51
|
Abstract
Regulation of the serum calcium level in humans is achieved by the endocrine action of parathyroid glands working in concert with vitamin D and a set of critical target cells and tissues including osteoblasts, osteoclasts, the renal tubules, and the small intestine. The parathyroid glands, small highly vascularized endocrine organs located behind the thyroid gland, secrete parathyroid hormone (PTH) into the systemic circulation as is needed to keep the serum free calcium concentration within a tight physiologic range. Primary hyperparathyroidism (HPT), a disorder of mineral metabolism usually associated with abnormally elevated serum calcium, results from the uncontrolled release of PTH from one or several abnormal parathyroid glands. Although in the vast majority of cases HPT is a sporadic disease, it can also present as a manifestation of a familial syndrome. Many benign and malignant sporadic parathyroid neoplasms are caused by loss-of-function mutations in tumor suppressor genes that were initially identified by the study of genomic DNA from patients who developed HPT as a manifestation of an inherited syndrome. Somatic and inherited mutations in certain proto-oncogenes can also result in the development of parathyroid tumors. The clinical and genetic investigation of familial HPT in kindreds found to lack germline variants in the already known HPT-predisposition genes represents a promising future direction for the discovery of novel genes relevant to parathyroid tumor development.
Collapse
Affiliation(s)
- Jenny E. Blau
- Early Clinical Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - William F. Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: William F. Simonds,
| |
Collapse
|
52
|
Abstract
Parathyroid gland excision specimens are common and sometimes underestimated cases that many surgical pathologists encounter regularly. In the vast majority of cases, these will be spot diagnoses of sporadic primary parathyroid adenomas or, perhaps, hyperplasias commonly in the setting of renal failure. However, a small but significant number of parathyroid gland excisions may be due to heritable disease. In most cases, hereditary disease is suspected by the referring clinicians. Nevertheless, a subset of these are undetected which is significant, particularly in the setting of the multiple endocrine neoplasia (MEN), and the hyperparathyroidism jaw tumour (HPT-JT) syndromes. There have been recent advances in recognition of the morphological and immunohistochemical characteristics of these tumours and hyperplasias. While hereditary kindreds are over-represented at specialist referral centres, with awareness of the characteristic clinical and morphological features, the general surgical pathologist is frequently able to suggest the possibility of hereditary parathyroid disease. We therefore provide a succinct guide for pathologists to increase the recognition of hereditary parathyroid disease.
Collapse
MESH Headings
- Diagnosis, Differential
- Diagnostic Techniques, Endocrine/standards
- Genetic Diseases, Inborn/diagnosis
- Genetic Diseases, Inborn/metabolism
- Genetic Diseases, Inborn/pathology
- Humans
- Hyperparathyroidism, Primary/diagnosis
- Hyperparathyroidism, Primary/genetics
- Hyperparathyroidism, Primary/metabolism
- Hyperparathyroidism, Primary/pathology
- Immunohistochemistry
- Parathyroid Diseases/diagnosis
- Parathyroid Diseases/genetics
- Parathyroid Diseases/metabolism
- Parathyroid Diseases/pathology
- Parathyroid Glands/metabolism
- Parathyroid Glands/pathology
- Pathologists/standards
- Pathologists/statistics & numerical data
- Practice Patterns, Physicians'/standards
Collapse
Affiliation(s)
- John Turchini
- Anatomical Pathology, Douglass Hanly Moir Pathology, Macquarie Park, NSW, 2113, Australia.
- Discipline of Pathology, MQ Health, Macquarie University, Macquarie Park, NSW, 2113, Australia.
- Sydney Medical School, The University of Sydney, Sydney, 2006, Australia.
