 19.7%, 9.4% and 30.6%, respectively. PTEN mutations correlated with reduced survival and a trend towards shorter time to progression.Talazoparib demonstrated clinical benefit in selected DDR-altered patients. PTEN mutations/loss patients derived limited clinical benefit. Further study is needed to determine whether PTEN is prognostic or predictive of response to PARP inhibitors.
Collapse
Affiliation(s)
- Sarina A Piha-Paul
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Chieh Tseng
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cheuk Hong Leung
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ying Yuan
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel D Karp
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Hong
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jordi Rodon
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kanwal P Raghav
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon B Mills
- Knight Cancer Institute, Oregon Health Sciences University, Portland, OR, USA
| | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics (A Phase I Clinical Trials Program), University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
56
|
Fasching PA, Hu C, Hart SN, Ruebner M, Polley EC, Gnanaolivu RD, Hartkopf AD, Huebner H, Janni W, Hadji P, Tesch H, Uhrig S, Ettl J, Lux MP, Lüftner D, Wallwiener M, Wurmthaler LA, Goossens C, Müller V, Beckmann MW, Hein A, Anetsberger D, Belleville E, Wimberger P, Untch M, Ekici AB, Kolberg HC, Hartmann A, Taran FA, Fehm TN, Wallwiener D, Brucker SY, Schneeweiss A, Häberle L, Couch FJ. Susceptibility gene mutations in germline and tumors of patients with HER2-negative advanced breast cancer. NPJ Breast Cancer 2024; 10:57. [PMID: 39003306 PMCID: PMC11246424 DOI: 10.1038/s41523-024-00667-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
Germline mutations in BRCA1 and BRCA2 (gBRCA1/2) are required for a PARP inhibitor therapy in patients with HER2-negative (HER2-) advanced breast cancer (aBC). However, little is known about the prognostic impact of gBRCA1/2 mutations in aBC patients treated with chemotherapy. This study aimed to investigate the frequencies and prognosis of germline and somatic BRCA1/2 mutations in HER2- aBC patients receiving the first chemotherapy in the advanced setting. Patients receiving their first chemotherapy for HER2- aBC were retrospectively selected from the prospective PRAEGNANT registry (NCT02338167). Genotyping of 26 cancer predisposition genes was performed with germline DNA of 471 patients and somatic tumor DNA of 94 patients. Mutation frequencies, progression-free and overall survival (PFS, OS) according to germline mutation status were assessed. gBRCA1/2 mutations were present in 23 patients (4.9%), and 33 patients (7.0%) had mutations in other cancer risk genes. Patients with a gBRCA1/2 mutation had a better OS compared to non-mutation carriers (HR: 0.38; 95%CI: 0.17-0.86). PFS comparison was not statistically significant. Mutations in other risk genes did not affect prognosis. Two somatic BRCA2 mutations were found in 94 patients without gBRCA1/2 mutations. Most frequently somatic mutated genes were TP53 (44.7%), CDH1 (10.6%) and PTEN (6.4%). In conclusion, aBC patients with gBRCA1/2 mutations had a more favorable prognosis under chemotherapy compared to non-mutation carriers. The mutation frequency of ~5% with gBRCA1/2 mutations together with improved outcome indicates that germline genotyping of all metastatic patients for whom a PARP inhibitor therapy is indicated should be considered.
Collapse
Affiliation(s)
- Peter A Fasching
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Chunling Hu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Steven N Hart
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Eric C Polley
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Rohan D Gnanaolivu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Andreas D Hartkopf
- Department of Obstetrics and Gynecology, University of Tübingen, Tübingen, Germany
| | - Hanna Huebner
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Peyman Hadji
- Frankfurt Center for Bone Health, Frankfurt am Main, Germany
| | - Hans Tesch
- Oncology Practice, Bethanien Hospital, Frankfurt am Main, Germany
| | - Sabrina Uhrig
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Ettl
- Department of Obstetrics and Gynecology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael P Lux
- Department of Gynecology and Obstetrics, Frauenklinik St. Louise, Paderborn, St. Josefs-Krankenhaus, Salzkotten, Germany; St. Vincenz Kliniken Salzkotten + Paderborn, Paderborn, Germany
| | - Diana Lüftner
- Immanuel Klinik Märkische Schweiz & Medical University of Brandenburg Theodor Fontane, Rüdersdorf bei Berlin, Buckow, Germany
| | | | - Lena A Wurmthaler
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Chloë Goossens
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Volkmar Müller
- Department of Gynecology, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Hein
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel Anetsberger
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Technische Universität Dresden Germany and National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Michael Untch
- Department of Gynecology and Obstetrics, Helios Clinics Berlin-Buch, Berlin, Germany
| | - Arif B Ekici
- Institute of Human Genetics, University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | | | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Florin-Andrei Taran
- Department of Gynecology and Obstetrics, University Hospital Freiburg, Freiburg, Germany
| | - Tanja N Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Düsseldorf, Germany
- Center for Integrated Oncology Aachen Bonn Köln Düsseldorf, Düsseldorf, Germany
| | - Diethelm Wallwiener
- Department of Obstetrics and Gynecology, University of Tübingen, Tübingen, Germany
| | - Sara Y Brucker
- Department of Obstetrics and Gynecology, University of Tübingen, Tübingen, Germany
| | - Andreas Schneeweiss
- Division of Gynecologic Oncology, National Center for Tumor Diseases, University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Lothar Häberle
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Biostatistics Unit, Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
57
|
Hinić S, van der Post RS, Vreede L, Schuurs-Hoeijmakers J, Koene S, Jansen EAM, Bervoets-Metge F, Mensenkamp AR, Hoogerbrugge N, Ligtenberg MJL, de Voer RM. The genomic landscape of breast and non-breast cancers from individuals with germline CHEK2 deficiency. JNCI Cancer Spectr 2024; 8:pkae044. [PMID: 38848470 PMCID: PMC11216722 DOI: 10.1093/jncics/pkae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 04/11/2024] [Indexed: 06/09/2024] Open
Abstract
CHEK2 is considered to be involved in homologous recombination repair (HRR). Individuals who have germline pathogenic variants (gPVs) in CHEK2 are at increased risk to develop breast cancer and likely other primary cancers. PARP inhibitors (PARPi) have been shown to be effective in the treatment of cancers that present with HRR deficiency-for example, caused by inactivation of BRCA1/2. However, clinical trials have shown little to no efficacy of PARPi in patients with CHEK2 gPVs. Here, we show that both breast and non-breast cancers from individuals who have biallelic gPVs in CHEK2 (germline CHEK2 deficiency) do not present with molecular profiles that fit with HRR deficiency. This finding provides a likely explanation why PARPi therapy is not successful in the treatment of CHEK2-deficient cancers.
Collapse
Affiliation(s)
- Snežana Hinić
- Department of Human Genetics, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Rachel S van der Post
- Department of Pathology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Lilian Vreede
- Department of Human Genetics, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Janneke Schuurs-Hoeijmakers
- Department of Human Genetics, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Saskia Koene
- Department of Human Genetics, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Erik A M Jansen
- Department of Human Genetics, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Franziska Bervoets-Metge
- Department of Pathology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Arjen R Mensenkamp
- Department of Human Genetics, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Marjolijn J L Ligtenberg
- Department of Human Genetics, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
- Department of Pathology, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Richarda M de Voer
- Department of Human Genetics, Radboud University Medical Center, Research Institute for Medical Innovation, Nijmegen, The Netherlands
| |
Collapse
|
58
|
Németh E, Szüts D. The mutagenic consequences of defective DNA repair. DNA Repair (Amst) 2024; 139:103694. [PMID: 38788323 DOI: 10.1016/j.dnarep.2024.103694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Multiple separate repair mechanisms safeguard the genome against various types of DNA damage, and their failure can increase the rate of spontaneous mutagenesis. The malfunction of distinct repair mechanisms leads to genomic instability through different mutagenic processes. For example, defective mismatch repair causes high base substitution rates and microsatellite instability, whereas homologous recombination deficiency is characteristically associated with deletions and chromosome instability. This review presents a comprehensive collection of all mutagenic phenotypes associated with the loss of each DNA repair mechanism, drawing on data from a variety of model organisms and mutagenesis assays, and placing greatest emphasis on systematic analyses of human cancer datasets. We describe the latest theories on the mechanism of each mutagenic process, often explained by reliance on an alternative repair pathway or the error-prone replication of unrepaired, damaged DNA. Aided by the concept of mutational signatures, the genomic phenotypes can be used in cancer diagnosis to identify defective DNA repair pathways.
Collapse
Affiliation(s)
- Eszter Németh
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Dávid Szüts
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
59
|
Kim M, Shim HS, Kim S, Lee IH, Kim J, Yoon S, Kim HD, Park I, Jeong JH, Yoo C, Cheon J, Kim IH, Lee J, Hong SH, Park S, Jung HA, Kim JW, Kim HJ, Cha Y, Lim SM, Kim HS, Lee CK, Kim JH, Chun SH, Yun J, Park SY, Lee HS, Cho YM, Nam SJ, Na K, Yoon SO, Lee A, Jang KT, Yun H, Lee S, Kim JH, Kim WS. Clinical practice recommendations for the use of next-generation sequencing in patients with solid cancer: a joint report from KSMO and KSP. J Pathol Transl Med 2024; 58:147-164. [PMID: 39026440 PMCID: PMC11261170 DOI: 10.4132/jptm.2023.11.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 07/20/2024] Open
Abstract
In recent years, next-generation sequencing (NGS)-based genetic testing has become crucial in cancer care. While its primary objective is to identify actionable genetic alterations to guide treatment decisions, its scope has broadened to encompass aiding in pathological diagnosis and exploring resistance mechanisms. With the ongoing expansion in NGS application and reliance, a compelling necessity arises for expert consensus on its application in solid cancers. To address this demand, the forthcoming recommendations not only provide pragmatic guidance for the clinical use of NGS but also systematically classify actionable genes based on specific cancer types. Additionally, these recommendations will incorporate expert perspectives on crucial biomarkers, ensuring informed decisions regarding circulating tumor DNA panel testing.
Collapse
Affiliation(s)
- Miso Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyo Sup Shim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sheehyun Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - In Hee Lee
- Department of Oncology/Hematology, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jihun Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Shinkyo Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyung-Don Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Inkeun Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Ho Jeong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Changhoon Yoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jaekyung Cheon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In-Ho Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jieun Lee
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sook Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sehhoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Ae Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Han Jo Kim
- Division of Oncology and Hematology, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Yongjun Cha
- Division of Medical Oncology, Center for Colorectal Cancer, National Cancer Center, Goyang, Korea
| | - Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Han Sang Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Choong-Kun Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jee Hung Kim
- Division of Medical Oncology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Hoon Chun
- Division of Medical Oncology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jina Yun
- Division of Hematology/Oncology, Department of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Yong Mee Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo Jeong Nam
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kiyong Na
- Department of Pathology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Korea
| | - Sun Och Yoon
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ahwon Lee
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kee-Taek Jang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hongseok Yun
- Department of Genomic Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sungyoung Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Wan-Seop Kim
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
60
|
Kim M, Shim HS, Kim S, Lee IH, Kim J, Yoon S, Kim HD, Park I, Jeong JH, Yoo C, Cheon J, Kim IH, Lee J, Hong SH, Park S, Jung HA, Kim JW, Kim HJ, Cha Y, Lim SM, Kim HS, Lee CK, Kim JH, Chun SH, Yun J, Park SY, Lee HS, Cho YM, Nam SJ, Na K, Yoon SO, Lee A, Jang KT, Yun H, Lee S, Kim JH, Kim WS. Clinical Practice Recommendations for the Use of Next-Generation Sequencing in Patients with Solid Cancer: A Joint Report from KSMO and KSP. Cancer Res Treat 2024; 56:721-742. [PMID: 38037319 PMCID: PMC11261187 DOI: 10.4143/crt.2023.1043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
In recent years, next-generation sequencing (NGS)-based genetic testing has become crucial in cancer care. While its primary objective is to identify actionable genetic alterations to guide treatment decisions, its scope has broadened to encompass aiding in pathological diagnosis and exploring resistance mechanisms. With the ongoing expansion in NGS application and reliance, a compelling necessity arises for expert consensus on its application in solid cancers. To address this demand, the forthcoming recommendations not only provide pragmatic guidance for the clinical use of NGS but also systematically classify actionable genes based on specific cancer types. Additionally, these recommendations will incorporate expert perspectives on crucial biomarkers, ensuring informed decisions regarding circulating tumor DNA panel testing.
Collapse
Affiliation(s)
- Miso Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyo Sup Shim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sheehyun Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - In Hee Lee
- Department of Oncology/Hematology, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jihun Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Shinkyo Yoon
- Department of Oncology,Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyung-Don Kim
- Department of Oncology,Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Inkeun Park
- Department of Oncology,Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Ho Jeong
- Department of Oncology,Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Changhoon Yoo
- Department of Oncology,Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jaekyung Cheon
- Department of Oncology,Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In-Ho Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jieun Lee
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sook Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sehhoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Ae Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Han Jo Kim
- Division of Oncology and Hematology, Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Yongjun Cha
- Division of Medical Oncology, Center for Colorectal Cancer, National Cancer Center, Goyang, Korea
| | - Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Han Sang Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Choong-kun Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jee Hung Kim
- Division of Medical Oncology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Hoon Chun
- Division of Medical Oncology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jina Yun
- Division of Hematology/Oncology, Department of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Yong Mee Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo Jeong Nam
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kiyong Na
- Department of Pathology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Korea
| | - Sun Och Yoon
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ahwon Lee
- Department of Hospital Pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kee-Taek Jang
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hongseok Yun
- Department of Genomic Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sungyoung Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Wan-Seop Kim
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
61
|
Mosele MF, Westphalen CB, Stenzinger A, Barlesi F, Bayle A, Bièche I, Bonastre J, Castro E, Dienstmann R, Krämer A, Czarnecka AM, Meric-Bernstam F, Michiels S, Miller R, Normanno N, Reis-Filho J, Remon J, Robson M, Rouleau E, Scarpa A, Serrano C, Mateo J, André F. Recommendations for the use of next-generation sequencing (NGS) for patients with advanced cancer in 2024: a report from the ESMO Precision Medicine Working Group. Ann Oncol 2024; 35:588-606. [PMID: 38834388 DOI: 10.1016/j.annonc.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Advancements in the field of precision medicine have prompted the European Society for Medical Oncology (ESMO) Precision Medicine Working Group to update the recommendations for the use of tumour next-generation sequencing (NGS) for patients with advanced cancers in routine practice. METHODS The group discussed the clinical impact of tumour NGS in guiding treatment decision using the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT) considering cost-effectiveness and accessibility. RESULTS As for 2020 recommendations, ESMO recommends running tumour NGS in advanced non-squamous non-small-cell lung cancer, prostate cancer, colorectal cancer, cholangiocarcinoma, and ovarian cancer. Moreover, it is recommended to carry out tumour NGS in clinical research centres and under specific circumstances discussed with patients. In this updated report, the consensus within the group has led to an expansion of the recommendations to encompass patients with advanced breast cancer and rare tumours such as gastrointestinal stromal tumours, sarcoma, thyroid cancer, and cancer of unknown primary. Finally, ESMO recommends carrying out tumour NGS to detect tumour-agnostic alterations in patients with metastatic cancers where access to matched therapies is available. CONCLUSION Tumour NGS is increasingly expanding its scope and application within oncology with the aim of enhancing the efficacy of precision medicine for patients with cancer.
