51
|
Boyle AG, Magdesian KG, Durando MM, Gallop R, Sigdel S. Saccharomyces boulardii viability and efficacy in horses with antimicrobial-induced diarrhoea. Vet Rec 2012; 172:128. [PMID: 23161811 DOI: 10.1136/vr.100833] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Saccharomyces boulardii has been successfully used in the prevention and treatment of antimicrobial-associated diarrhoea in humans. We hypothesised that a viable, dried lyophilised preparation of S boulardii would survive in the gastrointestinal tract of horses with antimicrobial-associated enterocolitis, and significantly decrease the duration of diarrhoea. Twenty-one horses, over one year of age, with antimicrobial-associated diarrhoea of up to 72 hours duration, were consecutively randomised in a controlled prospective study. The treatment group received S boulardii (25 g, orally, every 12 hours) until the cessation of clinical signs. S boulardii was successfully cultured in 58.3 per cent of treatment horses on day 3. No statistically significant differences were found in days to return to normal faecal consistency; resolution of watery diarrhoea; return to normal heart rate, respiratory rate and temperature; resolution of leucopaenia; attitude improvement; appetite improvement; and survival at discharge. This is the first study to demonstrate survival of S boulardii in horses with gastrointestinal illness. Further study of the efficacy and safety of S boulardii in horses with antimicrobial-associated diarrhoea in a larger group is warranted.
Collapse
Affiliation(s)
- A G Boyle
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
52
|
Use of 'natural' products as alternatives to antibiotic feed additives in ruminant production. Animal 2012; 1:1443-66. [PMID: 22444918 DOI: 10.1017/s1751731107000742] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The banning in 2006 of the use of antibiotics as animal growth promoters in the European Union has increased demand from producers for alternative feed additives that can be used to improve animal production. This review gives an overview of the most common non-antibiotic feed additives already being used or that could potentially be used in ruminant nutrition. Probiotics, dicarboxylic acids, enzymes and plant-derived products including saponins, tannins and essential oils are presented. The known modes of action and effects of these additives on feed digestion and more especially on rumen fermentations are described. Their utility and limitations in field conditions for modern ruminant production systems and their compliance with the current legislation are also discussed.
Collapse
|
53
|
Pedersen LL, Owusu-Kwarteng J, Thorsen L, Jespersen L. Biodiversity and probiotic potential of yeasts isolated from Fura, a West African spontaneously fermented cereal. Int J Food Microbiol 2012; 159:144-51. [PMID: 23072700 DOI: 10.1016/j.ijfoodmicro.2012.08.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/10/2012] [Accepted: 08/22/2012] [Indexed: 12/12/2022]
Abstract
Fura is a spontaneously fermented pearl millet product consumed in West Africa. The yeast species involved in the fermentation were identified by pheno- and genotypic methods to be Candida krusei, Kluyveromyces marxianus, Candida tropicalis, Candida rugosa, Candida fabianii, Candida norvegensis and Trichosporon asahii. C. krusei and K. marxianus were found to be the dominant species. Survival in pH 2.5 or in the presence of bile salts (0.3% (w/v) oxgall) and growth at 37°C were independently determined as indicators of the survival potential of the isolates during passage through the human gastrointestinal tract. Selected yeast species isolates were assessed for their probiotic potential. All of the examined yeast isolates survived and grew at human gastrointestinal conditions in pH 2.5, 0.3% (w/v) oxgall at 37°C. The effect on the transepithelial electrical resistance (TEER) across polarized monolayers of intestinal epithelial cells of human (Caco-2) and porcine (IPEC-J2) origin, were determined. The Caco-2 cells and IPEC-J2 cells displayed clearly different relative TEER results. The strains of C. krusei, K. marxianus, C. rugosa and T. asahii were able to increase the relative TEER of Caco-2 monolayers after 48h. In comparison, the relative TEER of IPEC-J2 monolayers decreased when exposed to the same yeasts, even though T. asahii did not differ significantly from Saccharomyces cerevisiae var. boulardii which is used as a human probiotic. C. tropicalis resulted in the largest relative TEER decrease for both the human and the porcine cell model assays. Hyphal growth was observed for C. albicans and C. tropicalis after 48h of incubation with polarized Caco-2 monolayers, whereas this was not the case for the remaining yeast species. In the present study new yeast strains with potential probiotic properties have been isolated to be used potentially as starter cultures for fura production.