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, St Leonards, NSW, 2065, Australia.
| | - Anthony J Gill
- Sydney Medical School, The University of Sydney, Sydney, 2006, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, St Leonards, NSW, 2065, Australia
- Department of Anatomical Pathology, NSW Health Pathology, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| |
Collapse
|
53
|
Vasilev V, Daly AF, Zacharieva S, Beckers A. Clinical and Molecular Update on Genetic Causes of Pituitary Adenomas. Horm Metab Res 2020; 52:553-561. [PMID: 32299111 DOI: 10.1055/a-1143-5930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pituitary adenomas are benign tumors with variable functional characteristics that can have a significant impact on patients. The majority arise sporadically, but an inherited genetic susceptibility is increasingly being recognized. Recent advances in genetics have widened the scope of our understanding of pituitary tumorigenesis. The clinical and genetic characteristics of pituitary adenomas that develop in the setting of germline-mosaic and somatic GNAS mutations (McCune-Albright syndrome and sporadic acromegaly), germline MEN1 mutations (multiple endocrine neoplasia type 1), and germline PRKAR1A mutations (Carney complex) have been well described. Non-syndromic familial cases of isolated pituitary tumors can occur as familial isolated pituitary adenomas (FIPA); mutations/deletions of the AIP gene have been found in a minority of these. Genetic alterations in GPR101 have been identified recently as causing X-linked acro-gigantism (X-LAG) leading to very early-onset pediatric gigantism. Associations of pituitary adenomas with other tumors have been described in syndromes like multiple endocrine neoplasia type 4, pheochromocytoma-paraganglioma with pituitary adenoma association (3PAs) syndrome and some of their genetic causes have been elucidated. The genetic etiologies of a significant proportions of sporadic corticotropinomas have recently been identified with the discovery of USP8 and USP48 mutations. The elucidation of genetic and molecular pathophysiology in pituitary adenomas is a key factor for better patient management and effective follow-up.
Collapse
Affiliation(s)
- Vladimir Vasilev
- Department of Endocrinology, CHU de Liège, Liège Université, Liège, Belgium
- Department of Endocrinology, Medical University, Sofia, Bulgaria
| | - Adrian F Daly
- Department of Endocrinology, CHU de Liège, Liège Université, Liège, Belgium
| | | | - Albert Beckers
- Department of Endocrinology, CHU de Liège, Liège Université, Liège, Belgium
| |
Collapse
|
54
|
Abstract
Calcium homeostasis is maintained by the actions of the parathyroid glands, which release parathyroid hormone into the systemic circulation as necessary to maintain the serum calcium concentration within a tight physiologic range. Excessive secretion of parathyroid hormone from one or more neoplastic parathyroid glands, however, causes the metabolic disease primary hyperparathyroidism (HPT) typically associated with hypercalcemia. Although the majority of cases of HPT are sporadic, it can present in the context of a familial syndrome. Mutations in the tumor suppressor genes discovered by the study of such families are now recognized to be pathogenic for many sporadic parathyroid tumors. Inherited and somatic mutations of proto-oncogenes causing parathyroid neoplasia are also known. Future investigation of somatic changes in parathyroid tumor DNA and the study of kindreds with HPT yet lacking germline mutation in the set of genes known to predispose to HPT represent two avenues likely to unmask additional novel genes relevant to parathyroid neoplasia.