Collapse
Affiliation(s)
- M F Mosele
- INSERM U981, Gustave Roussy, Villejuif; Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - C B Westphalen
- Comprehensive Cancer Center Munich & Department of Medicine III, University Hospital, LMU Munich, Munich
| | - A Stenzinger
- Institute of Pathology, University Hospital Heidelberg and Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - F Barlesi
- INSERM U981, Gustave Roussy, Villejuif; Department of Cancer Medicine, Gustave Roussy, Villejuif, France; Faculty of Medicine, Université Paris-Saclay, Kremlin Bicêtre
| | - A Bayle
- Faculty of Medicine, Université Paris-Saclay, Kremlin Bicêtre; Drug Development Department (DITEP), Gustave Roussy, Villejuif; Oncostat U1018, Inserm, Université Paris-Saclay, labeled Ligue Contre le Cancer, Villejuif; Service de Biostatistique et Epidémiologie, Gustave Roussy, Villejuif
| | - I Bièche
- Department of Genetics, Institut Curie, INSERM U1016, Université Paris Cité, Paris, France
| | - J Bonastre
- Oncostat U1018, Inserm, Université Paris-Saclay, labeled Ligue Contre le Cancer, Villejuif; Service de Biostatistique et Epidémiologie, Gustave Roussy, Villejuif
| | - E Castro
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid
| | - R Dienstmann
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona; University of Vic-Central University of Catalonia, Vic, Spain; Oncoclínicas, São Paulo, Brazil
| | - A Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg; Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - A M Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw; Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - F Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - S Michiels
- Oncostat U1018, Inserm, Université Paris-Saclay, labeled Ligue Contre le Cancer, Villejuif; Service de Biostatistique et Epidémiologie, Gustave Roussy, Villejuif
| | - R Miller
- Department of Medical Oncology, University College London, London; Department of Medical Oncology, St Bartholomew's Hospital, London, UK
| | - N Normanno
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - J Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York
| | - J Remon
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - M Robson
- Breast Medicine and Clinical Genetics Services, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - E Rouleau
- Tumor Genetics Service, Medical Biology and Pathology Department, Gustave Roussy, Villejuif, France
| | - A Scarpa
- Section of Pathology, Department of Diagnostics and Public Health, University of Verona-School of Medicine, Verona, Italy
| | - C Serrano
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona
| | - J Mateo
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona
| | - F André
- INSERM U981, Gustave Roussy, Villejuif; Department of Cancer Medicine, Gustave Roussy, Villejuif, France; Faculty of Medicine, Université Paris-Saclay, Kremlin Bicêtre.
| |
Collapse
|
62
|
Klocker EV, Hasenleithner S, Bartsch R, Gampenrieder SP, Egle D, Singer CF, Rinnerthaler G, Hubalek M, Schmitz K, Bago-Horvath Z, Petzer A, Heibl S, Heitzer E, Balic M, Gnant M. Clinical applications of next-generation sequencing-based ctDNA analyses in breast cancer: defining treatment targets and dynamic changes during disease progression. Mol Oncol 2024. [PMID: 38867388 DOI: 10.1002/1878-0261.13671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/03/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024] Open
Abstract
The advancements in the detection and characterization of circulating tumor DNA (ctDNA) have revolutionized precision medicine and are likely to transform standard clinical practice. The non-invasive nature of this approach allows for molecular profiling of the entire tumor entity, while also enabling real-time monitoring of the effectiveness of cancer therapies as well as the identification of resistance mechanisms to guide targeted therapy. Although the field of ctDNA studies offers a wide range of applications, including in early disease, in this review we mainly focus on the role of ctDNA in the dynamic molecular characterization of unresectable locally advanced and metastatic BC (mBC). Here, we provide clinical practice guidance for the rapidly evolving field of molecular profiling of mBC, outlining the current landscape of liquid biopsy applications and how to choose the right ctDNA assay. Additionally, we underline the importance of exploring the clinical relevance of novel molecular alterations that potentially represent therapeutic targets in mBC, along with mutations where targeted therapy is already approved. Finally, we present a potential roadmap for integrating ctDNA analysis into clinical practice.
Collapse
Affiliation(s)
- Eva Valentina Klocker
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Samantha Hasenleithner
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Austria
| | - Rupert Bartsch
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Austria
| | - Simon P Gampenrieder
- Third Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Austria
| | - Daniel Egle
- Department of Gynecology, Breast Cancer Center Tirol, Medical University of Innsbruck, Austria
| | - Christian F Singer
- Department of Gynecology, Breast Cancer Center Vienna, Medical University of Vienna, Austria
| | - Gabriel Rinnerthaler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Michael Hubalek
- Department of Gynecology, Breast Health Center Schwaz, Austria
| | - Katja Schmitz
- Institute of Pathology, University Medical Center Göttingen, Germany
- Tyrolpath Obrist Brunhuber GmbH and Krankenhaus St. Vinzenz, Zams, Austria
| | | | - Andreas Petzer
- Department of Internal Medicine I for Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Barmherzige Schwestern, Elisabethinen, Ordensklinikum Linz GmbH, Austria
| | - Sonja Heibl
- Department of Internal Medicine IV, Klinikum Wels-Grieskirchen GmbH, Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Christian Doppler Laboratory for Liquid Biopsies for early Detection of Cancer, Medical University of Graz, Austria
| | - Marija Balic
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Austria
- Division of Hematology and Medical Oncology, University of Pittsburgh School of Medicine, PA, USA
| | - Michael Gnant
- Comprehensive Cancer Center, Medical University of Vienna, Austria
| |
Collapse
|
63
|
Zhu Q, Chen J, Liu H, Zhao J, Xu C, Sun G, Zeng H. The efficacy and safety of PARP inhibitors in mCRPC with HRR mutation in second-line treatment: a systematic review and bayesian network meta-analysis. BMC Cancer 2024; 24:706. [PMID: 38851712 PMCID: PMC11162002 DOI: 10.1186/s12885-024-12388-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/15/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Poly (ADP- ribose) polymerase inhibitors (PARPi) has been increasingly adopted for metastatic castration-resistance prostate cancer (mCRPC) patients with homologous recombination repair deficiency (HRD). However, it is unclear which PARPi is optimal in mCRPC patients with HRD in 2nd -line setting. METHOD We conducted a systematic review of trials regarding PARPi- based therapies on mCRPC in 2nd -line setting and performed a Bayesian network meta-analysis (NMA). Radiographic progression-free survival (rPFS) was assessed as primary outcome. PSA response and adverse events (AEs) were evaluated as secondary outcomes. Subgroup analyses were performed according to specific genetic mutation. RESULTS Four RCTs comprised of 1024 patients (763 harbored homologous recombination repair (HRR) mutations) were identified for quantitative analysis. Regarding rPFS, olaparib monotherapy, rucaparib and cediranib plus olaparib showed significant improvement compared with ARAT. Olaparib plus cediranib had the highest surface under cumulative ranking curve (SUCRA) scores (87.5%) for rPFS, followed by rucaparib, olaparib and olaparib plus abiraterone acetate prednisone. For patients with BRCA 1/2 mutations, olaparib associated with the highest probability (98.1%) of improved rPFS. For patients with BRCA-2 mutations, olaparib and olaparib plus cediranib had similar efficacy. However, neither olaparib nor rucaparib showed significant superior effectiveness to androgen receptor-axis-targeted therapy (ARAT) in patients with ATM mutations. For safety, olaparib showed significantly lower ≥ 3 AE rate compared with cediranib plus olaparib (RR: 0.72, 95% CI: 0.51, 0.97), while olaparib plus cediranib was associated with the highest risk of all-grade AE. CONCLUSION PARPi-based therapy showed considerable efficacy for mCRPC patients with HRD in 2nd -line setting. However, patients should be treated accordingly based on their genetic background as well as the efficacy and safety of the selected regimen. TRIAL REGISTRATION CRD42023454079.
Collapse
Affiliation(s)
- Qiyu Zhu
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China
| | - Junru Chen
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China
| | - Haoyang Liu
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China
| | - Jinge Zhao
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China
| | - Chenhao Xu
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China
| | - Guangxi Sun
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China.
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
64
|
Summey RM, Gornstein E, Decker B, Dougherty KC, Rader JS, Hopp E. Landscape of potential germline pathogenic variants in select cancer susceptibility genes in patients with adult-type ovarian granulosa cell tumors. Cancer Med 2024; 13:e7340. [PMID: 38898688 PMCID: PMC11187164 DOI: 10.1002/cam4.7340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
OBJECTIVE The objective of this study was to assess the frequency of potential germline pathogenic variants that may contribute to risk of development of adult granulosa cell tumors (AGCT) given the paucity of germline testing guidelines for these patients. METHODS This was a retrospective cross-sectional study analyzing comprehensive genomic profiling (CGP) results of AGCT with the FOXL2 p.C134W mutation submitted to Foundation Medicine between 2012 and 2022. Cases with a potential germline pathogenic variant were identified by filtering single nucleotide variants and short indels by variant allele frequency (VAF) and presence in ClinVar for select cancer susceptibility genes. Odds ratios for AGCT risk were calculated compared to a healthy population. RESULTS Prior to analysis, 595 patients were screened and 516 with a somatic FOXL2 p.C134W mutation were included. Potential germline pathogenic variants in a DNA repair-related gene (ATM, BRCA1, BRCA2, CHEK2, PALB2, PMS2, RAD51C, or RAD51D) were found in 6.6% of FOXL2-mutated AGCT. Potential germline pathogenic CHEK2 variants were found in 3.5% (18/516) of AGCT patients, a rate that was 2.8-fold higher than Genome Aggregation Database non-cancer subjects (95% CI 1.8-4.6, p < 0.001). The founder variants p.I157T (38.9%, 7/18) and p.T367fs*15 (c.1100delC; 27.8%, 5/18) were most commonly observed. CHEK2 VAF indicated frequent loss of the wildtype copy of the gene. CONCLUSIONS These results support ongoing utilization of genomic tumor profiling and confirmatory germline testing for potential germline pathogenic variants. Further prospective investigation into the biology of germline variants in this population is warranted.
Collapse
Affiliation(s)
- Rebekah M. Summey
- Division of Gynecologic Oncology, Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | | | | | | | - Janet S. Rader
- Division of Gynecologic Oncology, Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Elizabeth Hopp
- Division of Gynecologic Oncology, Department of Obstetrics and GynecologyMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
65
|
Thill M, Janni W, Albert US, Banys-Paluchowski M, Bauerfeind I, Blohmer J, Budach W, Dall P, Ditsch N, Fallenberg EM, Fasching PA, Fehm T, Friedrich M, Gerber B, Gluz O, Harbeck N, Hartkopf A, Heil J, Huober J, Jackisch C, Kolberg-Liedtke C, Kreipe HH, Krug D, Kühn T, Kümmel S, Loibl S, Lüftner D, Lux MP, Maass N, Mundhenke C, Reimer T, Rhiem K, Rody A, Schmidt M, Schneeweiss A, Schütz F, Sinn HP, Solbach C, Solomayer EF, Stickeler E, Thomssen C, Untch M, Witzel I, Wöckel A, Würstlein R, Müller V, Park-Simon TW. Arbeitsgemeinschaft Gynäkologische Onkologie Recommendations for the Diagnosis and Treatment of Patients with Locally Advanced and Metastatic Breast Cancer: Update 2024. Breast Care (Basel) 2024; 19:183-191. [PMID: 38894953 PMCID: PMC11182633 DOI: 10.1159/000538753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 06/21/2024] Open
Abstract
The Breast Committee of the Arbeitsgemeinschaft Gynäkologische Onkologie (German Gynecological Oncology Group, AGO) presents the 2024 update of the evidence-based recommendations for the diagnosis and treatment of patients with locally advanced and metastatic breast cancer.