Collapse
Affiliation(s)
- Line Lindegaard Pedersen
- Department of Food Science, Food Microbiology, Faculty of Sciences, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
54
|
Kelesidis T, Pothoulakis C. Efficacy and safety of the probiotic Saccharomyces boulardii for the prevention and therapy of gastrointestinal disorders. Therap Adv Gastroenterol 2012; 5:111-25. [PMID: 22423260 PMCID: PMC3296087 DOI: 10.1177/1756283x11428502] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Several clinical trials and experimental studies strongly suggest a place for Saccharomyces boulardii as a biotherapeutic agent for the prevention and treatment of several gastrointestinal diseases. S. boulardii mediates responses resembling the protective effects of the normal healthy gut flora. The multiple mechanisms of action of S. boulardii and its properties may explain its efficacy and beneficial effects in acute and chronic gastrointestinal diseases that have been confirmed by clinical trials. Caution should be taken in patients with risk factors for adverse events. This review discusses the evidence for efficacy and safety of S. boulardii as a probiotic for the prevention and therapy of gastrointestinal disorders in humans.
Collapse
Affiliation(s)
- Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, Div. of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
55
|
Giang HH, Viet TQ, Ogle B, Lindberg JE. Growth performance, digestibility, gut environment and health status in weaned piglets fed a diet supplemented with a complex of lactic acid bacteria alone or in combination with Bacillus subtilis and Saccharomyces boulardii. Livest Sci 2012. [DOI: 10.1016/j.livsci.2011.09.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
56
|
Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 2011; 75:583-609. [PMID: 22126995 PMCID: PMC3232736 DOI: 10.1128/mmbr.00020-11] [Citation(s) in RCA: 461] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacteria and fungi can form a range of physical associations that depend on various modes of molecular communication for their development and functioning. These bacterial-fungal interactions often result in changes to the pathogenicity or the nutritional influence of one or both partners toward plants or animals (including humans). They can also result in unique contributions to biogeochemical cycles and biotechnological processes. Thus, the interactions between bacteria and fungi are of central importance to numerous biological questions in agriculture, forestry, environmental science, food production, and medicine. Here we present a structured review of bacterial-fungal interactions, illustrated by examples sourced from many diverse scientific fields. We consider the general and specific properties of these interactions, providing a global perspective across this emerging multidisciplinary research area. We show that in many cases, parallels can be drawn between different scenarios in which bacterial-fungal interactions are important. Finally, we discuss how new avenues of investigation may enhance our ability to combat, manipulate, or exploit bacterial-fungal complexes for the economic and practical benefit of humanity as well as reshape our current understanding of bacterial and fungal ecology.
Collapse
Affiliation(s)
- P Frey-Klett
- INRA, UMR1136 Interactions Arbres-Microorganismes, 54280 Champenoux, France.