Collapse
Affiliation(s)
- William F Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
55
|
Chasseloup F, Pankratz N, Lane J, Faucz FR, Keil MF, Chittiboina P, Kay DM, Hussein Tayeb T, Stratakis CA, Mills JL, Hernández-Ramírez LC. Germline CDKN1B Loss-of-Function Variants Cause Pediatric Cushing's Disease With or Without an MEN4 Phenotype. J Clin Endocrinol Metab 2020; 105:5813889. [PMID: 32232325 PMCID: PMC7190031 DOI: 10.1210/clinem/dgaa160] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/27/2020] [Indexed: 12/13/2022]
Abstract
CONTEXT Germline loss-of-function CDKN1B gene variants cause the autosomal dominant syndrome of multiple endocrine neoplasia type 4 (MEN4). Even though pituitary neuroendocrine tumors are a well-known component of the syndrome, only 2 cases of Cushing's disease (CD) have so far been described in this setting. AIM To screen a large cohort of CD patients for CDKN1B gene defects and to determine their functional effects. PATIENTS We screened 211 CD patients (94.3% pediatric) by germline whole-exome sequencing (WES) only (n = 157), germline and tumor WES (n = 27), Sanger sequencing (n = 6), and/or germline copy number variant (CNV) analysis (n = 194). Sixty cases were previously unpublished. Variant segregation was investigated in the patients' families, and putative pathogenic variants were functionally characterized. RESULTS Five variants of interest were found in 1 patient each: 1 truncating (p.Q107Rfs*12) and 4 nontruncating variants, including 3 missense changes affecting the CDKN1B protein scatter domain (p.I119T, p.E126Q, and p.D136G) and one 5' untranslated region (UTR) deletion (c.-29_-26delAGAG). No CNVs were found. All cases presented early (10.5 ± 1.3 years) and apparently sporadically. Aside from colon adenocarcinoma in 1 carrier, no additional neoplasms were detected in the probands or their families. In vitro assays demonstrated protein instability and disruption of the scatter domain of CDKN1B for all variants tested. CONCLUSIONS Five patients with CD and germline CDKN1B variants of uncertain significance (n = 2) or pathogenic/likely pathogenic (n = 3) were identified, accounting for 2.6% of the patients screened. Our finding that germline CDKN1B loss-of-function may present as apparently sporadic, isolated pediatric CD has important implications for clinical screening and genetic counselling.
Collapse
Affiliation(s)
- Fanny Chasseloup
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
- Departmentof Endocrinology, Cochin Hospital, Assistance Publique Hôpitaux de Paris, Institut Cochin, INSERM U1016 CNRS 8104 Paris Descartes University, Paris, France
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - John Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Fabio R Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
| | - Margaret F Keil
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
| | - Prashant Chittiboina
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland
| | - Denise M Kay
- Newborn Screening Program, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Tara Hussein Tayeb
- College of Medicine, Sulaimani University, Sulaimani, Kurdistan, Iraq
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
| | - James L Mills
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
| | - Laura C Hernández-Ramírez
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
- Correspondence and Reprint Requests: Laura C. Hernández-Ramírez, MD, PhD, Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, CRC, Rm 1E-3216, Bethesda, MD 20892-1862, USA. E-mail:
| |
Collapse
|
56
|
Abstract
Inherited syndromes are important to recognize in the setting of a pancreatic neuroendocrine tumor (PNET) as there are significant implications for the patient's medical management and opportunity for early detection of subsequent manifestations. Although most PNETs are sporadic, approximately 10% are due to an inherited syndrome, which include multiple endocrine neoplasia type 1 (MEN1), multiple endocrine neoplasia type 4 (MEN4), von Hippel-Lindau disease (VHL), neurofibromatosis type 1 (NF1), and tuberous sclerosis complex (TSC). The general hallmarks of a hereditary endocrine neoplasia predisposition syndrome include any one of the following: multiple primary tumors (in the same or different organs), rare tumors (prevalence of less than 1 in 1,000 people in the general population), earlier age of diagnosis (usually under the age of 40), characteristic pattern of disease in the individual or family (phenotype and inheritance pattern). These syndromes are monogenic (due to a single gene disorder), highly penetrant (with all carriers of the disease exhibiting at least part of the phenotype) and can display variable expressivity (where affected individuals may have different presentations and features of the disease). A thoughtful approach to management is required, even if the presenting symptom is resolved, as these syndromes often involve multi-organ disease with a lifelong risk for tumor development. Additionally, the natural history of tumors in the setting of a hereditary condition may be different than would be expected in a sporadic form of the disease. For example, in some circumstances the risk of metastatic disease is lower, and therefor longer observation is the preferred approach over early surgical intervention. The unique aspects to management, challenges in hereditary disease recognition and accurate diagnosis, and rarity of these syndromes are all reasons to support referral to high-volume centers with the experience and knowledge to treat patients with hereditary endocrine neoplasia syndromes.
