51
|
Mllt10 knockout mouse model reveals critical role of Af10-dependent H3K79 methylation in midfacial development. Sci Rep 2017; 7:11922. [PMID: 28931923 PMCID: PMC5607342 DOI: 10.1038/s41598-017-11745-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/30/2017] [Indexed: 01/04/2023] Open
Abstract
Epigenetic regulation is required to ensure the precise spatial and temporal pattern of gene expression that is necessary for embryonic development. Although the roles of some epigenetic modifications in embryonic development have been investigated in depth, the role of methylation at lysine 79 (H3K79me) is poorly understood. Dot1L, a unique methyltransferase for H3K79, forms complexes with distinct sets of co-factors. To further understand the role of H3K79me in embryogenesis, we generated a mouse knockout of Mllt10, the gene encoding Af10, one Dot1L complex co-factor. We find homozygous Mllt10 knockout mutants (Mllt10-KO) exhibit midline facial cleft. The midfacial defects of Mllt10-KO embryos correspond to hyperterolism and are associated with reduced proliferation of mesenchyme in developing nasal processes and adjacent tissue. We demonstrate that H3K79me level is significantly decreased in nasal processes of Mllt10-KO embryos. Importantly, we find that expression of AP2α, a gene critical for midfacial development, is directly regulated by Af10-dependent H3K79me, and expression AP2α is reduced specifically in nasal processes of Mllt10-KO embryos. Suppression of H3K79me completely mimicked the Mllt10-KO phenotype. Together these data are the first to demonstrate that Af10-dependent H3K79me is essential for development of nasal processes and adjacent tissues, and consequent midfacial formation.
Collapse
|
52
|
Zhang Y, Wang Z, Xiao H, Liu X, Zhu G, Yu D, Han G, Chen G, Hou C, Ma N, Shen B, Li Y, Wang T, Wang R. Foxd3 suppresses interleukin-10 expression in B cells. Immunology 2017; 150:478-488. [PMID: 27995618 DOI: 10.1111/imm.12701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022] Open
Abstract
Interleukin-10-positive (IL-10+ ) regulatory B (Breg) cells play an important role in restraining excessive inflammatory responses by secreting IL-10. However, it is still unclear what key transcription factors determine Breg cell differentiation. Hence, we explore what transcription factor plays a key role in the expression of IL-10, a pivotal cytokine in Breg cells. We used two types of web-based prediction software to predict transcription factors binding the IL-10 promoter and found that IL-10 promoter had many binding sites for Foxd3. Chromatin immunoprecipitation PCR assay demonstrated that Foxd3 directly binds the predicted binding sites around the start codon upstream by -1400 bp. Further, we found that Foxd3 suppressed the activation of IL-10 promoter by using an IL-10 promoter report system. Finally, knocking out Foxd3 effectively promotes Breg cell production by up-regulating IL-10 expression. Conversely, up-regulated Foxd3 expression was negatively associated with IL-10+ Breg cells in lupus-prone MRL/lpr mice. Hence, our data suggest that Foxd3 suppresses the production of IL-10+ Breg cells by directly binding the IL-10 promoter. This study demonstrates the mechanism for Breg cell production and its application to the treatment of autoimmune diseases by regulating Foxd3 expression.
Collapse
Affiliation(s)
- Yu Zhang
- College of Pharmacy, Henan University, Kaifeng, China.,Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Zhiding Wang
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China.,Department of Biomedicine, Institute of Frontier Medical Sciences, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - He Xiao
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Xiaoling Liu
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China.,Department of Nephrology, The 307th Hospital of Chinese People's Liberation Army, Beijing, China
| | - Gaizhi Zhu
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China.,Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, Henan, China
| | - Dandan Yu
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Gencheng Han
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Guojiang Chen
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Chunmei Hou
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Ning Ma
- Department of Rheumatology, First Hospital of Jilin University, Changchun, China
| | - Beifen Shen
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Yan Li
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Tianxiao Wang
- College of Pharmacy, Henan University, Kaifeng, China
| | - Renxi Wang
- Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
53
|
Plank-Bazinet JL, Mundell NA. The paradox of Foxd3: how does it function in pluripotency and differentiation of embryonic stem cells? Stem Cell Investig 2016; 3:73. [PMID: 27868055 DOI: 10.21037/sci.2016.09.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/23/2016] [Indexed: 01/08/2023]
Abstract
Uncommitted cells of the early mammalian embryo transition through distinct stages of pluripotency, including establishment of ground state "naïve" pluripotency in the early epiblast, transition to a post-implantation "primed" state, and subsequent lineage commitment of the gastrulating epiblast. Previous transcriptional profiling of in vitro models to recapitulate early to late epiblast transition and differentiation suggest that distinct gene regulatory networks are likely to function in each of these states. While the mechanisms underlying transition between pluripotent states are poorly understood, the forkhead family transcription factor Foxd3 has emerged as a key regulatory factor. Foxd3 is required to maintain pluripotent cells of the murine epiblast and for survival, self-renewal and pluripotency of embryonic stem cells (ESCs). Two recent, simultaneous studies have shed light on how Foxd3 regulates gene expression in early cell fate transitions of progenitor cells. While the two publications shared some common findings, they also presented some conflicting results and suggest different models for the mechanisms underlying Foxd3 function. Here, we discuss the key similarities and differences between the publications, highlight data from the literature relevant to their findings, and hypothesize a potential mechanism of Foxd3 action.