Collapse
Affiliation(s)
- Marc Thill
- Klinik für Gynäkologie und Gynäkologische Onkologie, Agaplesion Markus Krankenhaus, Frankfurt, Germany
| | - Wolfgang Janni
- Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Ulm, Ulm, Germany
| | - Ute-Susann Albert
- Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Maggie Banys-Paluchowski
- Klinik für Gynäkologie und Geburtshilfe, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Ingo Bauerfeind
- Frauenklinik und Brustkrebszentrum Klinikum Landshut, Landshut, Germany
| | - Jens Blohmer
- Klinik für Gynäkologie Mit Brustzentrum des Universitätsklinikums der Charite, Berlin, Germany
| | - Wilfried Budach
- Strahlentherapie, Radiologie Düsseldorf, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Peter Dall
- Frauenklinik, Städtisches Klinikum Lüneburg, Lüneburg, Germany
| | - Nina Ditsch
- Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Augsburg, Augsburg, Germany
| | - Eva Maria Fallenberg
- Institut für Klinische Radiologie, Klinikum der Universität München Campus Großhadern, Munich, Germany
| | - Peter A. Fasching
- Universitätsfrauenklinik, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tanja Fehm
- Klinik für Gynäkologie und Geburtshilfe, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Michael Friedrich
- Klinik für Frauenheilkunde und Geburtshilfe, Helios Klinikum Krefeld, krefeld, Germany
| | - Bernd Gerber
- Universitätsfrauenklinik und Poliklinik am Klinikum Südstadt, Rostock, Germany
| | - Oleg Gluz
- Brustzentrum, Evang, Krankenhaus Bethesda, Mönchengladbach, Germany
| | - Nadia Harbeck
- Brustzentrum, Klinik für Gynäkologie und Geburtshilfe, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Andreas Hartkopf
- Department für Frauengesundheit, Forschungsinstitut für Frauengesundheit, Universitätsfrauenklinik, Tübingen, Germany
| | - Jörg Heil
- Brustzentrum Heidelberg, Klinik St. Elisabeth, Heidelberg, Germany
| | - Jens Huober
- Brustzentrum, Kantonspital St. Gallen, St. Gallen, Switzerland
| | - Christian Jackisch
- Klinik für Gynäkologie und Geburtshilfe, Sana Klinikum Offenbach, Offenbach, Germany
- Evangelische Kliniken Essen-Mitte gGmbH, Essen, Germany
| | - Cornelia Kolberg-Liedtke
- Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Essen, Essen, Germany
- Hochschule für Gesundheit, Bochum, Germany
| | | | - David Krug
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Thorsten Kühn
- Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Ulm, Ulm, Germany
- Filderklinik, Filderstadt, Germany
| | - Sherko Kümmel
- Klinik für Senologie, Evangelische Kliniken Essen Mitte, Essen, Germany
| | - Sibylle Loibl
- German Breast Group Forschungs GmbH, Frankfurt, Germany
| | - Diana Lüftner
- Fachklinik für Onkologische Rehabilitation, Immanuel Hospital Märkische Schweiz, Buckow and Immanuel Hospital Rüdersdorf/Medical University of Brandenburg Theodor Fontane, Rüdersdorf, Germany
| | - Michael Patrick Lux
- Kooperatives Brustzentrum Paderborn, Klinik für Gynäkologie und Geburtshilfe, Frauenklinik St. Louise, Paderborn und St. Josefs-Krankenhaus, Salzkotten, St. Vincenz-Krankenhaus GmbH, Paderborn, Germany
| | - Nicolai Maass
- Klinik für Gynäkologie und Geburtshilfe, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Christoph Mundhenke
- Klinik für Gynäkologie und Geburtshilfe, Klinikum Bayreuth, Bayreuth, Germany
| | - Toralf Reimer
- Universitätsfrauenklinik und Poliklinik am Klinikum Südstadt, Rostock, Germany
| | - Kerstin Rhiem
- Zentrum Familiärer Brust- und Eierstockkrebs, Universitätsklinikum Köln, Cologne, Germany
| | - Achim Rody
- Klinik für Gynäkologie und Geburtshilfe, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Marcus Schmidt
- Klinik und Poliklinik für Geburtshilfe und Frauengesundheit der Johannes-Gutenberg-Universität Mainz, Mainz, Germany
| | - Andreas Schneeweiss
- Nationales Centrum für Tumorerkrankungen, Universitätsklinikum und Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Florian Schütz
- Klinik für Gynäkologie und Geburtshilfe, Diakonissen Krankenhaus Speyer, Speyer, Germany
| | - Hans-Peter Sinn
- Sektion Gynäkopathologie, Pathologisches Institut, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Christine Solbach
- Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | - Erich-Franz Solomayer
- Klinik für Frauenheilkunde, Geburtshilfe und Reproduktionsmedizin, Universitätsklinikum des Saarlandes, Homburg, Germany
| | - Elmar Stickeler
- Klinik für Gynäkologie und Geburtsmedizin, Universitätsklinikum Aachen und CIO ABCD, Aachen, Germany
| | | | - Michael Untch
- Klinik für Gynäkologie und Geburtshilfe, Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Isabell Witzel
- Klinik für Gynäkologie, Universitäts Spital, Zürich, Switzerland
| | - Achim Wöckel
- Klinik für Gynäkologie und Geburtshilfe, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Rachel Würstlein
- Brustzentrum, Klinik für Gynäkologie und Geburtshilfe, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Volkmar Müller
- Klinik und Poliklinik für Gynäkologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Tjoung-Won Park-Simon
- Klinik für Frauenheilkunde und Geburtshilfe, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
66
|
Bartsch R, Rinnerthaler G, Petru E, Egle D, Gnant M, Balic M, Sliwa T, Singer C. Updated Austrian treatment algorithm for metastatic triple-negative breast cancer. Wien Klin Wochenschr 2024; 136:347-361. [PMID: 37682349 PMCID: PMC11156740 DOI: 10.1007/s00508-023-02254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 09/09/2023]
Abstract
Approximately 15% of newly diagnosed breast cancer patients have neither hormone receptors expression nor HER2 overexpression and/or HER2/neu gene amplification. This subtype of breast cancer is known as Triple Negative Breast Cancer (TNBC), and carries a significantly elevated risk of local and distant recurrence. In comparison with other breast cancer subtypes, there is a higher rate of visceral and brain metastases. The majority of metastases of TNBC are diagnosed within three years after initial breast cancer diagnosis. While there have been major advances in hormone-receptor- positive and in human epidermal growth factor receptor 2 (HER2)-positive disease over the past two decades, only limited improvements in outcomes for patients with triple negative breast cancer (TNBC) have been observed. A group of Austrian breast cancer specialists therefore convened an expert meeting to establish a comprehensive clinical risk-benefit profile of available mTNBC therapies and discuss the role sacituzumab govitecan may play in the treatment algorithm of the triple-negative breast cancer patients.
Collapse
Affiliation(s)
- Rupert Bartsch
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Gabriel Rinnerthaler
- Third Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Edgar Petru
- Department of Gynecology and Obstetrics, Division of Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036, Graz, Austria
| | - Daniel Egle
- Department of Gynecology, Breast Cancer Center Tirol, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Michael Gnant
- Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Marija Balic
- Department of Internal Medicine, Division of Clinical Oncology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Thamer Sliwa
- 3rd Medical Department, Hematology and Oncology, Hanusch Hospital, Heinrich-Collin-Straße 30, 1140, Vienna, Austria
| | - Christian Singer
- Department of Gynecology, Breast Cancer Center Vienna, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
67
|
Lee M, Yoo TK, Chae BJ, Lee A, Cha YJ, Lee J, Ahn SG, Kang J. Luminal androgen receptor subtype and tumor-infiltrating lymphocytes groups based on triple-negative breast cancer molecular subclassification. Sci Rep 2024; 14:11278. [PMID: 38760384 PMCID: PMC11101432 DOI: 10.1038/s41598-024-61640-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
In our previous study, we developed a triple-negative breast cancer (TNBC) subtype classification that correlated with the TNBC molecular subclassification. In this study, we aimed to evaluate the predictor variables of this subtype classification on the whole slide and to validate the model's performance by using an external test set. We explored the characteristics of this subtype classification and investigated genomic alterations, including genomic scar signature scores. First, TNBC was classified into the luminal androgen receptor (LAR) and non-luminal androgen receptor (non-LAR) subtypes based on the AR Allred score (≥ 6 and < 6, respectively). Then, the non-LAR subtype was further classified into the lymphocyte-predominant (LP), lymphocyte-intermediate (LI), and lymphocyte-depleted (LD) groups based on stromal tumor-infiltrating lymphocytes (TILs) (< 20%, > 20% but < 60%, and ≥ 60%, respectively). This classification showed fair agreement with the molecular classification in the test set. The LAR subtype was characterized by a high rate of PIK3CA mutation, CD274 (encodes PD-L1) and PDCD1LG2 (encodes PD-L2) deletion, and a low homologous recombination deficiency (HRD) score. The non-LAR LD TIL group was characterized by a high frequency of NOTCH2 and MYC amplification and a high HRD score.
Collapse
Affiliation(s)
- Miseon Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae-Kyung Yoo
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Byung Joo Chae
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ahwon Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jieun Lee
- Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Gwe Ahn
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute for Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jun Kang
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
68
|
Walsh RJ, Ong R, Cheo SW, Low PQ, Jayagopal A, Lee M, Ngoi N, Ow SG, Wong AL, Lim SE, Lim YW, Heong V, Sundar R, Soo RA, Chee CE, Yong WP, Goh BC, Lee SC, Tan DS, Lim JS. Molecular profiling of metastatic breast cancer and target-based therapeutic matching in an Asian tertiary phase I oncology unit. Front Oncol 2024; 14:1342346. [PMID: 38812774 PMCID: PMC11133600 DOI: 10.3389/fonc.2024.1342346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/03/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Molecular profiling of metastatic breast cancer (MBC) through the widespread use of next-generation sequencing (NGS) has highlighted actionable mutations and driven trials of targeted therapy matched to tumour molecular profiles, with improved outcomes reported using such an approach. Here, we review NGS results and treatment outcomes for a cohort of Asian MBC patients in the phase I unit of a tertiary centre. Methods Patients with MBC referred to a phase I unit underwent NGS via Ion AmpliSeq Cancer Hotspot v2 (ACH v2, 2014-2017) prior to institutional change to FoundationOne CDx (FM1; 2017-2022). Patients were counselled on findings and enrolled on matched therapeutic trials, where available. Outcomes for all subsequent treatment events were recorded to data cut-off on January 31, 2022. Results A total of 215 patients were enrolled with successful NGS in 158 patients. The PI3K/AKT/PTEN pathway was the most altered with one or more of the pathway member genes PIK3/AKT/PTEN affected in 62% (98/158) patients and 43% of tumours harbouring a PIK3CA alteration. Tumour mutational burden (TMB) was reported in 96/109 FM1 sequenced patients, with a mean TMB of 5.04 mt/Mb and 13% (12/96) with TMB ≥ 10 mt/Mb. Treatment outcomes were evaluable in 105/158 patients, with a pooled total of 216 treatment events recorded. Matched treatment was administered in 47/216 (22%) events and associated with prolonged median progression-free survival (PFS) of 21.0 weeks [95% confidence interval (CI) 11.7, 26.0 weeks] versus 12.1 weeks (95% CI 10.0, 15.4 weeks) in unmatched, with hazard ratio (HR) for progression or death of 0.63 (95% CI 0.41, 0.97; p = 0.034). In the subgroup of PIK3/AKT/PTEN-altered MBC, the HR for progression or death was 0.57 (95% CI 0.35, 0.92; p = 0.02), favouring matched treatment. Per-patient overall survival (OS) analysis (n = 105) showed improved survival for patients receiving matched treatment versus unmatched, with median OS (mOS) of 30.1 versus 11.8 months, HR = 0.45 (95% CI 0.24, 0.84; p = 0.013). Objective response rate (ORR) in the overall population was similar in matched and unmatched treatment events (23.7% versus 17.2%, odds ratio of response 1.14 95% CI 0.50, 2.62; p = 0.75). Conclusions Broad-panel NGS in MBC is feasible, allowing therapeutic matching, which was associated with improvements in PFS and OS.
Collapse
Affiliation(s)
- Robert John Walsh
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Rebecca Ong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Seng Wee Cheo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Peter Q.J. Low
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Aishwarya Jayagopal
- Department of Information Systems and Analytics, School of Computing, National University of Singapore, Singapore, Singapore
| | - Matilda Lee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Natalie Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Samuel G. Ow
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Andrea L.A. Wong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Siew Eng Lim
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Yi Wan Lim
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Valerie Heong
- Department of Medical Oncology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Raghav Sundar
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
| | - Ross A. Soo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Cheng Ean Chee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Wei Peng Yong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Boon Cher Goh
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Soo Chin Lee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - David S.P. Tan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
- National University of Singapore (NUS) Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joline S.J. Lim
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
69
|
Morganti S, Marra A, De Angelis C, Toss A, Licata L, Giugliano F, Taurelli Salimbeni B, Berton Giachetti PPM, Esposito A, Giordano A, Bianchini G, Garber JE, Curigliano G, Lynce F, Criscitiello C. PARP Inhibitors for Breast Cancer Treatment: A Review. JAMA Oncol 2024; 10:658-670. [PMID: 38512229 DOI: 10.1001/jamaoncol.2023.7322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Importance Poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitors have revolutionized the treatment of patients with germline BRCA1/2-associated breast cancer, representing the first targeted therapy capable of improving outcomes in patients with hereditary tumors. However, resistance to PARP inhibitors occurs in almost all patients. Observations This narrative review summarizes the biological rationale behind the use of PARP inhibitors in breast cancer, as well as the available evidence, recent progress, and potential future applications of these agents. Recent studies have shown that the benefit of PARP inhibitors extends beyond patients with germline BRCA1/2-associated metastatic breast cancer to patients with somatic BRCA1/2 variants and to those with germline PALB2 alterations. Moreover, these agents proved to be effective both in the metastatic and adjuvant settings. However, patients with metastatic breast cancer usually do not achieve the long-term benefit from PARP inhibitors observed in other tumor types. Mechanisms of resistance have been identified, but how to effectively target them is largely unknown. Ongoing research is investigating both novel therapeutics and new combination strategies to overcome resistance. PARP1-selective inhibitors, by sparing the hematological toxic effects induced by the PARP2 blockade, are promising agents to be combined with chemotherapy, antibody-drug conjugates, and other targeted therapies. Conclusions and Relevance Although the efficacy of PARP inhibitors is well established, many questions persist. Future research should focus on identifying predictive biomarkers and therapeutic strategies to overcome resistance. Integrating well-designed translational efforts into all clinical studies is thereby crucial to laying the groundwork for future insights from ongoing research.