Collapse
Affiliation(s)
- Jennifer L Geurts
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
57
|
Hernández-Ramírez LC. Potential markers of disease behavior in acromegaly and gigantism. Expert Rev Endocrinol Metab 2020; 15:171-183. [PMID: 32372673 PMCID: PMC7494049 DOI: 10.1080/17446651.2020.1749048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/26/2020] [Indexed: 10/24/2022]
Abstract
Introduction: Acromegaly and gigantism entail increased morbidity and mortality if left untreated, due to the systemic effects of chronic GH and IGF-1 excess. Guidelines for the diagnosis and treatment of patients with GH excess are well established; however, the presentation, clinical behavior and response to treatment greatly vary among patients. Numerous markers of disease behavior are routinely used in medical practice, but additional biomarkers have been recently identified as a result of basic and clinical research studies.Areas covered: This review focuses on genetic, molecular and genomic features of patients with GH excess that have recently been linked to disease progression and response to treatment. A PubMed search was conducted to identify markers of disease behavior in acromegaly and gigantism. Markers already considered as part of routine studies in clinical care guidelines were excluded. Literature search was expanded for each marker identified. Novel markers not included or only partially covered in previously published reviews on the subject were prioritized.Expert opinion: Recognizing the most relevant markers of disease behavior may help the medical team tailoring the strategies for approaching each case of acromegaly and gigantism. This customized plan should make the evaluation, treatment and follow up process more efficient, greatly improving the patients' outcomes.
Collapse
Affiliation(s)
- Laura C. Hernández-Ramírez
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892-1862, USA
| |
Collapse
|
58
|
Abstract
OPINION STATEMENT Oncologists should be able to discern the salient clinical features of the most common germline mutations that give rise to neuroendocrine tumors. Astute recognition of an index patient affected by a hereditary syndrome can lead to a "tip-of-the-iceberg" phenomenon whereby their entire kindred can then be proactively monitored and managed potentially with substantial reduction of morbidity and mortality. Through careful history-taking, as well as thoughtful assimilation of findings from the physical exam, biochemical laboratories, scans, and pathology reports, the clinician can spot phenotypic clues that distinguish these familial patterns from sporadic cases of tumorigenesis.
Collapse
|
59
|
Chevalier B, Odou MF, Demonchy J, Cardot-Bauters C, Vantyghem MC. Multiple Endocrine Neoplasia Type 4: Novel CDNK1B variant and immune anomalies. ANNALES D'ENDOCRINOLOGIE 2020; 81:124-125. [PMID: 32386678 DOI: 10.1016/j.ando.2020.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 04/05/2020] [Indexed: 12/26/2022]
Affiliation(s)
- B Chevalier
- Endocrinology, Diabetology, Metabolism Department, Lille University Hospital1, Rue Polonovski, C. Huriez Hospital, Lille University Hospital, 59037 Lille Cedex, France.
| | - M-F Odou
- Molecular Oncology and Genetics, Lille University Hospital, Lille, France.
| | - J Demonchy
- Hematology Department, Lille University Hospital, Lille, France.
| | - C Cardot-Bauters
- Endocrinology, Diabetology, Metabolism Department, Lille University Hospital1, Rue Polonovski, C. Huriez Hospital, Lille University Hospital, 59037 Lille Cedex, France.
| | - M-C Vantyghem
- Endocrinology, Diabetology, Metabolism Department, Lille University Hospital1, Rue Polonovski, C. Huriez Hospital, Lille University Hospital, 59037 Lille Cedex, France.