Collapse
|
54
|
Konstantinidou C, Taraviras S, Pachnis V. Geminin prevents DNA damage in vagal neural crest cells to ensure normal enteric neurogenesis. BMC Biol 2016; 14:94. [PMID: 27776507 PMCID: PMC5075986 DOI: 10.1186/s12915-016-0314-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/23/2016] [Indexed: 12/29/2022] Open
Abstract
Background In vertebrate organisms, the neural crest (NC) gives rise to multipotential and highly migratory progenitors which are distributed throughout the embryo and generate, among other structures, the peripheral nervous system, including the intrinsic neuroglial networks of the gut, i.e. the enteric nervous system (ENS). The majority of enteric neurons and glia originate from vagal NC-derived progenitors which invade the foregut mesenchyme and migrate rostro-caudally to colonise the entire length of the gut. Although the migratory behaviour of NC cells has been studied extensively, it remains unclear how their properties and response to microenvironment change as they navigate through complex cellular terrains to reach their target embryonic sites. Results Using conditional gene inactivation in mice we demonstrate here that the cell cycle-dependent protein Geminin (Gem) is critical for the survival of ENS progenitors in a stage-dependent manner. Gem deletion in early ENS progenitors (prior to foregut invasion) resulted in cell-autonomous activation of DNA damage response and p53-dependent apoptosis, leading to severe intestinal aganglionosis. In contrast, ablation of Gem shortly after ENS progenitors had invaded the embryonic gut did not result in discernible survival or migratory deficits. In contrast to other developmental systems, we obtained no evidence for a role of Gem in commitment or differentiation of ENS lineages. The stage-dependent resistance of ENS progenitors to mutation-induced genotoxic stress was further supported by the enhanced survival of post gut invasion ENS lineages to γ-irradiation relative to their predecessors. Conclusions Our experiments demonstrate that, in mammals, NC-derived ENS lineages are sensitive to genotoxic stress in a stage-specific manner. Following gut invasion, ENS progenitors are distinctly resistant to Gem ablation and irradiation in comparison to their pre-enteric counterparts. These studies suggest that the microenvironment of the embryonic gut protects ENS progenitors and their progeny from genotoxic stress. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0314-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chrysoula Konstantinidou
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, UK.,Present address: MRC Clinical Sciences Centre, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, GR 26 500, Greece.
| | - Vassilis Pachnis
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, UK.
| |
Collapse
|
55
|
Krishnakumar R, Chen AF, Pantovich MG, Danial M, Parchem RJ, Labosky PA, Blelloch R. FOXD3 Regulates Pluripotent Stem Cell Potential by Simultaneously Initiating and Repressing Enhancer Activity. Cell Stem Cell 2016; 18:104-17. [PMID: 26748757 DOI: 10.1016/j.stem.2015.10.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/22/2015] [Accepted: 10/10/2015] [Indexed: 12/18/2022]
Abstract
Early development is governed by the ability of pluripotent cells to retain the full range of developmental potential and respond accurately to developmental cues. This property is achieved in large part by the temporal and contextual regulation of gene expression by enhancers. Here, we evaluated regulation of enhancer activity during differentiation of embryonic stem to epiblast cells and uncovered the forkhead transcription factor FOXD3 as a major regulator of the developmental potential of both pluripotent states. FOXD3 bound to distinct sites in the two cell types priming enhancers through a dual-functional mechanism. It recruited the SWI/SNF chromatin remodeling complex ATPase BRG1 to promote nucleosome removal while concurrently inhibiting maximal activation of the same enhancers by recruiting histone deacetylases1/2. Thus, FOXD3 prepares cognate genes for future maximal expression by establishing and simultaneously repressing enhancer activity. Through switching of target sites, FOXD3 modulates the developmental potential of pluripotent cells as they differentiate.