| | | | | | | | | | | |
Collapse
|
57
|
Thomas S, Metzke D, Schmitz J, Dörffel Y, Baumgart DC. Anti-inflammatory effects of Saccharomyces boulardii mediated by myeloid dendritic cells from patients with Crohn's disease and ulcerative colitis. Am J Physiol Gastrointest Liver Physiol 2011; 301:G1083-92. [PMID: 21903765 DOI: 10.1152/ajpgi.00217.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Saccharomyces boulardii (Sb) is a probiotic yeast that has demonstrated efficacy in pilot studies in patients with inflammatory bowel disease (IBD). Microbial antigen handling by dendritic cells (DC) is believed to be of critical importance for immunity and tolerance in IBD. The aim was to characterize the effects of Sb on DC from IBD patients. Highly purified (>95%), lipopolysaccharide-stimulated CD1c(+)CD11c(+)CD123(-) myeloid DC (mDC) from patients with ulcerative colitis (UC; n = 36), Crohn's disease (CD; n = 26), or infectious controls (IC; n = 4) were cultured in the presence or absence of fungal supernatant from Sb (SbS). Phenotype and cytokine production and/or secretion of IBD mDC were measured by flow cytometry and cytometric bead arrays, respectively. T cell phenotype and proliferation were assessed in a mixed lymphocyte reaction (MLR) with allogenic CD4(+)CD45RA(+) naïve T cells from healthy donors. Mucosal healing was investigated in epithelial wounding and migration assays with IEC-6 cells. SbS significantly decreased the frequency of CD40-, CD80-, and CD197 (CCR7; chemokine receptor-7)-expressing IBD mDC and reduced their secretion of tumor necrosis factor (TNF)-α and interleukin (IL)-6 while increasing IL-8. In the MLR, SbS significantly inhibited T cell proliferation induced by IBD mDC. Moreover, SbS inhibited T(H)1 (TNF-α and interferon-γ) polarization induced by UC mDC and promoted IL-8 and transforming growth factor-β-dependent mucosal healing. In summary, we provide novel evidence of synergistic mechanisms how Sb controls inflammation (inhibition of T cell costimulation and inflammation-associated migration and mobilization of DC) and promotes epithelial restitution relevant in IBD.
Collapse
Affiliation(s)
- Saskia Thomas
- Division of Gastroenterology and Hepatology, Department of Medicine, Charité Medical Center-Virchow Hospital, Medical School of the Humboldt-University of Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
58
|
Abstract
This review summarizes the probiotic mechanisms of action of Saccharomyces boulardii (S. boulardii) against inflammatory and non-inflammatory diarrheal conditions. S. boulardii is distributed in lyophilized form in many countries and used for the prevention of diarrhea in children and adults, including Clostridium difficile (C. difficile) associated infection. The main mechanisms of action of S. boulardii include inhibition of activities of bacterial pathogenic products, trophic effects on the intestinal mucosa, as well as modification of host signaling pathways involved in inflammatory and non-inflammatory intestinal diseases. S. boulardii inhibits production of pro-inflammatory cytokines by inhibiting main regulators of inflammation, including nuclear factor κB (NF-κB), and mitogen-activated protein kinases (MAP kinases), ERK1/2 and p38, but stimulates production of anti-inflammatory molecules such as peroxisome proliferator-activated receptor-gamma (PPAR-γ). Moreover, S. boulardii suppresses bacterial infection by inhibiting adhesion and/or overgrowth of bacteria, produces a serine protease that cleaves C. difficile toxin A, and stimulates antibody production against this toxin. Furthermore, S. boulardii may interfere with pathogenesis of Inflammatory Bowel Disease (IBD) by acting on T cells and acts in diarrheal conditions by improving the fecal biostructure in patients with diarrhea. These diverse mechanisms exerted by S. boulardii provide molecular clues for its effectiveness in diarrheal diseases and intestinal inflammatory conditions with an inflammatory component.
Collapse
Affiliation(s)
- E Im
- Section of Inflammatory Bowel Disease and Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California-Los Angeles, CA 90095, United States
| | | |
Collapse
|
59
|
Collier CT, Carroll JA, Ballou MA, Starkey JD, Sparks JC. Oral administration of Saccharomyces cerevisiae boulardii reduces mortality associated with immune and cortisol responses to Escherichia coli endotoxin in pigs1. J Anim Sci 2011; 89:52-8. [DOI: 10.2527/jas.2010-2944] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
60
|
Interaction of Saccharomyces boulardii with intestinal brush border membranes: key to probiotic effects? J Pediatr Gastroenterol Nutr 2010; 51:532-3. [PMID: 20706146 DOI: 10.1097/mpg.0b013e3181e23271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The probiotic Saccharomyces boulardii exerts beneficial effects in humans, which include trophic effects, anti-inflammatory effects, antisecretory effects, inhibition of toxins, immunostimulatory effects, and resistance to bacterial overgrowth. This short communication discusses the interactions of the probiotic with brush border membrane (BBM) constituents because most of these effects are BBM mediated. The use of bacterial and yeast probiotics has increased dramatically in more and more clinical states, but their exact mechanisms of action remain largely unknown. The present communication focuses on the interactions of a confirmed yeast probiotic (S boulardii) on the constituents of BBMs.