Collapse
Affiliation(s)
- Stefania Morganti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
- Laster and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Angela Toss
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Licata
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy
- School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Giugliano
- European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- INSERM U981-Molecular Predictors and New Targets in Oncology, PRISM Center for Precision Medicine, Gustave Roussy, Villejuif, France
| | | | | | - Angela Esposito
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Antonio Giordano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Giampaolo Bianchini
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy
- School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Giuseppe Curigliano
- European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Filipa Lynce
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Carmen Criscitiello
- European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
70
|
Abraham JE, Pinilla K, Dayimu A, Grybowicz L, Demiris N, Harvey C, Drewett LM, Lucey R, Fulton A, Roberts AN, Worley JR, Chhabra A, Qian W, Vallier AL, Hardy RM, Chan S, Hickish T, Tripathi D, Venkitaraman R, Persic M, Aslam S, Glassman D, Raj S, Borley A, Braybrooke JP, Sutherland S, Staples E, Scott LC, Davies M, Palmer CA, Moody M, Churn MJ, Newby JC, Mukesh MB, Chakrabarti A, Roylance RR, Schouten PC, Levitt NC, McAdam K, Armstrong AC, Copson ER, McMurtry E, Tischkowitz M, Provenzano E, Earl HM. The PARTNER trial of neoadjuvant olaparib with chemotherapy in triple-negative breast cancer. Nature 2024; 629:1142-1148. [PMID: 38588696 PMCID: PMC11136660 DOI: 10.1038/s41586-024-07384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
PARTNER is a prospective, phase II-III, randomized controlled clinical trial that recruited patients with triple-negative breast cancer1,2, who were germline BRCA1 and BRCA2 wild type3. Here we report the results of the trial. Patients (n = 559) were randomized on a 1:1 basis to receive neoadjuvant carboplatin-paclitaxel with or without 150 mg olaparib twice daily, on days 3 to 14, of each of four cycles (gap schedule olaparib, research arm) followed by three cycles of anthracycline-based chemotherapy before surgery. The primary end point was pathologic complete response (pCR)4, and secondary end points included event-free survival (EFS) and overall survival (OS)5. pCR was achieved in 51% of patients in the research arm and 52% in the control arm (P = 0.753). Estimated EFS at 36 months in the research and control arms was 80% and 79% (log-rank P > 0.9), respectively; OS was 90% and 87.2% (log-rank P = 0.8), respectively. In patients with pCR, estimated EFS at 36 months was 90%, and in those with non-pCR it was 70% (log-rank P < 0.001), and OS was 96% and 83% (log-rank P < 0.001), respectively. Neoadjuvant olaparib did not improve pCR rates, EFS or OS when added to carboplatin-paclitaxel and anthracycline-based chemotherapy in patients with triple-negative breast cancer who were germline BRCA1 and BRCA2 wild type. ClinicalTrials.gov ID: NCT03150576 .
Collapse
Affiliation(s)
- Jean E Abraham
- Precision Breast Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK.
| | - Karen Pinilla
- Precision Breast Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Alimu Dayimu
- Cambridge Cancer Trials Centre, University of Cambridge, Cambridge, UK
| | - Louise Grybowicz
- Cambridge Cancer Trials Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Nikolaos Demiris
- Department of Statistics, Athens University of Economics and Business, Athens, Greece
| | - Caron Harvey
- Cambridge Cancer Trials Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Lynsey M Drewett
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Rebecca Lucey
- Precision Breast Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Alexander Fulton
- Precision Breast Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Anne N Roberts
- Cambridge Cancer Trials Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Joanna R Worley
- Precision Breast Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Anita Chhabra
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Wendi Qian
- Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Anne-Laure Vallier
- Cambridge Cancer Trials Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Richard M Hardy
- Cambridge Cancer Trials Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Steve Chan
- The City Hospital, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | | | - Devashish Tripathi
- Royal Wolverhampton NHS Trust, Wolverhampton, UK
- Russells Hall Hospital, Dudley, UK
| | | | - Mojca Persic
- University Hospital of Derby and Burton, Derby, UK
| | - Shahzeena Aslam
- Bedford Hospital, Bedfordshire Hospitals NHS Foundation Trust, Bedford, UK
| | - Daniel Glassman
- Pinderfields Hospital, Mid Yorkshire Teaching NHS Trust, Wakefield, UK
| | - Sanjay Raj
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Basingstoke & North Hampshire Hospital, Basingstoke, UK
- Royal Hampshire Hospital, Winchester, UK
| | | | | | | | - Emma Staples
- Queens Hospital, Barking, Havering and Redbridge University Hospitals NHS Trust, Romford, UK
| | - Lucy C Scott
- Beatson West Of Scotland Cancer Centre, Glasgow, UK
| | - Mark Davies
- Swansea Bay University Health Board, Swansea, UK
| | - Cheryl A Palmer
- Hinchingbrooke Hospital, North West Anglia NHS Foundation Trust, Huntingdon, UK
| | - Margaret Moody
- Macmillan Unit, West Suffolk Hospital NHS Foundation Trust, Bury Saint Edmunds, UK
| | - Mark J Churn
- Worcestershire Acute Hospitals NHS Trust, Worcester, UK
- Alexandra Redditch Hospital, Redditch, UK
- Kidderminster Hospital, Kidderminster, Worcestershire, UK
| | | | - Mukesh B Mukesh
- Oncology Department, Colchester General Hospital, East Suffolk & North Essex NHS Trust, Colchester, UK
| | | | | | - Philip C Schouten
- Department of Histopathology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Karen McAdam
- Peterborough City Hospital, North West Anglia NHS Foundation Trust, Peterborough, UK
| | - Anne C Armstrong
- The Christie NHS Foundation Trust and Division of Cancer Sciences, Manchester, UK
| | - Ellen R Copson
- Cancer Sciences Academic Unit, University of Southampton, Southampton, UK
| | | | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research, Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Elena Provenzano
- Department of Histopathology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Helena M Earl
- Precision Breast Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
71
|
Ye M, Xu H, Ding J, Jiang L. Therapy for Hormone Receptor-Positive, Human Epidermal Growth Receptor 2-Negative Metastatic Breast Cancer Following Treatment Progression via CDK4/6 Inhibitors: A Literature Review. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:181-197. [PMID: 38617842 PMCID: PMC11016260 DOI: 10.2147/bctt.s438366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/16/2024] [Indexed: 04/16/2024]
Abstract
Endocrine therapy (ET) with a cyclin-dependent kinase 4/6 inhibitor (CDK4/6i) is currently the first-line standard treatment for most patients with hormone receptor-positive (HR+) and human epidermal growth receptor 2-negative (HER2-) metastatic or advanced breast cancer. However, the majority of tumors response to and eventually develop resistance to CDK4/6is. The mechanisms of resistance are poorly understood, and the optimal postprogression treatment regimens and their sequences continue to evolve in the rapidly changing treatment landscape. In this review, we generally summarize the mechanisms of resistance to CDK4/6is and ET, and describe the findings from clinical trials using small molecule inhibitors, antibody-drug conjugates and immunotherapy, providing insights into how these novel strategies may reverse treatment resistance, and discussing how some have not translated into clinical benefit. Finally, we provide rational treatment strategies based on the current emerging evidence.
Collapse
Affiliation(s)
- Meixi Ye
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, People’s Republic of China
| | - Hao Xu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, People’s Republic of China
| | - Jinhua Ding
- Department of Breast and Thyroid Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315040, People’s Republic of China
| | - Li Jiang
- Department of General Practice, Ningbo Medical Center Lihuili Hospital, Ningbo, 315040, People’s Republic of China
| |
Collapse
|
72
|
Balmaña J, Fasching PA, Couch FJ, Delaloge S, Labidi-Galy I, O'Shaughnessy J, Park YH, Eisen AF, You B, Bourgeois H, Gonçalves A, Kemp Z, Swampillai A, Jankowski T, Sohn JH, Poddubskaya E, Mukhametshina G, Aksoy S, Timcheva CV, Park-Simon TW, Antón-Torres A, John E, Baria K, Gibson I, Gelmon KA. Clinical effectiveness and safety of olaparib in BRCA-mutated, HER2-negative metastatic breast cancer in a real-world setting: final analysis of LUCY. Breast Cancer Res Treat 2024; 204:237-248. [PMID: 38112922 PMCID: PMC10948524 DOI: 10.1007/s10549-023-07165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/23/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE The interim analysis of the phase IIIb LUCY trial demonstrated the clinical effectiveness of olaparib in patients with germline BRCA-mutated (gBRCAm), human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer (mBC), with median progression-free survival (PFS) of 8.11 months, which was similar to that in the olaparib arm of the phase III OlympiAD trial (7.03 months). This prespecified analysis provides final overall survival (OS) and safety data. METHODS The open-label, single-arm LUCY trial of olaparib (300 mg, twice daily) enrolled adults with gBRCAm or somatic BRCA-mutated (sBRCAm), HER2-negative mBC. Patients had previously received a taxane or anthracycline for neoadjuvant/adjuvant or metastatic disease and up to two lines of chemotherapy for mBC. RESULTS Of 563 patients screened, 256 (gBRCAm, n = 253; sBRCAm, n = 3) were enrolled. In the gBRCAm cohort, median investigator-assessed PFS (primary endpoint) was 8.18 months and median OS was 24.94 months. Olaparib was clinically effective in all prespecified subgroups: hormone receptor status, previous chemotherapy for mBC, previous platinum-based chemotherapy (including by line of therapy), and previous cyclin-dependent kinase 4/6 inhibitor use. The most frequent treatment-emergent adverse events (TEAEs) were nausea (55.3%) and anemia (39.2%). Few patients (6.3%) discontinued olaparib owing to a TEAE. No deaths associated with AEs occurred during the study treatment or 30-day follow-up. CONCLUSION The LUCY patient population reflects a real-world population in line with the licensed indication of olaparib in mBC. These findings support the clinical effectiveness and safety of olaparib in patients with gBRCAm, HER2-negative mBC. CLINICAL TRIAL REGISTRATION Clinical trials registration number: NCT03286842.
Collapse
Affiliation(s)
- Judith Balmaña
- Medical Oncology Department, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Suzette Delaloge
- Breast Cancer Unit, Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Intidhar Labidi-Galy
- Department of Oncology, Geneva University Hospital, Department of Medicine, Division of Oncology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Joyce O'Shaughnessy
- Baylor University Medical Center, Texas Oncology and US Oncology, Dallas, TX, USA
| | - Yeon Hee Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Andrea F Eisen
- Division of Medical Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Benoit You
- Department of Medical Oncology, Hospices Civils of Lyon Cancer Institute, Centre for Therapeutic Investigation in Oncology and Haematology of Lyon, Lyon Sud Hospital Centre, Lyon, France
- Faculty of Medicine of Lyon Sud, Claude Bernard Lyon 1 University, Lyon, France
- GINECO-GINEGEPS, Paris, France
| | - Hughes Bourgeois
- Medical Oncology Department, Victor Hugo Clinic-Jean Bernard Center, Le Mans, France
| | - Anthony Gonçalves
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
- Cancer Research Center of Marseille, Aix-Marseille University, French National Centre for Scientific Research, National Institute for Health and Medical Research, Marseille, France
| | - Zoe Kemp
- Breast Cancer Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Angela Swampillai
- Department of Clinical Oncology, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
- Breast Cancer Now Research Unit, Guy's Hospital, King's College London, London, UK
| | - Tomasz Jankowski
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Joo Hyuk Sohn
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Sercan Aksoy
- Medical Oncology Department, Hacettepe University Cancer Institute, Ankara, Turkey
| | | | | | - Antonio Antón-Torres
- Department of Medical Oncology, Miguel Servet University Hospital and Aragon Health Research Institute, Zaragoza, Spain
| | | | | | | | - Karen A Gelmon
- Department of Medical Oncology, BC Cancer, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
73
|
Kurian AW, Bedrosian I, Kohlmann WK, Somerfield MR, Robson ME. Germline Testing in Patients With Breast Cancer: ASCO-Society of Surgical Oncology Guideline Q and A. JCO Oncol Pract 2024; 20:466-471. [PMID: 38252903 DOI: 10.1200/op.23.00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Affiliation(s)
| | | | - Wendy K Kohlmann
- University of Utah Huntsman Cancer Institute, Salt Lake City, UT
| | | | - Mark E Robson
- Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
74
|
Szentmartoni G, Mühl D, Csanda R, Szasz AM, Herold Z, Dank M. Predictive Value and Therapeutic Significance of Somatic BRCA Mutation in Solid Tumors. Biomedicines 2024; 12:593. [PMID: 38540206 PMCID: PMC10967875 DOI: 10.3390/biomedicines12030593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 01/11/2025] Open
Abstract
Ten percent of patients with breast cancer, and probably somewhat more in patients with ovarian cancer, have inherited germline DNA mutations in the breast and ovarian cancer genes BRCA1 and BRCA2. In the remaining cases, the disease is caused by acquired somatic genetic and epigenetic alterations. Targeted therapeutic agents, such as poly ADP-ribose polymerases (PARP) inhibitors (PARPi), have emerged in treating cancers associated with germline BRCA mutations since 2014. The first PARPi was FDA-approved initially for ovarian cancer patients with germline BRCA mutations. Deleterious variants in the BRCA1/BRCA2 genes and homologous recombination deficiency status have been strong predictors of response to PARPi in a few solid tumors since then. However, the relevance of somatic BRCA mutations is less clear. Somatic BRCA-mutated tumors might also respond to this new class of therapeutics. Although the related literature is often controversial, recently published case reports and/or randomized studies demonstrated the effectiveness of PARPi in treating patients with somatic BRCA mutations. The aim of this review is to summarize the predictive role of somatic BRCA mutations and to provide further assistance for clinicians with the identification of patients who could potentially benefit from PARPi.
Collapse
Affiliation(s)
- Gyongyver Szentmartoni
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
75
|
Chen BF, Tsai YF, Lien PJ, Lin YS, Feng CJ, Chen YJ, Cheng HF, Liu CY, Chao TC, Lai JI, Tseng LM, Huang CC. Prevalent landscape of tumor genomic alterations of luminal B1 breast cancers using a comprehensive genomic profiling assay in Taiwan. Breast Cancer 2024; 31:217-227. [PMID: 38070067 DOI: 10.1007/s12282-023-01524-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/06/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND The human epidermal growth factor receptor 2 (HER2) negative luminal B1 subtype of breast cancer has been reported with a poorer outcome than luminal A in recent studies. This study aimed to investigate the molecular alterations and identify potential therapeutic targets by analyzing the genetic profiling from a cohort of luminal B1 breast cancer in Taiwan. METHODS We enrolled patients with luminal B1 breast cancer in our study. They were classified as patients who received curative surgery and adjuvant or neoadjuvant chemotherapy as the low-risk group, and who had advanced or metastatic disease or early relapse during the follow-up time as the high-risk group. Using targeted sequencing, we evaluated genomic alterations, interpreting variants with the ESMO Scale of clinical actionability of molecular targets (ESCAT). RESULTS A total of 305 luminal B1 breast cancer patients underwent targeted sequencing analyses. The high-risk patients reported more actionable genes and called variants than the low-risk group (P < 0.05). PIK3CA (42%), FGFR1 (25%), and BRCA1/2 (10.5%) were the most prevalent ESCAT actionable alterations in luminal B1 breast cancer. There was no difference in the prevalence of actionable mutations between these two groups, except for ERBB2 oncogenic mutations, which were more prevalent among the high-risk than the low-risk group (P < 0.05). Alterations in PTEN, ERBB2, and BRCA1/2 were associated with disease relapse events in luminal B1 breast cancer. CONCLUSIONS PIK3CA, FGFR1, and BRCA1/2 were the most prevalent actionable alterations among Taiwanese luminal B1 breast cancer. Moreover, PTEN and BRCA1/2 was significantly associated with disease relapse.