Collapse
Affiliation(s)
- Raga Krishnakumar
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amy F Chen
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marisol G Pantovich
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Muhammad Danial
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ronald J Parchem
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Patricia A Labosky
- Office of Strategic Coordination, Division of Program Coordination, Planning, and Strategic Initiatives, and Office of Director, National Institute of Health, Bethesda, MD 20892, USA
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
56
|
Fujita K, Ogawa R, Ito K. CHD7, Oct3/4, Sox2, and Nanog control FoxD3 expression during mouse neural crest-derived stem cell formation. FEBS J 2016; 283:3791-3806. [PMID: 27579714 DOI: 10.1111/febs.13843] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/02/2016] [Accepted: 08/30/2016] [Indexed: 11/29/2022]
Abstract
Neural crest-derived stem cells (NCSCs) are tissue-specific stem cells derived from multipotent neural crest cells. NCSCs are present in some adult tissues such as dorsal root ganglia, sciatic nerve, and bone marrow. However, little is known about the formation mechanisms of these cells. We have shown that BMP2/Wnt3a signaling and a chromatin remodeler, CHD7, in mice help to maintain the multipotency of neural crest cells and lead to the formation of NCSCs. In the present study, we analyzed a regulatory gene cascade in the formation of mouse NCSCs. The inhibition of FoxD3 expression significantly suppressed the expression of Sox10, which is an indispensable transcription factor for mouse NCSC formation, in the presence of BMP2/Wnt3a. CHD7, Oct3/4, Sox2, and Nanog occupied multiple conserved regions of mouse FoxD3, mE1, mE2, and mE3, in a BMP2/Wnt3a-dependent manner. Furthermore, siRNA of CHD7, Oct3/4, Sox2, and Nanog significantly suppressed FoxD3 expression. The inhibition of histone H3K4 mono- or trimethylation also repressed FoxD3 expression. The present data suggest that CHD7, Oct3/4, Sox2, and Nanog directly induce FoxD3 expression when stimulated by BMP2/Wnt3a signaling, that FoxD3 promotes Sox10 expression, and that histone H3K4 methylation plays important roles in this process of mouse NCSC formation.
Collapse
Affiliation(s)
- Kyohei Fujita
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Ryuhei Ogawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Kazuo Ito
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| |
Collapse
|
57
|
Substrate-mediated reprogramming of human fibroblasts into neural crest stem-like cells and their applications in neural repair. Biomaterials 2016; 102:148-61. [DOI: 10.1016/j.biomaterials.2016.06.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 11/22/2022]
|
58
|
Regulators of gene expression in Enteric Neural Crest Cells are putative Hirschsprung disease genes. Dev Biol 2016; 416:255-265. [DOI: 10.1016/j.ydbio.2016.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 05/17/2016] [Accepted: 06/02/2016] [Indexed: 11/21/2022]
|
59
|
Bondurand N, Southard-Smith EM. Mouse models of Hirschsprung disease and other developmental disorders of the enteric nervous system: Old and new players. Dev Biol 2016; 417:139-57. [PMID: 27370713 DOI: 10.1016/j.ydbio.2016.06.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 12/18/2022]
Abstract
Hirschsprung disease (HSCR, intestinal aganglionosis) is a multigenic disorder with variable penetrance and severity that has a general population incidence of 1/5000 live births. Studies using animal models have contributed to our understanding of the developmental origins of HSCR and the genetic complexity of this disease. This review summarizes recent progress in understanding control of enteric nervous system (ENS) development through analyses in mouse models. An overview of signaling pathways that have long been known to control the migration, proliferation and differentiation of enteric neural progenitors into and along the developing gut is provided as a framework for the latest information on factors that influence enteric ganglia formation and maintenance. Newly identified genes and additional factors beyond discrete genes that contribute to ENS pathology including regulatory sequences, miRNAs and environmental factors are also introduced. Finally, because HSCR has become a paradigm for complex oligogenic diseases with non-Mendelian inheritance, the importance of gene interactions, modifier genes, and initial studies on genetic background effects are outlined.