Collapse
|
61
|
Lallès JP. Intestinal alkaline phosphatase: multiple biological roles in maintenance of intestinal homeostasis and modulation by diet. Nutr Rev 2010; 68:323-32. [PMID: 20536777 DOI: 10.1111/j.1753-4887.2010.00292.x] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The diverse nature of intestinal alkaline phosphatase (IAP) functions has remained elusive, and it is only recently that four additional major functions of IAP have been revealed. The present review analyzes the earlier literature on the dietary factors modulating IAP activity in light of these new findings. IAP regulates lipid absorption across the apical membrane of enterocytes, participates in the regulation of bicarbonate secretion and of duodenal surface pH, limits bacterial transepithelial passage, and finally controls bacterial endotoxin-induced inflammation by dephosphorylation, thus detoxifying intestinal lipopolysaccharide. Many dietary components, including fat, protein, and carbohydrate, modulate IAP expression or activity and may be combined to sustain a high level of IAP activity. In conclusion, IAP has a pivotal role in intestinal homeostasis and its activity could be increased through the diet. This is especially true in pathological situations (e.g., inflammatory bowel diseases) in which the involvement of commensal bacteria is suspected and when intestinal AP is too low to detoxify a sufficient amount of bacterial lipopolysaccharide.
Collapse
Affiliation(s)
- Jean-Paul Lallès
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1079 at Systèmes d'Elevage, Nutrition Animale et Humaine in Saint-Gilles, France.
| |
Collapse
|
62
|
Capric acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation. PLoS One 2010; 5:e12050. [PMID: 20706577 PMCID: PMC2919387 DOI: 10.1371/journal.pone.0012050] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 07/10/2010] [Indexed: 12/11/2022] Open
Abstract
Candidiasis are life-threatening systemic fungal diseases, especially of gastro intestinal track, skin and mucous membranes lining various body cavities like the nostrils, the mouth, the lips, the eyelids, the ears or the genital area. Due to increasing resistance of candidiasis to existing drugs, it is very important to look for new strategies helping the treatment of such fungal diseases. One promising strategy is the use of the probiotic microorganisms, which when administered in adequate amounts confer a health benefit. Such a probiotic microorganism is yeast Saccharomyces boulardii, a close relative of baker yeast. Saccharomyces boulardii cells and their extract affect the virulence factors of the important human fungal pathogen C. albicans, its hyphae formation, adhesion and biofilm development. Extract prepared from S. boulardii culture filtrate was fractionated and GC-MS analysis showed that the active fraction contained, apart from 2-phenylethanol, caproic, caprylic and capric acid whose presence was confirmed by ESI-MS analysis. Biological activity was tested on C. albicans using extract and pure identified compounds. Our study demonstrated that this probiotic yeast secretes into the medium active compounds reducing candidal virulence factors. The chief compound inhibiting filamentous C. albicans growth comparably to S. boulardii extract was capric acid, which is thus responsible for inhibition of hyphae formation. It also reduced candidal adhesion and biofilm formation, though three times less than the extract, which thus contains other factors suppressing C. albicans adherence. The expression profile of selected genes associated with C. albicans virulence by real-time PCR showed a reduced expression of HWP1, INO1 and CSH1 genes in C. albicans cells treated with capric acid and S. boulardii extract. Hence capric acid secreted by S. boulardii is responsible for inhibition of C. albicans filamentation and partially also adhesion and biofilm formation.