Collapse
Affiliation(s)
- Bo-Fang Chen
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 112, Taiwan
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Fang Tsai
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 112, Taiwan
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Pei-Ju Lien
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Shu Lin
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 112, Taiwan
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Chin-Jung Feng
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Jen Chen
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 112, Taiwan
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Han-Fang Cheng
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 112, Taiwan
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Chun-Yu Liu
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ta-Chung Chao
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Division of Cancer Prevention, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jiun-I Lai
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Center of Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Ling-Ming Tseng
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 112, Taiwan.
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.
- School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.
- Department of Surgery, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 112, Taiwan.
| | - Chi-Cheng Huang
- Division of Breast Surgery, Department of Surgery, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei, 112, Taiwan.
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
76
|
Bottosso M, Mosele F, Michiels S, Cournède PH, Dogan S, Labaki C, André F. Moving toward precision medicine to predict drug sensitivity in patients with metastatic breast cancer. ESMO Open 2024; 9:102247. [PMID: 38401248 PMCID: PMC10982863 DOI: 10.1016/j.esmoop.2024.102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 02/26/2024] Open
Abstract
Tumor heterogeneity represents a major challenge in breast cancer, being associated with disease progression and treatment resistance. Precision medicine has been extensively applied to dissect tumor heterogeneity and, through a deeper molecular understanding of the disease, to personalize therapeutic strategies. In the last years, technological advances have widely improved the understanding of breast cancer biology and several trials have been developed to translate these new insights into clinical practice, with the ultimate aim of improving patients' outcomes. In the era of molecular oncology, genomics analyses and other methodologies are shaping a new treatment algorithm in breast cancer care. In this manuscript, we review the main steps of precision medicine to predict drug sensitivity in breast cancer from a translational point of view. Genomic developments and their clinical implications are discussed, along with technological advancements that could broaden precision medicine applications. Current achievements are put into perspective to provide an overview of the state-of-art of breast cancer precision oncology as well as to identify future research directions.
Collapse
Affiliation(s)
- M Bottosso
- INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France; Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - F Mosele
- INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif
| | - S Michiels
- Gustave Roussy, Department of Biostatistics and Epidemiology, Villejuif; Oncostat U1018, Inserm, Université Paris-Saclay, Ligue Contre le Cancer, Villejuif
| | - P-H Cournède
- Université Paris-Saclay, Centrale Supélec, Laboratory of Mathematics and Computer Science (MICS), Gif-Sur-Yvette, France
| | - S Dogan
- INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France
| | - C Labaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston; Department of Medicine, Beth Israel Deaconess Medical Center, Boston, USA
| | - F André
- INSERM Unit U981, Gustave Roussy Cancer Campus, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif; PRISM, INSERM, Gustave Roussy, Villejuif; Paris Saclay University, Gif Sur-Yvette, France.
| |
Collapse
|
77
|
Bedrosian I, Somerfield MR, Achatz MI, Boughey JC, Curigliano G, Friedman S, Kohlmann WK, Kurian AW, Laronga C, Lynce F, Norquist BS, Plichta JK, Rodriguez P, Shah PD, Tischkowitz M, Wood M, Yadav S, Yao K, Robson ME. Germline Testing in Patients With Breast Cancer: ASCO-Society of Surgical Oncology Guideline. J Clin Oncol 2024; 42:584-604. [PMID: 38175972 DOI: 10.1200/jco.23.02225] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 01/06/2024] Open
Abstract
PURPOSE To develop recommendations for germline mutation testing for patients with breast cancer. METHODS An ASCO-Society of Surgical Oncology (SSO) panel convened to develop recommendations based on a systematic review and formal consensus process. RESULTS Forty-seven articles met eligibility criteria for the germline mutation testing recommendations; 18 for the genetic counseling recommendations. RECOMMENDATIONS BRCA1/2 mutation testing should be offered to all newly diagnosed patients with breast cancer ≤65 years and select patients >65 years based on personal history, family history, ancestry, or eligibility for poly(ADP-ribose) polymerase (PARP) inhibitor therapy. All patients with recurrent breast cancer who are candidates for PARP inhibitor therapy should be offered BRCA1/2 testing, regardless of family history. BRCA1/2 testing should be offered to women who develop a second primary cancer in the ipsilateral or contralateral breast. For patients with prior history of breast cancer and without active disease, testing should be offered to patients diagnosed ≤65 years and selectively in patients diagnosed after 65 years, if it will inform personal and family risk. Testing for high-penetrance cancer susceptibility genes beyond BRCA1/2 should be offered to those with supportive family histories; testing for moderate-penetrance genes may be offered if necessary to inform personal and family cancer risk. Patients should be provided enough pretest information for informed consent; those with pathogenic variants should receive individualized post-test counseling. Variants of uncertain significance should not impact management, and patients with such variants should be followed for reclassification. Referral to providers experienced in clinical cancer genetics may help facilitate patient selection and interpretation of expanded testing, and provide counseling of individuals without pathogenic germline variants but with significant family history.Additional information is available at www.asco.org/breast-cancer-guidelines.
Collapse
Affiliation(s)
| | | | | | | | - Giuseppe Curigliano
- University of Milan, Italy
- European Institute of Oncology, IRCCS, Milano, Italy
| | - Sue Friedman
- FORCE (Facing Our Risk of Cancer Empowered), Tampa, FL
| | - Wendy K Kohlmann
- University of Utah Huntsman Cancer Institute, Salt Lake City, UT
| | | | | | | | | | | | - Patricia Rodriguez
- Hereditary Cancer Risk Assessment Program, Virginia Cancer Specialists, Arlington, VA
| | - Payal D Shah
- Basser Center for BRCA & Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Katherine Yao
- Division of Surgical Oncology at NorthShore University Health System, Evanston, IL
| | - Mark E Robson
- Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
78
|
Barili V, Ambrosini E, Bortesi B, Minari R, De Sensi E, Cannizzaro IR, Taiani A, Michiara M, Sikokis A, Boggiani D, Tommasi C, Serra O, Bonatti F, Adorni A, Luberto A, Caggiati P, Martorana D, Uliana V, Percesepe A, Musolino A, Pellegrino B. Genetic Basis of Breast and Ovarian Cancer: Approaches and Lessons Learnt from Three Decades of Inherited Predisposition Testing. Genes (Basel) 2024; 15:219. [PMID: 38397209 PMCID: PMC10888198 DOI: 10.3390/genes15020219] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Germline variants occurring in BRCA1 and BRCA2 give rise to hereditary breast and ovarian cancer (HBOC) syndrome, predisposing to breast, ovarian, fallopian tube, and peritoneal cancers marked by elevated incidences of genomic aberrations that correspond to poor prognoses. These genes are in fact involved in genetic integrity, particularly in the process of homologous recombination (HR) DNA repair, a high-fidelity repair system for mending DNA double-strand breaks. In addition to its implication in HBOC pathogenesis, the impairment of HR has become a prime target for therapeutic intervention utilizing poly (ADP-ribose) polymerase (PARP) inhibitors. In the present review, we introduce the molecular roles of HR orchestrated by BRCA1 and BRCA2 within the framework of sensitivity to PARP inhibitors. We examine the genetic architecture underneath breast and ovarian cancer ranging from high- and mid- to low-penetrant predisposing genes and taking into account both germline and somatic variations. Finally, we consider higher levels of complexity of the genomic landscape such as polygenic risk scores and other approaches aiming to optimize therapeutic and preventive strategies for breast and ovarian cancer.
Collapse
Affiliation(s)
- Valeria Barili
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Enrico Ambrosini
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Beatrice Bortesi
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Erika De Sensi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Antonietta Taiani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Maria Michiara
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Angelica Sikokis
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Daniela Boggiani
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Chiara Tommasi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Olga Serra
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Francesco Bonatti
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Alessia Adorni
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Anita Luberto
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Davide Martorana
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Vera Uliana
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Antonio Percesepe
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Antonino Musolino
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Benedetta Pellegrino
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
- Breast Unit, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
79
|
Patel G, Prince A, Harries M. Advanced Triple-Negative Breast Cancer. Semin Oncol Nurs 2024; 40:151548. [PMID: 38008654 DOI: 10.1016/j.soncn.2023.151548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/28/2023]
Abstract
OBJECTIVES Our focus within this review is to summarize key advances and new therapeutic approaches within advanced triple-negative breast cancer. In addition, we highlight the importance of multidisciplinary management, discussing key issues for patients and importance of the supportive role that specialist nurses provide. DATA SOURCES Peer-reviewed literature, clinical practice guidelines, clinical trial, and government websites. CONCLUSION Triple-negative breast cancer is a highly heterogeneous subtype of breast cancer, often associated with a less favorable prognosis compared to other types. Significant advances in our understanding of specific mutations and signaling pathways within this subtype, coupled with expanding therapeutic options, has broadened the treatment landscape considerably. While chemotherapy traditionally formed the mainstay of treatment, new therapeutics such as immunotherapy, targeted agents, and antibody-drug conjugates in first-line and subsequent-line settings are now available. It is essential for all those who care for this patient group to be up-to-date on current practice and emerging treatments, so patients receive the support they need and deserve. IMPLICATIONS FOR NURSING PRACTICE Nurses need to become familiar with new systemic anticancer therapies within advanced triple-negative breast cancer to provide patients with adequate information about new treatment options and support with potential treatment-associated toxicities. It is important for nurses to be able to recognise key issues facing patients with a diagnosis of advanced triple-negative breast cancer, to gain a deeper understanding of both the physical and psychosocial support required, signposting or referring patients to additional support services if needed.
Collapse
Affiliation(s)
- Grisma Patel
- Medical Oncology Specialist Registrar, Doctor - Department of Oncology, Guys Cancer Centre, Guys and St Thomas' NHS Foundation Trust, London, UK.
| | - Alison Prince
- Clinical Nurse Specialist, Breast Oncology - Department of Oncology, Guys Cancer Centre, Guys and St Thomas' NHS Foundation Trust, London, UK
| | - Mark Harries
- Medical Oncology Consultant, Doctor - Department of Oncology, Guys Cancer Centre, Guys and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
80
|
Varga Z, Maccio U. Molecular pathology in breast disease: diagnostic, prognostic, and therapeutic tools. Virchows Arch 2024; 484:247-261. [PMID: 38015260 PMCID: PMC10948467 DOI: 10.1007/s00428-023-03709-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Molecular testing in breast cancer gained increasing attention and importance as specific molecular results can tailor not only oncological decisions on systemic adjuvant or neoadjuvant or in metastatic setting, but increasingly serve in diagnostic routine histopathological services to differentiate between morphologically overlapping or ambiguous histological pictures. Diagnostic tools involve in most cases a broad spectrum of immunohistochemical panels, followed by entity-specific in situ hybridization probes and in given cases NGS-based sequencing. Workflow of which methodology is applied and in which order depends on the specific entity resp. on the given differential diagnosis in question. Regarding prognostic/predictive molecular testing, the choice of assay and the workflow are based on clinical algorithms and on the evidence of targeted therapies following the molecular alterations. In this review paper, we aim to address the use of molecular technics in [1] the histological diagnostic setting (such as subtyping of invasive carcinomas/malignant spindle cell tumors and sarcomas and some B3 lesions) and [2] in the context of adjuvant or neoadjuvant or other clinical settings with special focus of targeted therapies.
Collapse
Affiliation(s)
- Zsuzsanna Varga
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, CH-8091, Zurich, Switzerland.
| | - Umberto Maccio
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, CH-8091, Zurich, Switzerland
| |
Collapse
|
81
|
Daly GR, AlRawashdeh MM, McGrath J, Dowling GP, Cox L, Naidoo S, Vareslija D, Hill ADK, Young L. PARP Inhibitors in Breast Cancer: a Short Communication. Curr Oncol Rep 2024; 26:103-113. [PMID: 38236558 PMCID: PMC10891270 DOI: 10.1007/s11912-023-01488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
PURPOSE OF REVIEW In the last decade, poly (ADP-ribose) polymerase (PARP) inhibitors have been approved in the treatment of several cancers, such as breast and ovarian cancer. This article aims to discuss the current uses, limitations, and future directions for PARP inhibitors (PARPis) in the treatment of breast cancer. RECENT FINDINGS Following the results of the OlympiAD and EMBRACA trials, PARPis were approved in HER2-negative breast cancer with a germline BRCA mutation. We reviewed this class of drugs' mechanism of action, efficacy, and limitations, as well as further studies that discussed resistance, impaired homologous recombination repair (HRR), and the combination of PARPis with other drugs. Improving understanding of HRR, increasing the ability to target resistance, and combining PARPis with other novel agents are continuing to increase the clinical utility of PARPis.
Collapse
Affiliation(s)
- Gordon R Daly
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland.