Collapse
Affiliation(s)
- Nadege Bondurand
- INSERM, U955, Equipe 6, F-94000 Creteil, France; Universite Paris-Est, UPEC, F-94000 Creteil, France.
| | - E Michelle Southard-Smith
- Vanderbilt University Medical Center, Department of Medicine, 2215 Garland Ave, Nashville, TN 37232, USA.
| |
Collapse
|
60
|
Scully D, Keane E, Batt E, Karunakaran P, Higgins DF, Itasaki N. Hypoxia promotes production of neural crest cells in the embryonic head. Development 2016; 143:1742-52. [DOI: 10.1242/dev.131912] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 03/14/2016] [Indexed: 12/12/2022]
Abstract
ABSTRACT
Hypoxia is encountered in either pathological or physiological conditions, the latter of which is seen in amniote embryos prior to the commencement of a functional blood circulation. During the hypoxic stage, a large number of neural crest cells arise from the head neural tube by epithelial-to-mesenchymal transition (EMT). As EMT-like cancer dissemination can be promoted by hypoxia, we investigated whether hypoxia contributes to embryonic EMT. Using chick embryos, we show that the hypoxic cellular response, mediated by hypoxia-inducible factor (HIF)-1α, is required to produce a sufficient number of neural crest cells. Among the genes that are involved in neural crest cell development, some genes are more sensitive to hypoxia than others, demonstrating that the effect of hypoxia is gene specific. Once blood circulation becomes fully functional, the embryonic head no longer produces neural crest cells in vivo, despite the capability to do so in a hypoxia-mimicking condition in vitro, suggesting that the oxygen supply helps to stop emigration of neural crest cells in the head. These results highlight the importance of hypoxia in normal embryonic development.
Collapse
Affiliation(s)
- Deirdre Scully
- School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Eleanor Keane
- School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Emily Batt
- Faculty of Health Sciences, University of Bristol, Bristol BS2 8EJ, UK
| | | | - Debra F. Higgins
- School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Nobue Itasaki
- School of Medicine, University College Dublin, Dublin 4, Ireland
- Faculty of Health Sciences, University of Bristol, Bristol BS2 8EJ, UK
| |
Collapse
|
61
|
Young HM, Stamp LA, McKeown SJ. ENS Development Research Since 1983: Great Strides but Many Remaining Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 891:53-62. [PMID: 27379634 DOI: 10.1007/978-3-319-27592-5_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first enteric nervous system (ENS) conference, organized by Marcello Costa and John Furness, was held in Adelaide, Australia in 1983. In this article, we review what was known about the development of the ENS in 1983 and then summarize some of the major advances in the field since 1983.
Collapse
Affiliation(s)
- Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Lincon A Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Sonja J McKeown
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
62
|
Suzuki A, Sangani DR, Ansari A, Iwata J. Molecular mechanisms of midfacial developmental defects. Dev Dyn 2015; 245:276-93. [PMID: 26562615 DOI: 10.1002/dvdy.24368] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/19/2015] [Accepted: 11/01/2015] [Indexed: 12/22/2022] Open
Abstract
The morphogenesis of midfacial processes requires the coordination of a variety of cellular functions of both mesenchymal and epithelial cells to develop complex structures. Any failure or delay in midfacial development as well as any abnormal fusion of the medial and lateral nasal and maxillary prominences will result in developmental defects in the midface with a varying degree of severity, including cleft, hypoplasia, and midline expansion. Despite the advances in human genome sequencing technology, the causes of nearly 70% of all birth defects, which include midfacial development defects, remain unknown. Recent studies in animal models have highlighted the importance of specific signaling cascades and genetic-environmental interactions in the development of the midfacial region. This review will summarize the current understanding of the morphogenetic processes and molecular mechanisms underlying midfacial birth defects based on mouse models with midfacial developmental abnormalities.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, Texas.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Dhruvee R Sangani
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Afreen Ansari
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, Texas.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, Texas.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| |
Collapse
|
63
|
Stathopoulou A, Natarajan D, Nikolopoulou P, Patmanidi AL, Lygerou Z, Pachnis V, Taraviras S. Inactivation of Geminin in neural crest cells affects the generation and maintenance of enteric progenitor cells, leading to enteric aganglionosis. Dev Biol 2015; 409:392-405. [PMID: 26658318 DOI: 10.1016/j.ydbio.2015.11.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/27/2015] [Accepted: 11/27/2015] [Indexed: 11/25/2022]
Abstract
Neural crest cells comprise a multipotent, migratory cell population that generates a diverse array of cell and tissue types, during vertebrate development. Enteric Nervous System controls the function of the gastrointestinal tract and is mainly derived from the vagal and sacral neural crest cells. Deregulation on self-renewal and differentiation of the enteric neural crest cells is evident in enteric nervous system disorders, such as Hirschsprung disease, characterized by the absence of ganglia in a variable length of the distal bowel. Here we show that Geminin is essential for Enteric Nervous System generation as mice that lacked Geminin expression specifically in neural crest cells revealed decreased generation of vagal neural crest cells, and enteric neural crest cells (ENCCs). Geminin-deficient ENCCs showed increased apoptosis and decreased cell proliferation during the early stages of gut colonization. Furthermore, decreased number of committed ENCCs in vivo and the decreased self-renewal capacity of enteric progenitor cells in vitro, resulted in almost total aganglionosis resembling a severe case of Hirschsprung disease. Our results suggest that Geminin is an important regulator of self-renewal and survival of enteric nervous system progenitor cells.