Collapse
|
63
|
McFarland LV. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J Gastroenterol 2010; 16:2202-22. [PMID: 20458757 PMCID: PMC2868213 DOI: 10.3748/wjg.v16.i18.2202] [Citation(s) in RCA: 311] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 02/13/2010] [Accepted: 02/20/2010] [Indexed: 02/06/2023] Open
Abstract
This article reviews the evidence for efficacy and safety of Saccharomyces boulardii (S. boulardii) for various disease indications in adults based on the peer-reviewed, randomized clinical trials and pre-clinical studies from the published medical literature (Medline, Clinical Trial websites and meeting abstracts) between 1976 and 2009. For meta-analysis, only randomized, blinded controlled trials unrestricted by language were included. Pre-clinical studies, volunteer studies and uncontrolled studies were excluded from the review of efficacy and meta-analysis, but included in the systematic review. Of 31 randomized, placebo-controlled treatment arms in 27 trials (encompassing 5029 study patients), S. boulardii was found to be significantly efficacious and safe in 84% of those treatment arms. A meta-analysis found a significant therapeutic efficacy for S. boulardii in the prevention of antibiotic-associated diarrhea (AAD) (RR = 0.47, 95% CI: 0.35-0.63, P < 0.001). In adults, S. boulardii can be strongly recommended for the prevention of AAD and the traveler's diarrhea. Randomized trials also support the use of this yeast probiotic for prevention of enteral nutrition-related diarrhea and reduction of Helicobacter pylori treatment-related symptoms. S. boulardii shows promise for the prevention of C. difficile disease recurrences; treatment of irritable bowel syndrome, acute adult diarrhea, Crohn's disease, giardiasis, human immunodeficiency virus-related diarrhea; but more supporting evidence is recommended for these indications. The use of S. boulardii as a therapeutic probiotic is evidence-based for both efficacy and safety for several types of diarrhea.
Collapse
|
64
|
Moslehi-Jenabian S, Pedersen LL, Jespersen L. Beneficial effects of probiotic and food borne yeasts on human health. Nutrients 2010; 2:449-73. [PMID: 22254033 PMCID: PMC3257658 DOI: 10.3390/nu2040449] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/01/2010] [Accepted: 03/24/2010] [Indexed: 12/13/2022] Open
Abstract
Besides being important in the fermentation of foods and beverages, yeasts have shown numerous beneficial effects on human health. Among these, probiotic effects are the most well known health effects including prevention and treatment of intestinal diseases and immunomodulatory effects. Other beneficial functions of yeasts are improvement of bioavailability of minerals through the hydrolysis of phytate, folate biofortification and detoxification of mycotoxins due to surface binding to the yeast cell wall.
Collapse
Affiliation(s)
- Saloomeh Moslehi-Jenabian
- Department of Food Science, Food Microbiology, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark.
| | | | | |
Collapse
|
65
|
Buts JP, De Keyser N. Transduction pathways regulating the trophic effects of Saccharomyces boulardii in rat intestinal mucosa. Scand J Gastroenterol 2010; 45:175-85. [PMID: 19958054 DOI: 10.3109/00365520903453141] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
UNLABELLED Saccharomyces boulardii is a probiotic yeast that is widely prescribed in lyophilized form; it determines several effects in human and rat small intestine including endoluminal secretion of enzymes and of polyamines, stimulation of microvillous enzymes, of sIgA, increased production of the receptor for polymeric immunoglobulins by crypt cells, and enhanced d-glucose uptake. AIM The objective of this study was to determine the pathway(s) by which these effects generated by the yeast are transduced into mucosal cells. METHODS Litters of six growing Wistar rats each were treated with S. boulardii (50 microg/gram body weight) or with saline between days 30 and 34 postpartum. For each animal, the cytosol was prepared from the whole mucosa after the fat cake was discarded. Several known intestinal substrates were immunoprecipitated and immunoblotted using specific antibodies recognizing the non-, mono-, or diphosphorylated forms of these substrates. The signals were detected using Echochemiluminoscence (ECL) and were measured by optodensitometry. RESULTS Treatment with S. boulardii markedly enhanced the RAS-GAP-RAF-ERK(1,2) pathway with participation of growth receptor bound 2 protein, SHC, SOS, and CRKII. Unit p85alpha of phosphatidylinositol 3 kinase, tested in its phosphorylated form, was also enhanced by the probiotic compared to control samples. In rats treated with an inhibitor of RAF-1 and of ERK(1,2) (PD098059) the expression of mucosal disaccharidases was inhibited by about 50%. CONCLUSION The probiotic S. boulardii generates in vivo mitogen and metabolic signals that are transduced into intestinal mucosal cells, downstream from the apical membrane to the nuclei, using recruitment substrates and serine, threonine, or tyrosine kinases.