| |
Collapse
|
60
|
Couvelard A, Scoazec JY. [Inherited tumor syndromes of gastroenteropancreatic and thoracic neuroendocrine neoplasms]. Ann Pathol 2020; 40:120-133. [PMID: 32035641 DOI: 10.1016/j.annpat.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/12/2020] [Indexed: 12/31/2022]
Abstract
About 5% of gastroenteropancreatic and thoracic neuroendocrine neoplasms (NENs) arise in the context of an inherited tumour syndrome. The two most frequent syndromes are: multiple endocrine neoplasia type 1 (MEN1), associated with a large spectrum of endocrine and non endocrine tumours, including duodenopancreatic, thymic and bronchial NENs, and the von Hippel-Lindau syndrome VHL, associated with pancreatic NENs. Two inherited syndromes have a low incidence of NENs: neurofibromatosis type 1 (NF1), associated with duodenal somatostatinomas, and tuberous sclerosis (TSC), associated with pancreatic NENs. Two rare syndromes have a high incidence of NENs: multiple endocrine neoplasia type 4 (MEN4), with a tumour spectrum similar to that of MEN1, and glucagon cell hyperplasia neoplasia (GCHN), involving only the pancreas. It is likely that other syndromes remain to be characterized, especially in familial small-intestinal NENs. The diagnosis is usually raised because of the suggestive clinical setting: young age at diagnosis, multiple tumours in multiple organs, familial history. Except in VHL and NF1, tumours themselves do not show specific pathological features; they usually are well differentiated and of low histological grade; their prognosis is good, except for MEN1-associated thymic NENs. The most suggestive pathological feature is their combination with various endocrine and/or non endocrine lesions in the adjacent tissue. Pathological examination is important, for a correct diagnosis and for an accurate management of the patients and their families, who must be referred to expert centers.
Collapse
Affiliation(s)
- Anne Couvelard
- Département de pathologie, hôpital Bichat, 75018 Paris, France
| | - Jean-Yves Scoazec
- Département de biologie et pathologie médicales, institut Gustave-Roussy, 114, rue Edouard-Vaillant, 94805 Villejuif cedex, France.
| |
Collapse
|
61
|
Chatani PD, Agarwal SK, Sadowski SM. Molecular Signatures and Their Clinical Utility in Pancreatic Neuroendocrine Tumors. Front Endocrinol (Lausanne) 2020; 11:575620. [PMID: 33537001 PMCID: PMC7848028 DOI: 10.3389/fendo.2020.575620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022] Open
Abstract
Pancreatic neuroendocrine tumors (PNETs) are classified based on their histologic differentiation and proliferative indices, which have been used extensively to determine prognosis. Advances in next-generation sequencing and other high-throughput techniques have allowed researchers to objectively explore tumor specimens and learn about the genetic alterations associated with malignant transformation in PNETs. As a result, targeted, pathway-specific therapies have been emerging for the treatment of unresectable and metastatic disease. As we continue to trial various pharmaceutical products, evidence from studies using multi-omics approaches indicates that clinical aggressiveness stratifies along other genotypic and phenotypic demarcations, as well. In this review, we explore the clinically relevant and potentially targetable molecular signatures of PNETs, their associated trials, and the overall differences in reported prognoses and responses to existing therapies.
Collapse
Affiliation(s)
- Praveen Dilip Chatani
- Endocrine Surgery Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sunita Kishore Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Samira Mercedes Sadowski
- Endocrine Surgery Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Samira Mercedes Sadowski,
| |
Collapse
|
62
|
The Genetics of Pituitary Adenomas. J Clin Med 2019; 9:jcm9010030. [PMID: 31877737 PMCID: PMC7019860 DOI: 10.3390/jcm9010030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 12/16/2022] Open
Abstract
The genetic landscape of pituitary adenomas (PAs) is diverse and many of the identified cases remain of unclear pathogenetic mechanism. Germline genetic defects account for a small percentage of all patients and may present in the context of relevant family history. Defects in AIP (mutated in Familial Isolated Pituitary Adenoma syndrome or FIPA), MEN1 (coding for menin, mutated in Multiple Endocrine Neoplasia type 1 or MEN 1), PRKAR1A (mutated in Carney complex), GPR101 (involved in X-Linked Acrogigantism or X-LAG), and SDHx (mutated in the so called "3 P association" of PAs with pheochromocytomas and paragangliomas or 3PAs) account for the most common familial syndromes associated with PAs. Tumor genetic defects in USP8, GNAS, USP48 and BRAF are some of the commonly encountered tissue-specific changes and may explain a larger percentage of the developed tumors. Somatic (at the tumor level) genomic changes, copy number variations (CNVs), epigenetic modifications, and differential expression of miRNAs, add to the variable genetic background of PAs.