Collapse
Affiliation(s)
| | - Dipa Natarajan
- Division of Molecular Neurobiology, MRC/National Institute for Medical Research, London, United Kingdom
| | | | | | - Zoi Lygerou
- Department of Biology, Medical School, University of Patras, Patras, Greece
| | - Vassilis Pachnis
- Division of Molecular Neurobiology, MRC/National Institute for Medical Research, London, United Kingdom
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, Greece.
| |
Collapse
|
64
|
Hypermethylation of FOXD3 suppresses cell proliferation, invasion and metastasis in hepatocellular carcinoma. Exp Mol Pathol 2015; 99:374-82. [DOI: 10.1016/j.yexmp.2015.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 11/18/2022]
|
65
|
Kerosuo L, Nie S, Bajpai R, Bronner ME. Crestospheres: Long-Term Maintenance of Multipotent, Premigratory Neural Crest Stem Cells. Stem Cell Reports 2015; 5:499-507. [PMID: 26441305 PMCID: PMC4625028 DOI: 10.1016/j.stemcr.2015.08.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 01/12/2023] Open
Abstract
Premigratory neural crest cells comprise a transient, embryonic population that arises within the CNS, but subsequently migrates away and differentiates into many derivatives. Previously, premigratory neural crest could not be maintained in a multipotent, adhesive state without spontaneous differentiation. Here, we report conditions that enable maintenance of neuroepithelial “crestospheres” that self-renew and retain multipotency for weeks. Moreover, under differentiation conditions, these cells can form multiple derivatives in vitro and in vivo after transplantation into chick embryos. Similarly, human embryonic stem cells directed to a neural crest fate can be maintained as crestospheres and subsequently differentiated into several derivatives. By devising conditions that maintain the premigratory state in vitro, these results demonstrate that neuroepithelial neural crest precursors are capable of long-term self-renewal. This approach will help uncover mechanisms underlying their developmental potential, differentiation and, together with the induced pluripotent stem cell techniques, the pathology of human neurocristopathies. Long-term maintenance of premigratory chick neural crest cells as crestospheres A self-renewing population of multipotent neuroepithelial neural crest stem cells Crestospheres differentiate into neural crest derivatives in vitro and in vivo Long-term maintenance of human ESC-derived crestospheres for several weeks
Collapse
Affiliation(s)
- Laura Kerosuo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shuyi Nie
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ruchi Bajpai
- Center for Craniofacial Molecular Biology and Department of Biochemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
66
|
Kubic JD, Little EC, Kaiser RS, Young KP, Lang D. FOXD3 Promotes PAX3 Expression in Melanoma Cells. J Cell Biochem 2015; 117:533-41. [PMID: 26252164 DOI: 10.1002/jcb.25306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/04/2015] [Indexed: 01/01/2023]
Abstract
Several key transcription factors regulate cell growth, survival, and differentiation during neural crest and melanoblast development in the embryo, and these same pathways may be reactivated in tumors arising from the progenitors of these cells. The transcription factors PAX3 and FOXD3 have essential roles in melanoblasts and melanoma. In this study, we define a regulatory pathway where FOXD3 promotes the expression of PAX3. Both factors are expressed in melanoma cells and there is a positive correlation between the transcript levels of PAX3 and FOXD3. The PAX3 gene contains two FOX binding motifs within highly conserved enhancer regulatory elements that are essential for neural crest development. FOXD3 binds to both of these motifs in vitro but only one of these sites is preferentially utilized in melanoma cells. Overexpression of FOXD3 upregulates PAX3 levels while inhibition of FOXD3 function does not alter PAX3 protein levels, supporting that FOXD3 is sufficient but not necessary to drive PAX3 expression in melanoma cells. Here, we identify a molecular pathway where FOXD3 upregulates PAX3 expression and therefore contributes to melanoma progression.