Collapse
Affiliation(s)
- Jean-Paul Buts
- Unit of Pediatric Research, Laboratory of Pediatric Gastroenterology and Nutrition, Faculty of Medicine, Université Catholique de Louvain, Brussels, Belgium.
| | | |
Collapse
|
66
|
Abstract
BACKGROUND Saccharomyces boulardii, a well-studied probiotic, can be effective in inflammatory gastrointestinal diseases with diverse pathophysiology, such as inflammatory bowel disease (IBD), and bacterially mediated or enterotoxin-mediated diarrhoea and inflammation. AIM To discuss the mechanisms of action involved in the intestinal anti-inflammatory action of S. boulardii. METHODS Review of the literature related to the anti-inflammatory effects of this probiotic. RESULTS Several mechanisms of action have been identified directed against the host and pathogenic microorganisms. S. boulardii and S. boulardii secreted-protein(s) inhibit production of proinflammatory cytokines by interfering with the global mediator of inflammation nuclear factor kappaB, and modulating the activity of the mitogen-activated protein kinases ERK1/2 and p38. S. boulardii activates expression of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) that protects from gut inflammation and IBD. S. boulardii also suppresses 'bacteria overgrowth' and host cell adherence, releases a protease that cleaves C. difficile toxin A and its intestinal receptor and stimulates antibody production against toxin A. Recent results indicate that S. boulardii may interfere with IBD pathogenesis by trapping T cells in mesenteric lymph nodes. CONCLUSIONS The multiple anti-inflammatory mechanisms exerted by S. boulardii provide molecular explanations supporting its effectiveness in intestinal inflammatory states.
Collapse
Affiliation(s)
- C. Pothoulakis
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles
| |
Collapse
|
67
|
McFarland LV. Evidence-based review of probiotics for antibiotic-associated diarrhea and Clostridium difficile infections. Anaerobe 2009; 15:274-80. [PMID: 19825425 DOI: 10.1016/j.anaerobe.2009.09.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 08/12/2009] [Accepted: 09/01/2009] [Indexed: 01/01/2023]
Abstract
Probiotics are living microbes taken to confer a health benefit on the host. Although probiotics have a long history of use in Europe and Asia and have been on the U.S. market for over 14 years, there is still confusion about how to effectively use them. The use of probiotics for the prevention of antibiotic-associated diarrhea (AAD) and the treatment of Clostridium difficile infections (CDI) has been tested in randomized controlled clinical trials. This paper will review the evidence supporting probiotic therapy for these two diseases and also review the advantages and disadvantages of probiotics. The advantages of probiotic therapy include multiple mechanisms of action against pathogens, the ability to interact with the host's natural defense systems, survival to the target organ and a good risk to benefit ratio. Disadvantages of probiotics include lack of standardization for clinical trial designs, variations in regulatory standards, poor quality control for some products and infrequent serious adverse reactions. Overall, probiotics offer a promising strategy for the prevention and treatment for AAD and CDI.
Collapse
Affiliation(s)
- Lynne V McFarland
- Department of Health Services Research and Development, Puget Sound Veterans Administration Healthcare System, Seattle, WA 98101, USA.