Collapse
|
63
|
Triviño V, Fidalgo O, Juane A, Pombo J, Cordido F. Gonadotrophin-releasing hormone agonist-induced pituitary adenoma apoplexy and casual finding of a parathyroid carcinoma: A case report and review of literature. World J Clin Cases 2019; 7:3259-3265. [PMID: 31667176 PMCID: PMC6819301 DOI: 10.12998/wjcc.v7.i20.3259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 09/24/2019] [Accepted: 10/05/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Pituitary apoplexy represents one of the most serious, life threatening endocrine emergencies that requires immediate management. Gonadotropin-releasing hormone agonist (GnRHa) can induce pituitary apoplexy in those patients who have insidious pituitary adenoma coincidentally. CASE SUMMARY A 46-year-old woman, with a history of hypertension and menorrhagia was transferred to our hospital from a secondary care hospital after complaints of headache and vomiting, with loss of consciousness 5 min after an injection of GnRHa. The drug was prescribed by her gynecologist due to the presence of uterine myomas. The clinical neurological examination revealed right cranial nerve III palsy, ptosis and movement limitation of the right eye. Our first clinical consideration was a pituitary apoplexy. Blood hormonal analysis revealed mild hyperprolactinemia and high follicle stimulating hormone level; PTH and calcium was high with glomerular filtration rate mildly to moderately decrease. A computed tomography scan, revealed an enlarged pituitary gland (3.5 cm) impinging upon the optic chiasm with bone involvement of the sella. Following contrast media administration, the lesion showed homogeneous enhancement with high-density focus that suggests hemorrhagic infarction of the tumor. Transsphenoidal endoscopic surgery was perfomed and adenomatous tissue was removed. Immunohistochemistry was positive for luteinizing hormone (LH) and follicular-stimulating hormone (FSH). A solid hypoechoic nodule (14 mm x 13 mm x 16 mm) was found in the caudal portion of the right thyroid lobe after a parathyroid ultrasound. A genetic test of Multiple Endocrine Neoplasia type 1 (MEN1) was negative. A right lower parathyroidectomy was performed and the pathologic study showed the presence of an encapsulated parathyroid carcinoma of 1.5 cm. A MEN type 4 genetic test was performed result was negative. CONCLUSION This case demonstrates an uncommon complication of GnRH agonist therapy in the setting of a pituitary macroadenoma and the casual finding of parathyroid carcinoma. It also highlights the importance of suspecting the presence of a multiple endocrine neoplasia syndrome and to carry out relevant genetic studies.
Collapse
Affiliation(s)
- Vanessa Triviño
- Department of Endocrinology, Complejo Hospitalario Universitario A Coruña, A Coruña 15006, Spain
| | - Olga Fidalgo
- Department of Endocrinology, Complejo Hospitalario Universitario A Coruña, A Coruña 15006, Spain
| | - Antía Juane
- Department of Endocrinology, Complejo Hospitalario Universitario A Coruña, A Coruña 15006, Spain
| | - Jorge Pombo
- Department of pathological anatomy, Complejo Hospitalario Universitario A Coruña, A Coruña 15006, Spain
| | - Fernando Cordido
- Department of Endocrinology, Complejo Hospitalario Universitario A Coruña, A Coruña 15006, Spain
| |
Collapse
|