- The Department of Surgery, Beaumont Hospital, Dublin, Ireland.
| | - Maen Monketh AlRawashdeh
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
- The Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Jason McGrath
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gavin P Dowling
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
- The Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Luke Cox
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sindhuja Naidoo
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
- The Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Damir Vareslija
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Arnold D K Hill
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
- The Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Leonie Young
- The Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
82
|
Liu YT, Che Y, Qiu HL, Xia HX, Feng YZ, Deng JY, Yuan Y, Tang QZ. ADP-ribosylation: An emerging direction for disease treatment. Ageing Res Rev 2024; 94:102176. [PMID: 38141734 DOI: 10.1016/j.arr.2023.102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
ADP-ribosylation (ADPr) is a dynamically reversible post-translational modification (PTM) driven primarily by ADP-ribosyltransferases (ADPRTs or ARTs), which have ADP-ribosyl transfer activity. ADPr modification is involved in signaling pathways, DNA damage repair, metabolism, immunity, and inflammation. In recent years, several studies have revealed that new targets or treatments for tumors, cardiovascular diseases, neuromuscular diseases and infectious diseases can be explored by regulating ADPr. Here, we review the recent research progress on ART-mediated ADP-ribosylation and the latest findings in the diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Yu-Ting Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Yan Che
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Hong-Liang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Hong-Xia Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Yi-Zhou Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Jiang-Yang Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China.
| |
Collapse
|
83
|
Valentini V, Bucalo A, Conti G, Celli L, Porzio V, Capalbo C, Silvestri V, Ottini L. Gender-Specific Genetic Predisposition to Breast Cancer: BRCA Genes and Beyond. Cancers (Basel) 2024; 16:579. [PMID: 38339330 PMCID: PMC10854694 DOI: 10.3390/cancers16030579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Among neoplastic diseases, breast cancer (BC) is one of the most influenced by gender. Despite common misconceptions associating BC as a women-only disease, BC can also occur in men. Additionally, transgender individuals may also experience BC. Genetic risk factors play a relevant role in BC predisposition, with important implications in precision prevention and treatment. The genetic architecture of BC susceptibility is similar in women and men, with high-, moderate-, and low-penetrance risk variants; however, some sex-specific features have emerged. Inherited high-penetrance pathogenic variants (PVs) in BRCA1 and BRCA2 genes are the strongest BC genetic risk factor. BRCA1 and BRCA2 PVs are more commonly associated with increased risk of female and male BC, respectively. Notably, BRCA-associated BCs are characterized by sex-specific pathologic features. Recently, next-generation sequencing technologies have helped to provide more insights on the role of moderate-penetrance BC risk variants, particularly in PALB2, CHEK2, and ATM genes, while international collaborative genome-wide association studies have contributed evidence on common low-penetrance BC risk variants, on their combined effect in polygenic models, and on their role as risk modulators in BRCA1/2 PV carriers. Overall, all these studies suggested that the genetic basis of male BC, although similar, may differ from female BC. Evaluating the genetic component of male BC as a distinct entity from female BC is the first step to improve both personalized risk assessment and therapeutic choices of patients of both sexes in order to reach gender equality in BC care. In this review, we summarize the latest research in the field of BC genetic predisposition with a particular focus on similarities and differences in male and female BC, and we also discuss the implications, challenges, and open issues that surround the establishment of a gender-oriented clinical management for BC.
Collapse
Affiliation(s)
- Virginia Valentini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Agostino Bucalo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Giulia Conti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Ludovica Celli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Virginia Porzio
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Carlo Capalbo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
- Medical Oncology Unit, Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Valentina Silvestri
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.V.); (A.B.); (G.C.); (L.C.); (V.P.); (C.C.); (V.S.)
| |
Collapse
|
84
|
Ali U, Vungarala S, Tiriveedhi V. Genomic Features of Homologous Recombination Deficiency in Breast Cancer: Impact on Testing and Immunotherapy. Genes (Basel) 2024; 15:162. [PMID: 38397152 PMCID: PMC10887603 DOI: 10.3390/genes15020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Genomic instability is one of the well-established hallmarks of cancer. The homologous recombination repair (HRR) pathway plays a critical role in correcting the double-stranded breaks (DSB) due to DNA damage in human cells. Traditionally, the BRCA1/2 genes in the HRR pathway have been tested for their association with breast cancer. However, defects in the HRR pathway (HRD, also termed 'BRCAness'), which has up to 50 genes, have been shown to be involved in tumorigenesis and treatment susceptibility to poly-ADP ribose polymerase inhibitors (PARPis), platinum-based chemotherapy, and immune checkpoint inhibitors (ICIs). A reliable consensus on HRD scores is yet to be established. Emerging evidence suggests that only a subset of breast cancer patients benefit from ICI-based immunotherapy. Currently, albeit with limitations, the expression of programmed death-ligand 1 (PDL1) and tumor mutational burden (TMB) are utilized as biomarkers to predict the favorable outcomes of ICI therapy in breast cancer patients. Preclinical studies demonstrate an interplay between the HRR pathway and PDL1 expression. In this review, we outline the current understanding of the role of HRD in genomic instability leading to breast tumorigenesis and delineate outcomes from various clinical trials. Furthermore, we discuss potential strategies for combining HRD-targeted therapy with immunotherapy to achieve the best healthcare outcomes in breast cancer patients.
Collapse
Affiliation(s)
- Umer Ali
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA;
| | - Sunitha Vungarala
- Meharry-Vanderbilt Alliance, Vanderbilt University Medical Center, Nashville, TN 37209, USA;
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA;
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37209, USA
| |
Collapse
|
85
|
Altwerger G, Ghazarian M, Glazer PM. Harnessing the effects of hypoxia-like inhibition on homology-directed DNA repair. Semin Cancer Biol 2024; 98:11-18. [PMID: 38029867 PMCID: PMC10872265 DOI: 10.1016/j.semcancer.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
Hypoxia is a hallmark feature of the tumor microenvironment which can promote mutagenesis and instability. This increase in mutational burden occurs as a result of the downregulation of DNA repair systems. Deficits in the DNA damage response can be exploited to induce cytotoxicity and treat advanced stage cancers. With the advent of precision medicine, agents such as Poly (ADP-ribose) polymerase (PARP) inhibitors have been used to achieve synthetic lethality in homology directed repair (HDR) deficient cancers. However, most cancers lack these predictive biomarkers. Treatment for the HDR proficient population represents an important unmet clinical need. There has been interest in the use of anti-angiogenic agents to promote tumor hypoxia and induce deficiency in a HDR proficient background. For example, the use of cediranib to inhibit PDGFR and downregulate enzymes of the HDR pathway can be used synergistically with a PARP inhibitor. This combination can improve therapeutic responses in HDR proficient cancers. Preclinical results and Phase II and III clinical trial data support the mechanistic rationale for the efficacy of these agents in combination. Future investigations should explore the effectiveness of cediranib and other anti-angiogenic agents with a PARP inhibitor to elicit an antitumor response and sensitize cancers to immunotherapy.
Collapse
Affiliation(s)
- Gary Altwerger
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Maddie Ghazarian
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
86
|
Kahn RM, Selenica P, Boerner T, Roche KL, Xiao Y, Sia TY, Maio A, Kemel Y, Sheehan M, Salo-Mullen E, Breen KE, Zhou Q, Iasonos A, Grisham RN, O'Cearbhaill RE, Chi DS, Berger MF, Kundra R, Schultz N, Ellenson LH, Stadler ZK, Offit K, Mandelker D, Aghajanian C, Zamarin D, Sabbatini P, Weigelt B, Liu YL. Pathogenic germline variants in non-BRCA1/2 homologous recombination genes in ovarian cancer: Analysis of tumor phenotype and survival. Gynecol Oncol 2024; 180:35-43. [PMID: 38041901 PMCID: PMC10922242 DOI: 10.1016/j.ygyno.2023.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/04/2023]
Abstract
OBJECTIVE To define molecular features of ovarian cancer (OC) with germline pathogenic variants (PVs) in non-BRCA homologous recombination (HR) genes and analyze survival compared to BRCA1/2 and wildtype (WT) OC. METHODS We included patients with OC undergoing tumor-normal sequencing (MSK-IMPACT) from 07/01/2015-12/31/2020, including germline assessment of BRCA1/2 and other HR genes ATM, BARD1, BRIP1, FANCA, FANCC, NBN, PALB2, RAD50, RAD51B, RAD51C, and RAD51D. Biallelic inactivation was assessed within tumors. Progression-free (PFS) and overall survival (OS) were calculated from pathologic diagnosis using the Kaplan-Meier method with left truncation. Whole-exome sequencing (WES) was performed in a subset. RESULTS Of 882 patients with OC, 56 (6.3%) had germline PVs in non-BRCA HR genes; 95 (11%) had BRCA1-associated OC (58 germline, 37 somatic); and 59 (6.7%) had BRCA2-associated OC (40 germline, 19 somatic). High rates of biallelic alterations were observed among germline PVs in BRIP1 (11/13), PALB2 (3/4), RAD51B (3/4), RAD51C (3/4), and RAD51D (8/10). In cases with WES (27/35), there was higher tumor mutational burden (TMB; median 2.5 [1.1-6.0] vs. 1.2 mut/Mb [0.6-2.6]) and enrichment of HR-deficient (HRD) mutational signatures in tumors associated with germline PALB2 and RAD51B/C/D compared with BRIP1 PVs (p < 0.01). Other features of HRD, including telomeric-allelic imbalance (TAI) and large-scale state transitions (LSTs), were similar. Although there was heterogeneity in PFS/OS by gene group, only BRCA1/2-associated OC had improved survival compared to WT OC (p < 0.01). CONCLUSIONS OCs associated with germline PVs in non-BRCA HR genes represent a heterogenous group, with PALB2 and RAD51B/C/D associated with an HRD phenotype.
Collapse
Affiliation(s)
- Ryan M Kahn
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thomas Boerner
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kara Long Roche
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Yonghong Xiao
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tiffany Y Sia
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna Maio
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yelena Kemel
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Margaret Sheehan
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Erin Salo-Mullen
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kelsey E Breen
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qin Zhou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexia Iasonos
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rachel N Grisham
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Roisin E O'Cearbhaill
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Dennis S Chi
- Gynecology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Michael F Berger
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ritika Kundra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nikolaus Schultz
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lora H Ellenson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zsofia K Stadler
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Diana Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carol Aghajanian
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Dmitriy Zamarin
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Paul Sabbatini
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ying L Liu
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
87
|
Chen C, Lin CJ, Pei YC, Ma D, Liao L, Li SY, Fan L, Di GH, Wu SY, Liu XY, Wang YJ, Hong Q, Zhang GL, Xu LL, Li BB, Huang W, Shi JX, Jiang YZ, Hu X, Shao ZM. Comprehensive genomic profiling of breast cancers characterizes germline-somatic mutation interactions mediating therapeutic vulnerabilities. Cell Discov 2023; 9:125. [PMID: 38114467 PMCID: PMC10730692 DOI: 10.1038/s41421-023-00614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/08/2023] [Indexed: 12/21/2023] Open
Abstract
Germline-somatic mutation interactions are universal and associated with tumorigenesis, but their role in breast cancer, especially in non-Caucasians, remains poorly characterized. We performed large-scale prospective targeted sequencing of matched tumor-blood samples from 4079 Chinese females, coupled with detailed clinical annotation, to map interactions between germline and somatic alterations. We discovered 368 pathogenic germline variants and identified 5 breast cancer DNA repair-associated genes (BCDGs; BRCA1/BRCA2/CHEK2/PALB2/TP53). BCDG mutation carriers, especially those with two-hit inactivation, demonstrated younger onset, higher tumor mutation burden, and greater clinical benefits from platinum drugs, PARP inhibitors, and immune checkpoint inhibitors. Furthermore, we leveraged a multiomics cohort to reveal that clinical benefits derived from two-hit events are associated with increased genome instability and an immune-activated tumor microenvironment. We also established an ethnicity-specific tool to predict BCDG mutation and two-hit status for genetic evaluation and therapeutic decisions. Overall, this study leveraged the large sequencing cohort of Chinese breast cancers, optimizing genomics-guided selection of DNA damaging-targeted therapy and immunotherapy within a broader population.
Collapse
Affiliation(s)
- Chao Chen
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cai-Jin Lin
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Chen Pei
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ding Ma
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Liao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Si-Yuan Li
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Fan
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gen-Hong Di
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Song-Yang Wu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi-Yu Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yun-Jin Wang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qi Hong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
| | - Guo-Liang Zhang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lin-Lin Xu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
| | - Bei-Bei Li
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wei Huang
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Jin-Xiu Shi
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xin Hu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|
88
|
Cheng HF, Tsai YF, Liu CY, Hsu CY, Lien PJ, Lin YS, Chao TC, Lai JI, Feng CJ, Chen YJ, Chen BF, Chiu JH, Tseng LM, Huang CC. Prevalence of BRCA1, BRCA2, and PALB2 genomic alterations among 924 Taiwanese breast cancer assays with tumor-only targeted sequencing: extended data analysis from the VGH-TAYLOR study. Breast Cancer Res 2023; 25:152. [PMID: 38098088 PMCID: PMC10722686 DOI: 10.1186/s13058-023-01751-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The homologous recombination (HR) repair pathway for DNA damage, particularly the BRCA1 and BRCA2 genes, has become a target for cancer therapy, with poly ADP-ribose polymerase (PARP) inhibitors showing significant outcomes in treating germline BRCA1/2 (gBRCA1/2) mutated breast cancer. Recent studies suggest that some patients with somatic BRCA1/2 (sBRCA1/2) mutation or mutations in HR-related genes other than BRCA1/2 may benefit from PARP inhibitors as well, particularly those with PALB2 mutations. The current analysis aims to evaluate the prevalence of genetic alterations specific to BRCA1, BRCA2, and PALB2 in a large cohort of Taiwanese breast cancer patients through tumor-targeted sequencing. METHODS A total of 924 consecutive assays from 879 Taiwanese breast cancer patients underwent tumor-targeted sequencing (Thermo Fisher Oncomine Comprehensive Assay v3). We evaluated BRCA1, BRCA2, and PALB2 mutational profiles, with variants annotated and curated by the ClinVAR, the Oncomine™ Knowledgebase Reporter, and the OncoKB™. We also conducted reflex germline testing using either whole exome sequencing (WES) or whole genome sequencing (WGS), which is ongoing. RESULTS Among the 879 patients analyzed (924 assays), 130 had positive mutations in BRCA1 (3.1%), BRCA2 (8.6%), and PALB2 (5.2%), with a total of 14.8% having genetic alterations. Co-occurrence was noted between BRCA1/BRCA2, BRCA1/PALB2, and BRCA2/PALB2 mutations. In BRCA1-mutated samples, only p.K654fs was observed in three patients, while other variants were observed no more than twice. For BRCA2, p.N372H was the most common (26 patients), followed by p.S2186fs, p.V2466A, and p.X159_splice (5 times each). For PALB2, p.I887fs was the most common mutation (30 patients). This study identified 176 amino acid changes; 60.2% (106) were not documented in either ClinVAR or the Oncomine™ Knowledgebase Reporter. Using the OncoKB™ for annotation, 171 (97.2%) were found to have clinical implications. For the result of reflex germline testing, three variants (BRCA1 c.1969_1970del, BRCA1 c.3629_3630del, BRCA2 c.8755-1G > C) were annotated as Pathogenic/Likely pathogenic (P/LP) variants by ClinVar and as likely loss-of-function or likely oncogenic by OncoKB; while one variant (PALB2 c.448C > T) was not found in ClinVar but was annotated as likely loss-of-function or likely oncogenic by OncoKB. CONCLUSION Our study depicted the mutational patterns of BRCA1, BRCA2, and PALB2 in Taiwanese breast cancer patients through tumor-only sequencing. This highlights the growing importance of BRCA1/2 and PALB2 alterations in breast cancer susceptibility risk and the treatment of index patients. We also emphasized the need to meticulously annotate variants in cancer-driver genes as well as actionable mutations across multiple databases.