| |
Collapse
|
68
|
Buts JP, Stilmant C, Bernasconi P, Neirinck C, De Keyser N. Characterization of alpha,alpha-trehalase released in the intestinal lumen by the probiotic Saccharomyces boulardii. Scand J Gastroenterol 2009; 43:1489-96. [PMID: 18777247 DOI: 10.1080/00365520802308862] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Trehalose intolerance due to alpha,alpha-trehalase deficiency has scarcely been studied. The purpose of this study was to measure alpha,alpha-trehalase activity in intestinal biopsy samples from 200 consecutive patients over a period of 6 months, and to characterize alpha,alpha-trehalase released by the probiotic Saccharomyces boulardii (S. boulardii). MATERIAL AND METHODS Enzyme activities were measured in human and rat intestinal mucosal samples using the micromethod of Messer & Dalqvist. alpha,alpha-trehalase from S. boulardii was immunoprecipitated and Western blotted using an IgG purified antibody raised against a 23 amino acid peptide of alpha,alpha-trehalase of S. cerevisiae. RESULTS Among 200 patients, most of whom complained of abdominal symptoms and diarrhoea, 18 (9%) had total alpha,alpha-trehalase deficiency (0-12 U/g mucosa) and 39 had partial deficiency (3-12 U/g mucosa). Only 4 patients (2%) presented selective alpha,alpha-trehalase deficiency with otherwise normal disaccharidases. Expressed per gram of powder, alpha,alpha-trehalase from S. boulardii delivered in vitro an activity 175 times higher than that of human trehalase per gram of intestinal mucosa. V(max) (22+/-0.43 micromol) and K(m) (5 mM) were close to that of the human enzyme, whereas Western blot revealed a signal of two subunits of 82 kDa. Finally, treatment of rats with S. boulardii resulted in increases in alpha,alpha-trehalase activities of 25 to 45% (p<0.01) in endoluminal fluid and intestinal mucosa compared with in controls. CONCLUSIONS Our data suggest that alpha,alpha-trehalase deficiency is more common than is believed and that oral administration of S. boulardii could be beneficial in patients with digestive symptoms caused by trehalose intolerance.
Collapse
Affiliation(s)
- Jean-Paul Buts
- Faculty of Medicine, Universite Catholique de Louvain, Laboratory of Paediatric Gastroenterology and Nutrition, Brussels, Belgium.
| | | | | | | | | |
Collapse
|
69
|
Vandenplas Y, Brunser O, Szajewska H. Saccharomyces boulardii in childhood. Eur J Pediatr 2009; 168:253-65. [PMID: 19096876 DOI: 10.1007/s00431-008-0879-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 10/27/2008] [Accepted: 11/04/2008] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Probiotics are live microorganisms which confer a health benefit on the host. Saccharomyces boulardii, a yeast, has been found to be an effective probiotic in double-blind placebo-controlled randomized clinical studies. MATERIALS AND METHODS We reviewed the established mechanisms of actions and clinical efficacy in children of S. boulardii. CONCLUSIONS The mechanisms of action of S. boulardii depend mainly on the inhibition of some bacterial toxins, anti-inflammatory effects, and on stimulating effects on the intestinal mucosa such as trophic effects on the brush border enzymes and immunostimulatory effects. At present, in pediatric populations, there is evidence that S. boulardii is beneficial for the treatment of acute gastroenteritis and the prevention of antibiotic-associated diarrhea. More data are needed in other indications such as traveller's diarrhea, Helicobacter pylori eradication, and inflammatory bowel disease. S. boulardii is a yeast strain that has been extensively studied in vitro and in vivo. Recent data have opened the door for new therapeutic indications.
Collapse
Affiliation(s)
- Yvan Vandenplas
- Universitair Ziekenhuis Kinderen Brussel, Vrije Universiteit Brussel, Laarbeekl 101, 1090, Brussels, Belgium.