Collapse
Affiliation(s)
- Jennifer D Kubic
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, Illinois, 60637
| | - Elizabeth C Little
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, Illinois, 60637
| | - Rebecca S Kaiser
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, Illinois, 60637
| | - Kacey P Young
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, Illinois, 60637
| | - Deborah Lang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, Illinois, 60637
| |
Collapse
|
67
|
Funato N, Nakamura M, Yanagisawa H. Molecular basis of cleft palates in mice. World J Biol Chem 2015; 6:121-138. [PMID: 26322171 PMCID: PMC4549757 DOI: 10.4331/wjbc.v6.i3.121] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/26/2015] [Accepted: 07/14/2015] [Indexed: 02/05/2023] Open
Abstract
Cleft palate, including complete or incomplete cleft palates, soft palate clefts, and submucosal cleft palates, is the most frequent congenital craniofacial anomaly in humans. Multifactorial conditions, including genetic and environmental factors, induce the formation of cleft palates. The process of palatogenesis is temporospatially regulated by transcription factors, growth factors, extracellular matrix proteins, and membranous molecules; a single ablation of these molecules can result in a cleft palate in vivo. Studies on knockout mice were reviewed in order to identify genetic errors that lead to cleft palates. In this review, we systematically describe these mutant mice and discuss the molecular mechanisms of palatogenesis.
Collapse
|
68
|
Lang H, Xing Y, Brown LN, Samuvel DJ, Panganiban CH, Havens LT, Balasubramanian S, Wegner M, Krug EL, Barth JL. Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve. Sci Rep 2015; 5:13383. [PMID: 26307538 PMCID: PMC4549618 DOI: 10.1038/srep13383] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/24/2015] [Indexed: 12/14/2022] Open
Abstract
The auditory nerve is the primary conveyor of hearing information from sensory hair cells to the brain. It has been believed that loss of the auditory nerve is irreversible in the adult mammalian ear, resulting in sensorineural hearing loss. We examined the regenerative potential of the auditory nerve in a mouse model of auditory neuropathy. Following neuronal degeneration, quiescent glial cells converted to an activated state showing a decrease in nuclear chromatin condensation, altered histone deacetylase expression and up-regulation of numerous genes associated with neurogenesis or development. Neurosphere formation assays showed that adult auditory nerves contain neural stem/progenitor cells (NSPs) that were within a Sox2-positive glial population. Production of neurospheres from auditory nerve cells was stimulated by acute neuronal injury and hypoxic conditioning. These results demonstrate that a subset of glial cells in the adult auditory nerve exhibit several characteristics of NSPs and are therefore potential targets for promoting auditory nerve regeneration.
Collapse
Affiliation(s)
- Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Yazhi Xing
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - LaShardai N Brown
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Devadoss J Samuvel
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Clarisse H Panganiban
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Luke T Havens
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | | | - Michael Wegner
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Edward L Krug
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
69
|
Barriga EH, Trainor PA, Bronner M, Mayor R. Animal models for studying neural crest development: is the mouse different? Development 2015; 142:1555-60. [PMID: 25922521 DOI: 10.1242/dev.121590] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The neural crest is a uniquely vertebrate cell type and has been well studied in a number of model systems. Zebrafish, Xenopus and chick embryos largely show consistent requirements for specific genes in early steps of neural crest development. By contrast, knockouts of homologous genes in the mouse often do not exhibit comparable early neural crest phenotypes. In this Spotlight article, we discuss these species-specific differences, suggest possible explanations for the divergent phenotypes in mouse and urge the community to consider these issues and the need for further research in complementary systems.