Collapse
Affiliation(s)
- Han-Fang Cheng
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei City, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan, ROC
| | - Yi-Fang Tsai
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei City, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan, ROC
| | - Chun-Yu Liu
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei City, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan, ROC
- Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan, ROC
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei City, Taiwan, ROC
| | - Chih-Yi Hsu
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei City, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan, ROC
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan, ROC
| | - Pei-Ju Lien
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei City, Taiwan, ROC
- Department of Nurse, Taipei Veterans General Hospital, Taipei City, Taiwan, ROC
| | - Yen-Shu Lin
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei City, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan, ROC
| | - Ta-Chung Chao
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei City, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan, ROC
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei City, Taiwan, ROC
| | - Jiun-I Lai
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei City, Taiwan, ROC
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei City, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan, ROC
| | - Chin-Jung Feng
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei City, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan, ROC
- Division of Plastic and Reconstruction Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei City, Taiwan, ROC
| | - Yen-Jen Chen
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei City, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan, ROC
| | - Bo-Fang Chen
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei City, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan, ROC
| | - Jen-Hwey Chiu
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei City, Taiwan, ROC
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan, ROC
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan, ROC
- Institue of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan, ROC
| | - Ling-Ming Tseng
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei City, Taiwan, ROC.
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan, ROC.
- Department of Surgery, Taipei Veterans General Hospital, Taipei City, Taiwan, ROC.
| | - Chi-Cheng Huang
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei City, Taiwan, ROC.
- Institute of Epidemiology and Preventive Medicine, College of Medicine, National Taiwan University, Taipei City, Taiwan, ROC.
| |
Collapse
|
89
|
Zhang Y, Liang L, Li Z, Huang Y, Jiang M, Zou B, Xu Y. Polyadenosine diphosphate-ribose polymerase inhibitors: advances, implications, and challenges in tumor radiotherapy sensitization. Front Oncol 2023; 13:1295579. [PMID: 38111536 PMCID: PMC10726039 DOI: 10.3389/fonc.2023.1295579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Abstract
Polyadenosine diphosphate-ribose polymerase (PARP) is a key modifying enzyme in cells, which participates in single-strand break repair and indirectly affects double-strand break repair. PARP inhibitors have shown great potential in oncotherapy by exploiting DNA damage repair pathways, and several small molecule PARP inhibitors have been approved by the U.S. Food and Drug Administration for treating various tumor types. PARP inhibitors not only have significant antitumor effects but also have some synergistic effects when combined with radiotherapy; therefore they have potential as radiation sensitizers. Here, we reviewed the advances and implications of PARP inhibitors in tumor radiotherapy sensitization. First, we summarized the multiple functions of PARP and the mechanisms by which its inhibitors exert antitumor effects. Next, we discuss the immunomodulatory effects of PARP and its inhibitors in tumors. Then, we described the theoretical basis of using PARP inhibitors in combination with radiotherapy and outlined their importance in oncological radiotherapy. Finally, we reviewed the current challenges in this field and elaborated on the future applications of PARP inhibitors as radiation sensitizers. A comprehensive understanding of the mechanism, optimal dosing, long-term safety, and identification of responsive biomarkers remain key challenges to integrating PARP inhibition into the radiotherapy management of cancer patients. Therefore, extensive research in these areas would facilitate the development of precision radiotherapy using PARP inhibitors to improve patient outcomes.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lijie Liang
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Li
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu, China
| | - Ming Jiang
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bingwen Zou
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Xu
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
90
|
Joris S, Denys H, Collignon J, Rasschaert M, T'Kint de Roodenbeke D, Duhoux FP, Canon JL, Tejpar S, Mebis J, Decoster L, Aftimos P, De Grève J. Efficacy of olaparib in advanced cancers with germline or somatic mutations in BRCA1, BRCA2, CHEK2 and ATM, a Belgian Precision tumor-agnostic phase II study. ESMO Open 2023; 8:102041. [PMID: 37852034 PMCID: PMC10774963 DOI: 10.1016/j.esmoop.2023.102041] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND The Belgian Precision initiative aims to maximize the implementation of tumor-agnostic next-generation sequencing in patients with advanced cancer and enhance access to molecularly guided treatment options. Academic tumor-agnostic basket phase II studies are part of this initiative. The current investigator-driven trial aimed to investigate the efficacy of olaparib in advanced cancers with a (likely) pathogenic mutation (germline or somatic) in a gene that plays a role in homologous recombination (HR). PATIENTS AND METHODS This open-label, multi-cohort, phase II study examines the efficacy of olaparib in patients with an HR gene mutation in their tumor and disease progression on standard of care. Patients with a somatic or germline mutation in the same gene define a cohort. For each cohort, a Simon minimax two-stage design was used. If a response was observed in the first 13 patients, 14 additional patients were included. Here, we report the results on four completed cohorts: patients with a BRCA1, BRCA2, CHEK2 or ATM mutation. RESULTS The overall objective response rate across different tumor types was 11% in the BRCA1-mutated (n = 27) and 21% in the BRCA2-mutated (n = 27) cohorts. Partial responses were seen in pancreatic cancer, gallbladder cancer, endocrine carcinoma of the pancreas and parathyroid cancer. One patient with a BRCA2 germline-mutated colon cancer has an ongoing complete response with 19+ months on treatment. Median progression-free survival in responding patients was 14+ months (5-34+ months). The clinical benefit rate was 63% in the BRCA1-mutated and 46% in the BRCA2-mutated cohorts. No clinical activity was observed in the ATM (n = 13) and CHEK2 (n = 14) cohorts. CONCLUSION Olaparib showed efficacy in different cancer types harboring somatic or germline mutations in the BRCA1/2 genes but not in ATM and CHEK2. Patients with any cancer type harboring BRCA1/2 mutations should have access to olaparib.
Collapse
Affiliation(s)
- S Joris
- Department of Medical Oncology, UZ Brussel, Brussels.
| | - H Denys
- Department of Medical Oncology, University Hospital Ghent, Ghent
| | | | | | | | - F P Duhoux
- Cliniques universitaires Saint-Luc, Brussels
| | | | | | | | - L Decoster
- Department of Medical Oncology, UZ Brussel, Brussels
| | - P Aftimos
- Institut Jules Bordet-Université libre de Bruxelles, Brussels
| | - J De Grève
- Department of Medical Oncology, UZ Brussel, Brussels; Department of Medical Genetics, UZ Brussel, Brussels, Belgium
| |
Collapse
|
91
|
Ring A, Kilburn LS, Pearson A, Moretti L, Afshari-Mehr A, Wardley AM, Gurel B, Macpherson IR, Riisnaes R, Baird RD, Martin S, Roylance R, Johnson H, Ferreira A, Winter MC, Dunne K, Copson E, Hickish T, Burcombe R, Randle K, Serra V, Llop-Guevara A, Bliss JM, Turner NC. Olaparib and Ceralasertib (AZD6738) in Patients with Triple-Negative Advanced Breast Cancer: Results from Cohort E of the plasmaMATCH Trial (CRUK/15/010). Clin Cancer Res 2023; 29:4751-4759. [PMID: 37773077 PMCID: PMC10690092 DOI: 10.1158/1078-0432.ccr-23-1696] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/16/2023] [Accepted: 09/26/2023] [Indexed: 09/30/2023]
Abstract
PURPOSE Approximately 10% to 15% of triple-negative breast cancers (TNBC) have deleterious mutations in BRCA1 and BRCA2 and may benefit from PARP inhibitor treatment. PARP inhibitors may also increase exogenous replication stress and thereby increase sensitivity to inhibitors of ataxia telangiectasia and Rad3-related (ATR) protein. This phase II study examined the activity of the combination of PARP inhibitor, olaparib, and ATR inhibitor, ceralasertib (AZD6738), in patients with advanced TNBC. PATIENTS AND METHODS Patients with TNBC on most recent biopsy who had received 1 or 2 lines of chemotherapy for advanced disease or had relapsed within 12 months of (neo)adjuvant chemotherapy were eligible. Treatment was olaparib 300 mg twice a day continuously and celarasertib 160 mg on days 1-7 on a 28-day cycle until disease progression. The primary endpoint was confirmed objective response rate (ORR). Tissue and plasma biomarker analyses were preplanned to identify predictors of response. RESULTS 70 evaluable patients were enrolled. Germline BRCA1/2 mutations were present in 10 (14%) patients and 3 (4%) patients had somatic BRCA mutations. The confirmed ORR was 12/70; 17.1% (95% confidence interval, 10.4-25.5). Responses were observed in patients without germline or somatic BRCA1/2 mutations, including patients with mutations in other homologous recombination repair genes and tumors with functional homologous recombination deficiency by RAD51 foci. CONCLUSIONS The response rate to olaparib and ceralasertib did not meet prespecified criteria for activity in the overall evaluable population, but responses were observed in patients who would not be expected to respond to olaparib monotherapy.
Collapse
Affiliation(s)
- Alistair Ring
- Breast Unit, The Royal Marsden Hospital, Sutton, United Kingdom
- Division of Breast Cancer Research, Institute of Cancer Research, London, United Kingdom
| | - Lucy S. Kilburn
- Clinical Trials and Statistics Unit at The Institute of Cancer Research, London, United Kingdom
| | - Alex Pearson
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Laura Moretti
- Clinical Trials and Statistics Unit at The Institute of Cancer Research, London, United Kingdom
| | - Angelica Afshari-Mehr
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | | | - Bora Gurel
- Clinical Studies – Cancer Biomarkers, The Institute of Cancer Research, London, United Kingdom
| | - Iain R. Macpherson
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ruth Riisnaes
- Clinical Studies – Cancer Biomarkers, The Institute of Cancer Research, London, United Kingdom
| | | | - Sue Martin
- Clinical Trials and Statistics Unit at The Institute of Cancer Research, London, United Kingdom
| | - Rebecca Roylance
- University College London Hospitals NHS Foundation Trust & NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Hannah Johnson
- Clinical Trials and Statistics Unit at The Institute of Cancer Research, London, United Kingdom
| | - Ana Ferreira
- Clinical Studies – Cancer Biomarkers, The Institute of Cancer Research, London, United Kingdom
| | - Matthew C. Winter
- Weston Park Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Kathryn Dunne
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, United Kingdom
| | - Ellen Copson
- Cancer Sciences Academic Unit, University of Southampton, Southampton, United Kingdom
| | - Tamas Hickish
- Royal Bournemouth Hospital, University Hospitals Dorset NHS Foundation Trust, Bournemouth, United Kingdom
| | - Russell Burcombe
- Maidstone and Tunbridge Wells NHS Trust, Maidstone, Kent, United Kingdom
| | - Kat Randle
- Independent Cancer Patients’ Voice, London, United Kingdom
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Alba Llop-Guevara
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Judith M. Bliss
- Clinical Trials and Statistics Unit at The Institute of Cancer Research, London, United Kingdom
| | - Nicolas C. Turner
- Breast Unit, The Royal Marsden Hospital, Sutton, United Kingdom
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
92
|
Incorvaia L, Perez A, Marchetti C, Brando C, Gristina V, Cancelliere D, Pivetti A, Contino S, Di Giovanni E, Barraco N, Bono M, Giurintano A, Bazan Russo TD, Gottardo A, Cutaia S, Pedone E, Peri M, Corsini LR, Fanale D, Galvano A, Scambia G, Badalamenti G, Russo A, Bazan V. Theranostic biomarkers and PARP-inhibitors effectiveness in patients with non-BRCA associated homologous recombination deficient tumors: Still looking through a dirty glass window? Cancer Treat Rev 2023; 121:102650. [PMID: 37939446 DOI: 10.1016/j.ctrv.2023.102650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Breast cancer susceptibility gene 1 (BRCA1) and breast cancer susceptibility gene 2 (BRCA2) deleterious variants were the first and, still today, the main biomarkers of poly(ADP)ribose polymerase (PARP)-inhibitors (PARPis) benefit. The recent, increased, numbers of individuals referred for counseling and multigene panel testing, and the remarkable expansion of approved PARPis, not restricted to BRCA1/BRCA2-Pathogenic Variants (PVs), produced a strong clinical need for non-BRCA biomarkers. Significant limitations of the current testing and assays exist. The different approaches that identify the causes of Homologous Recombination Deficiency (HRD), such as the germline and somatic Homologous Recombination Repair (HRR) gene PVs, the testing showing its consequences, such as the genomic scars, or the novel functional assays such as the RAD51 foci testing, are not interchangeable, and should not be considered as substitutes for each other in clinical practice for guiding use of PARPi in non-BRCA, HRD-associated tumors. Today, the deeper knowledge on the significant relationship among all proteins involved in the HRR, not limited to BRCA, expands the possibility of a successful non-BRCA, HRD-PARPi synthetic lethality and, at the same time, reinforces the need for enhanced definition of HRD biomarkers predicting the magnitude of PARPi benefit.
Collapse
Affiliation(s)
- Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Alessandro Perez
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Claudia Marchetti
- Department of Woman's and Child Health and Public Health Sciences, Gynecologic Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; Catholic University of the Sacred Heart, Rome, Italy
| | - Chiara Brando
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Valerio Gristina
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Daniela Cancelliere
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Alessia Pivetti
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Silvia Contino
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Emilia Di Giovanni
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Nadia Barraco
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Marco Bono
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Ambra Giurintano
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Andrea Gottardo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Sofia Cutaia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Erika Pedone
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Marta Peri
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Lidia Rita Corsini
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Antonio Galvano
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Giovanni Scambia
- Department of Woman's and Child Health and Public Health Sciences, Gynecologic Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; Catholic University of the Sacred Heart, Rome, Italy
| | - Giuseppe Badalamenti
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy.