| | | | | |
Collapse
|
70
|
Thomas S, Przesdzing I, Metzke D, Schmitz J, Radbruch A, Baumgart DC. Saccharomyces boulardii inhibits lipopolysaccharide-induced activation of human dendritic cells and T cell proliferation. Clin Exp Immunol 2009; 156:78-87. [PMID: 19161443 DOI: 10.1111/j.1365-2249.2009.03878.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Saccharomyces boulardii (Sb) is a probiotic yeast preparation that has demonstrated efficacy in inflammatory and infectious disorders of the gastrointestinal tract in controlled clinical trials. Although patients clearly benefit from treatment with Sb, little is known on how Sb unfolds its anti-inflammatory properties in humans. Dendritic cells (DC) balance tolerance and immunity and are involved critically in the control of T cell activation. Thus, they are believed to have a pivotal role in the initiation and perpetuation of chronic inflammatory disorders, not only in the gut. We therefore decided to investigate if Sb modulates DC function. Culture of primary (native, non-monocyte-derived) human myeloid CD1c+CD11c+CD123(-) DC (mDC) in the presence of Sb culture supernatant (active component molecular weight < 3 kDa, as evaluated by membrane partition chromatography) reduced significantly expression of the co-stimulatory molecules CD40 and CD80 (P < 0.01) and the DC mobilization marker CC-chemokine receptor CCR7 (CD197) (P < 0.001) induced by the prototypical microbial antigen lipopolysaccharide (LPS). Moreover, secretion of key proinflammatory cytokines such as tumour necrosis factor-alpha and interleukin (IL)-6 were notably reduced, while the secretion of anti-inflammatory IL-10 increased. Finally, Sb supernatant inhibited the proliferation of naive T cells in a mixed lymphocyte reaction with mDC. In summary, our data suggest that Sb may exhibit part of its anti-inflammatory potential through modulation of DC phenotype, function and migration by inhibition of their immune response to bacterial microbial surrogate antigens such as LPS.
Collapse
Affiliation(s)
- S Thomas
- Department of Medicine, Division of Gastroenterology and Hepatology, Charité Medical Center-Virchow Hospital, Medical School of the Humboldt-University of Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
71
|
Buts JP. Twenty-five years of research on Saccharomyces boulardii trophic effects: updates and perspectives. Dig Dis Sci 2009; 54:15-8. [PMID: 18528758 DOI: 10.1007/s10620-008-0322-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 05/06/2008] [Indexed: 12/13/2022]
Affiliation(s)
- Jean-Paul Buts
- Laboratory of Pediatric Gastroenterology and Nutrition, Faculty of Medicine, Université Catholique de Louvain, Tour Pasteur +3, 53, Avenue Mounier, 1200, Brussels, Belgium.
| |
Collapse
|
72
|
Abstract
The possibility of using microbes to maintain health, and to prevent or treat disease is a topic as old as microbiology. However, one factor impeding the introduction of effective probiotics has been our very limited understanding of the composition of the human microbiome, as well as the biological requirements for these organisms. With advances in understanding the microbiome and its metagenome in humans and other mammals, we now can build a more robust scientific basis to develop probiotic strategies. Increasing knowledge of intramicrobial competition and cooperation, as well as host-microbe cross-signaling, will facilitate design of new probiotics and the modeling of their deployment, leading to eventual clinical trials.
Collapse
|
73
|
Affiliation(s)
- Kaoru Geddes
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
74
|
Abstract
BACKGROUND Probiotics are defined as live micro-organisms which confer a health benefit on the host. Although most probiotics are bacteria, one strain of yeast, Saccharomyces boulardii, has been found to be an effective probiotic in double-blind clinical studies. AIMS To compare the main properties that differentiates yeast from bacteria and to review the properties of S. boulardii explaining its potential benefits as a probiotic. METHODS The PubMed and Medline databases were searched using the keywords 'probiotics', 'yeast', 'antibiotic associated diarrhea', 'Saccharomyces boulardii','bacterial diarrhea' and 'inflammatory bowel disease' in various combinations. RESULTS Several clinical studies have been conducted with S. boulardii in the treatment and prevention of various forms of diarrhoea. Promising research perspectives have been opened in terms of maintenance treatment of inflammatory bowel diseases. The mechanism of S. boulardii's action has been partially elucidated. CONCLUSION Saccharomyces boulardii is a strain of yeast which has been extensively studied for its probiotic effects. The clinical activity of S. boulardii is especially relevant to antibiotic-associated diarrhoea and recurrent Clostridium difficile intestinal infections. Experimental studies clearly demonstrate that S. boulardii has specific probiotic properties, and recent data has opened the door for new therapeutic uses of this yeast as an 'immunobiotic'.
Collapse
Affiliation(s)
- D Czerucka
- INSERM U 526, Faculté de Médecine, Université Nice-Sophia Antipolis, Nice Cedex 2, France.
| | | | | |
Collapse
|
75
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|