Collapse
Affiliation(s)
- Elias H Barriga
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA Department of Anatomy and Cell Biology, University of Kansas Medical Centre, Kansas City, KS 66160, USA
| | - Marianne Bronner
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
70
|
Du W, Pang C, Wang D, Zhang Q, Xue Y, Jiao H, Zhan L, Ma Q, Wei X. Decreased FOXD3 Expression Is Associated with Poor Prognosis in Patients with High-Grade Gliomas. PLoS One 2015; 10:e0127976. [PMID: 26011451 PMCID: PMC4444112 DOI: 10.1371/journal.pone.0127976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/21/2015] [Indexed: 01/19/2023] Open
Abstract
Background The transcription factor forkhead box D3 (FOXD3) plays important roles in the development of neural crest and has been shown to suppress the development of various cancers. However, the expression and its potential biological roles of FOXD3 in high-grade gliomas (HGGs) remain unknown. Methods The mRNA and protein expression levels of FOXD3 were examined using real-time quantitative PCR and western blotting in 23 HGG and 13 normal brain samples, respectively. Immunohistochemistry was used to validate the expression FOXD3 protein in 184 HGG cases. The association between FOXD3 expression and the prognosis of HGG patients were analyzed using Kaplan-Meier survival curves and Cox proportional hazards regression models. In addition, we further examined the effects of FOXD3 on the proliferation and serum starvation-induced apoptosis of glioma cells. Results In comparison to normal brain tissues, FOXD3 expression was significantly decreased in HGG tissues at both mRNA and protein levels. Immunohistochemistry further validated the expression of FOXD3 in HGG tissues. Moreover, low FOXD3 expression was significantly associated with poor prognosis in HGG patients. Depletion of FOXD3 expression promoted glioma cell proliferation and inhibited serum starvation-induced apoptosis, whereas overexpression of FOXD3 inhibited glioma cell proliferation and promoted serum starvation-induced apoptosis. Conclusions Our results indicated that FOXD3 might serve as an independent prognostic biomarker and a potential therapeutic target for HGGs, which warrant further investigation.
Collapse
Affiliation(s)
- Wei Du
- Department of Neurosurgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Changhe Pang
- Department of Neurosurgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Dongliang Wang
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, 100044, China
| | - Qingjun Zhang
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, 100044, China
| | - Yake Xue
- Department of Neurosurgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Hongliang Jiao
- Department of Neurosurgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Lei Zhan
- Department of Gastroenterology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Qian Ma
- Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Xinting Wei
- Department of Neurosurgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
- * E-mail:
| |
Collapse
|
71
|
Jacob C. Transcriptional control of neural crest specification into peripheral glia. Glia 2015; 63:1883-1896. [PMID: 25752517 DOI: 10.1002/glia.22816] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/29/2015] [Accepted: 02/20/2015] [Indexed: 12/20/2022]
Abstract
The neural crest is a transient migratory multipotent cell population that originates from the neural plate border and is formed at the end of gastrulation and during neurulation in vertebrate embryos. These cells give rise to many different cell types of the body such as chondrocytes, smooth muscle cells, endocrine cells, melanocytes, and cells of the peripheral nervous system including different subtypes of neurons and peripheral glia. Acquisition of lineage-specific markers occurs before or during migration and/or at final destination. What are the mechanisms that direct specification of neural crest cells into a specific lineage and how do neural crest cells decide on a specific migration route? Those are fascinating and complex questions that have existed for decades and are still in the research focus of developmental biologists. This review discusses transcriptional events and regulations occurring in neural crest cells and derived lineages, which control specification of peripheral glia, namely Schwann cell precursors that interact with peripheral axons and further differentiate into myelinating or nonmyelinating Schwann cells, satellite cells that remain tightly associated with neuronal cell bodies in sensory and autonomous ganglia, and olfactory ensheathing cells that wrap olfactory axons, both at the periphery in the olfactory mucosa and in the central nervous system in the olfactory bulb. Markers of the different peripheral glia lineages including intermediate multipotent cells such as boundary cap cells, as well as the functions of these specific markers, are also reviewed. Enteric ganglia, another type of peripheral glia, will not be discussed in this review. GLIA 2015;63:1883-1896.