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
93
|
Hintelmann K, Borgmann K. [BRCA-like breast cancer patients benefit from cisplatin plus veliparib-results from the S1416 phase II study]. Strahlenther Onkol 2023; 199:1258-1261. [PMID: 37823898 PMCID: PMC10673732 DOI: 10.1007/s00066-023-02155-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/13/2023]
Affiliation(s)
- Katharina Hintelmann
- Ambulanzzentrum der UKE GmbH, Fachbereich Strahlentherapie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland.
| | - Kerstin Borgmann
- Labor für Strahlenbiologie & Experimentelle Radioonkologie, Klinik und Poliklinik für Strahlentherapie und Radioonkologie, Onkologisches Zentrum, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland
| |
Collapse
|
94
|
Mai N, Abuhadra N, Jhaveri K. Molecularly Targeted Therapies for Triple Negative Breast Cancer: History, Advances, and Future Directions. Clin Breast Cancer 2023; 23:784-799. [PMID: 37336650 DOI: 10.1016/j.clbc.2023.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/21/2023]
Abstract
Triple negative breast cancer (TNBC) remains the subtype with poorest prognosis. Despite the subtype's heterogeneity, there is still a paucity in effective targeted therapeutics that offer both good efficacy and tolerability, and chemotherapy remains the backbone of modern TNBC therapy. In the past few years, immunotherapy as well as novel therapeutic modalities like antibody-drug conjugates (ADCs) have shown clinical benefit and have been FDA approved in various clinical stages of unselected TNBC. However, there has not been similar advancement in molecularly targeted therapies, especially when compared to advancements seen in hormone receptor (HR)-positive or HER2-positive breast cancer. PARP inhibitors have been approved for BRCA-mutated TNBC, but responses are short-lived, and resistance remains a barrier for current treatment. PI3K pathway inhibitors approved in HR+ breast cancer has not worked for TNBC and continue to have significant dose-limiting adverse effects. EGFR inhibition has been thoroughly explored in TNBC, but all trials so far have shown minimal efficacy. Nevertheless, despite these setbacks, current research in targeted therapy for TNBC holds great promise in overcoming the barriers of the past and developing novel therapeutic approaches for the future. In this review, we describe molecular targets both identified and validated in the treatment of TNBC, discuss the historical efforts towards development of targeted agents and current areas of improvement, and address promising advances that have the potential to improve outcomes in this heterogenous and aggressive breast cancer subtype. Immunotherapy, ADCs, and AR targeting will be discussed in separate reviews of this edition.
Collapse
Affiliation(s)
- Nicholas Mai
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nour Abuhadra
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Komal Jhaveri
- Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
95
|
Lazard T, Bataillon G, Walter T, Vincent Salomon A. [Prediction of homologous recombination status with deep learning on breast cancer whole slide images]. Med Sci (Paris) 2023; 39:926-928. [PMID: 38108720 DOI: 10.1051/medsci/2023169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Affiliation(s)
- Tristan Lazard
- Centre de biologie computationnelle (CBIO), Mines ParisTech, université Paris sciences & lettres, Paris, France - Institut Curie, Paris, France - Inserm U900, Paris, France
| | - Guillaume Bataillon
- Département de médecine diagnostique et théranostique, institut Curie, Paris, France - Institut universitaire du cancer de Toulouse, France
| | - Thomas Walter
- Centre de biologie computationnelle (CBIO), Mines ParisTech, université Paris sciences & lettres, Paris, France - Institut Curie, Paris, France - Inserm U900, Paris, France
| | - Anne Vincent Salomon
- Département de médecine diagnostique et théranostique, institut Curie, Paris, France - Université Paris sciences et lettres, Paris, France
| |
Collapse
|
96
|
Bansal R, Van Swearingen AED, Anders CK. Triple Negative Breast Cancer and Brain Metastases. Clin Breast Cancer 2023; 23:825-831. [PMID: 37586926 DOI: 10.1016/j.clbc.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/11/2023] [Accepted: 07/30/2023] [Indexed: 08/18/2023]
Abstract
The treatment of metastatic breast cancer (MBC) has improved over the past decade, however prognosis continues to be mitigated by the fact that about 1 in 5 patients with MBC will develop brain metastases (BrM) during their metastatic disease course. 1 This number is even higher for patients with triple-negative breast cancer (TNBC), with studies showing as high as 40% of patients developing BrM. 2, 3 Studies have shown that TNBC portends a worse survival after a diagnosis of BrM compared with non-TNBC subtypes. 4 Given the unique location and biologic properties of BrM, treatment options have historically been limited. Challenges to the treatment of TNBC BrM include a lack of targeted therapies and difficulties in delivery of drug to the brain past the blood-brain barrier (BBB). Herein, we will review the advances in local and systemic therapies to most effectively treat patients with TNBC BrM, including therapies on the horizon currently in clinical trials.
Collapse
Affiliation(s)
- Rani Bansal
- Division of Medical Oncology, Duke Cancer Institute, Duke University Medical Center, Durham, NC
| | - Amanda E D Van Swearingen
- Division of Medical Oncology, Duke Cancer Institute, Duke University Medical Center, Durham, NC; Division of Medical Oncology, Duke Center for Brain and Spine Metastasis, Duke University Medical Center, Durham, NC
| | - Carey K Anders
- Division of Medical Oncology, Duke Cancer Institute, Duke University Medical Center, Durham, NC; Division of Medical Oncology, Duke Center for Brain and Spine Metastasis, Duke University Medical Center, Durham, NC.
| |
Collapse
|
97
|
Petracci FE, Villarreal-Garza C, Argañaraz F, Abuin GG, Peñaloza J, Flores MA, Piazzoni L, Riggi C, Fabiano L, González L, Cieplinski B, Rivero S, Korbenfeld E, Mandó P. LuciA-15 - a real-world prospective study of PARP inhibitors for the treatment of patients with HER-2 negative metastatic breast cancer with germline and/or somatic mutation of BRCA genes or homologous recombination repair related genes. Ecancermedicalscience 2023; 17:1634. [PMID: 38414929 PMCID: PMC10898875 DOI: 10.3332/ecancer.2023.1634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Indexed: 02/29/2024] Open
Abstract
Background Poly(adenosine diphosphate-ribose) polymerase inhibitors (PARPi) improve progression free survival among patients with HER2 negative (HER2-ve) advanced breast cancer (ABC) and a BRCA1 or BRCA2 mutation compared to chemotherapy (CT). The objective of this prospective study was to evaluate the clinical benefit of PARPi treatment in terms of response, outcomes and survival by breast cancer type and treatment in a Latin-American population. Methods From September 2019 to April 2023, we analyzed the data of patients with HER2-ve ABC with germline and/or somatic mutation of BRCA1 or BRCA2, or in the homologous recombination repair genes, treated with olaparib or talazoparib in daily clinical practice by oncologist from Argentina and México. real-world objective response rate (rwORR), best response rate, real-world progression-free survival (rwPFS) and real-world overall survival (rwOS) were analysed with R software and RStudio version 14.0. Results After a median follow-up of 18.07 months (95% CI 10.53-30.07), 51 patients were treated with PARPi. Mean age at starting treatment was 47.08 years. 62.7% had ER + ve/HER2-ve and 35.3% had triple negative breast cancer (TNBC). 62.7% and 37.3% of patients received talazoparib and olaparib, respectively. BRCA 1 and 2 germline mutations were the most common alterations found in 96% of patients. 37.5% of patients received platinum-based CT in the (neo)adjuvant/metastatic setting. At the time to starting PARPi treatment, 57.5% had visceral metastasis, the median number of metastatic sites was 2 (range 1-4), the median number of lines was 2 (range 0-8), and 23.5% and 31.4% received PARPi in the 1st line and 2nd line, respectively.The rwORR was 47.0%, and the median real-world progression-free survival-1 (rwPFS1) was 7.77 months (95% CI 5.67-14.7). There was a tendency of better rwPFS1 in patients with versus without previous CT in the advance setting, 6.37 months (95% CI 5.03-8.73) and 14.30 months (95% CI 6.47-NR), respectively (p 0.084). The median rwOS was 26.97 months (95% CI 13.50-NR) and higher in the subgroup of patients naïve for CT versus previous exposure to CT in the advance setting, the median rwOS was 32.1 months (95% CI 27.0-NR) versus 13.0 (95% CI10.1-NR), respectively (p 0.022). The medium real-world progression-free survival-2 (next treatment after PARPi failure) was 4.00 months (95% CI 3.43-7.13). Treatment was discontinued due to adverse events in 4.0% of patients. Conclusion This is the first evidence in a Latin-American population that replicates the data already published in randomised clinical trials and other scanty real-world evidence studies in this field, showing positive results in rwORR and rwPFS, and encouraging data in rwOS. Notably, there was a high proportion of patients with visceral progression even with visceral crisis and need for CT. Interestingly, there were similar rwOS results among subgroups (TNBC versus ER + ve/HER2-ve, talazoparib versus olaparib, etc).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lucía Fabiano
- Hospital Municipal de Chivilcoy, Centro Santa María, 6620, Chivilcoy, Argentina
| | - Lucía González
- COIR Fundación Centro Oncológico de Integración Regional, 5500, Mendoza, Argentina
| | | | - Sergio Rivero
- Instituto Alexander Fleming, 1426, Buenos Aires, Argentina
| | | | - Pablo Mandó
- CEMIC, Centro de Educación Médica e Investigaciones Clínicas, 1431, Buenos Aires, Argentina
| |
Collapse
|
98
|
Beas-Lozano EL, Verduzco-Aguirre HC, Gonzalez-Salazar R, Chavarri-Guerra Y. Real-world data in patients with BRCA mutated breast cancer treated with poly (ADP-ribose) polymerase inhibitors. Ecancermedicalscience 2023; 17:1633. [PMID: 38414963 PMCID: PMC10898914 DOI: 10.3332/ecancer.2023.1633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Indexed: 02/29/2024] Open
Abstract
Breast cancer is the most common type of cancer globally. Hereditary breast cancer accounts for 10% of new cases and 4%-5% of cases are associated to pathogenic variants in BRCA1 or BRCA2 genes. In recent years, poly-adenosine-diphosphate-ribose polymerase inhibitors (PARPi) olaparib and talazoparib have been approved for patients with BRCA-associated, HER2 -negative breast cancer. These drugs have shown positive results in the early and advanced setting with a favourable toxicity profile based on the OlympiAD, OlympiA and EMBRACA phase 3 trials. However, patients included in these randomised trials are highly selected, making toxicity and efficacy in patients encountered in routine clinical care a concern. Since the approval of olaparib and talazoparib for advanced human epidermal growth factor receptor 2-negative (HER2-negative) breast cancer, several phase IIIb-IV trials, expanded access cohorts, and retrospective cohorts have provided information on the efficacy and tolerability of these treatments in patient subgroups underrepresented in the registration trials, such as older adults, patients with poor performance status, and heavily pretreated patients. The aim of this review is to present a critical review of the information regarding the use of PARPi in real-world breast cancer patients.
Collapse
Affiliation(s)
- Evelyn Lilian Beas-Lozano
- Department of Hematology and Oncology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14630, Mexico
| | - Haydeé Cristina Verduzco-Aguirre
- Department of Hematology and Oncology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14630, Mexico
| | - Roberto Gonzalez-Salazar
- Department of Hematology and Oncology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14630, Mexico
| | - Yanin Chavarri-Guerra
- Department of Hematology and Oncology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14630, Mexico
| |
Collapse
|
99
|
Keup C, Kimmig R, Kasimir-Bauer S. The Diversity of Liquid Biopsies and Their Potential in Breast Cancer Management. Cancers (Basel) 2023; 15:5463. [PMID: 38001722 PMCID: PMC10670968 DOI: 10.3390/cancers15225463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Analyzing blood as a so-called liquid biopsy in breast cancer (BC) patients has the potential to adapt therapy management. Circulating tumor cells (CTCs), extracellular vesicles (EVs), cell-free DNA (cfDNA) and other blood components mirror the tumoral heterogeneity and could support a range of clinical decisions. Multi-cancer early detection tests utilizing blood are advancing but are not part of any clinical routine yet. Liquid biopsy analysis in the course of neoadjuvant therapy has potential for therapy (de)escalation.Minimal residual disease detection via serial cfDNA analysis is currently on its way. The prognostic value of blood analytes in early and metastatic BC is undisputable, but the value of these prognostic biomarkers for clinical management is controversial. An interventional trial confirmed a significant outcome benefit when therapy was changed in case of newly emerging cfDNA mutations under treatment and thus showed the clinical utility of cfDNA analysis for therapy monitoring. The analysis of PIK3CA or ESR1 variants in plasma of metastatic BC patients to prescribe targeted therapy with alpesilib or elacestrant has already arrived in clinical practice with FDA-approved tests available and is recommended by ASCO. The translation of more liquid biopsy applications into clinical practice is still pending due to a lack of knowledge of the analytes' biology, lack of standards and difficulties in proving clinical utility.
Collapse
Affiliation(s)
- Corinna Keup
- Department of Gynecology and Obstetrics, University Hospital of Essen, 45147 Essen, Germany
| | | | | |
Collapse
|
100
|
Carvalho FM. Triple-negative breast cancer: from none to multiple therapeutic targets in two decades. Front Oncol 2023; 13:1244781. [PMID: 38023167 PMCID: PMC10666917 DOI: 10.3389/fonc.2023.1244781] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Triple-negative breast cancers (TNBCs) are more likely to occur in younger patients and have a poor prognosis. They are highly heterogeneous tumors consisting of different molecular subtypes. The only common characteristic among them is the absence of targets for endocrine therapy and human epidermal growth factor receptor 2 (HER2) blockade. In the past two decades, there has been an increased understanding of these tumors from a molecular perspective, leading to their stratification according to new therapeutic strategies. TNBC has ushered breast carcinomas into the era of immunotherapy. The higher frequency of germline BRCA mutations in these tumors enables targeting this repair defect by drugs like PARP inhibitors, resulting in synthetic lethality in neoplastic cells. Additionally, we have the identification of new molecules to which this generation of smart drugs, such as antibody-drug conjugates (ADCs), are directed. In this review, we will discuss the trajectory of this knowledge in a systematic manner, presenting the molecular bases, therapeutic possibilities, and biomarkers.
Collapse
Affiliation(s)
- Filomena Marino Carvalho
- Department of Pathology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|