Collapse
Affiliation(s)
- Claire Jacob
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
72
|
Kabouridis PS, Pachnis V. Emerging roles of gut microbiota and the immune system in the development of the enteric nervous system. J Clin Invest 2015; 125:956-64. [PMID: 25729852 DOI: 10.1172/jci76308] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The enteric nervous system (ENS) consists of neurons and glial cells that differentiate from neural crest progenitors. During embryogenesis, development of the ENS is controlled by the interplay of neural crest cell-intrinsic factors and instructive cues from the surrounding gut mesenchyme. However, postnatal ENS development occurs in a different context, which is characterized by the presence of microbiota and an extensive immune system, suggesting an important role of these factors on enteric neural circuit formation and function. Initial reports confirm this idea while further studies in this area promise new insights into ENS physiology and pathophysiology.
Collapse
|
73
|
Kam MKM, Lui VCH. Roles of Hoxb5 in the development of vagal and trunk neural crest cells. Dev Growth Differ 2015; 57:158-68. [PMID: 25703667 DOI: 10.1111/dgd.12199] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/05/2015] [Accepted: 01/09/2015] [Indexed: 12/22/2022]
Abstract
Neural crest cells (NC) are a group of multipotent stem cells uniquely present in vertebrates. They are destined to form various organs according to their anterior-posterior (A-P) levels of origin in the neural tube (NT). They develop into a wide spectrum of cell lineages under the influence of signaling cascades, neural plate border genes and NC specifier genes. Although this complex gene regulatory network (GRN) specifies the fate of NC and the combinatory action of Hox genes executed at the time of NC induction governs the patterning of NC for the formation of specific structures along the A-P axis, not much information on how GRN and Hox genes directly interact and orchestrate is available. This review summarizes recent findings on the multiple roles of Hoxb5 on the survival and cell lineage differentiation of vagal and trunk NC cells during early development, by direct transcriptional regulation of NC specifier genes (Sox9 and Foxd3) of the GRN. We will also review findings on the transcriptional regulation of Ret by Hoxb5 in the population of the vagal NC that are committed to the enteric neuron and glia lineages. Functional redundancy between Hox proteins (Hoxa5 and Hoxc5) from the same paralogue group as Hoxb5, and the cooperative effects of Hox cofactors, collaborators and transcription factors in the Hoxb5 transcriptional regulation of target genes will also be discussed.
Collapse
Affiliation(s)
- Mandy K M Kam
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | | |
Collapse
|
74
|
Newbern JM. Molecular control of the neural crest and peripheral nervous system development. Curr Top Dev Biol 2015; 111:201-31. [PMID: 25662262 DOI: 10.1016/bs.ctdb.2014.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A transient and unique population of multipotent stem cells, known as neural crest cells (NCCs), generate a bewildering array of cell types during vertebrate development. An attractive model among developmental biologists, the study of NCC biology has provided a wealth of knowledge regarding the cellular and molecular mechanisms important for embryogenesis. Studies in numerous species have defined how distinct phases of NCC specification, proliferation, migration, and survival contribute to the formation of multiple functionally distinct organ systems. NCC contributions to the peripheral nervous system (PNS) are well known. Critical developmental processes have been defined that provide outstanding models for understanding how extracellular stimuli, cell-cell interactions, and transcriptional networks cooperate to direct cellular diversification and PNS morphogenesis. Dissecting the complex extracellular and intracellular mechanisms that mediate the formation of the PNS from NCCs may have important therapeutic implications for neurocristopathies, neuropathies, and certain forms of cancer.
Collapse
Affiliation(s)
- Jason M Newbern
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA.
| |
Collapse
|
75
|
Muñoz WA, Trainor PA. Neural crest cell evolution: how and when did a neural crest cell become a neural crest cell. Curr Top Dev Biol 2015; 111:3-26. [PMID: 25662256 DOI: 10.1016/bs.ctdb.2014.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As vertebrates evolved from protochordates, they shifted to a more predatory lifestyle, and radiated and adapted to most niches of the planet. This process was largely facilitated by the generation of novel vertebrate head structures, which were derived from neural crest cells (NCC). The neural crest is a unique vertebrate cell population that is frequently termed the "fourth germ layer" because it forms in conjunction with the other germ layers and contributes to a diverse array of cell types and tissues including the craniofacial skeleton, the peripheral nervous system, and pigment cells among many other tissues and cell types. NCC are defined by their origin at the neural plate border, via an epithelial-to-mesenchymal transition (EMT), together with multipotency and polarized patterns of migration. These defining characteristics, which evolved independently in the germ layers of invertebrates, were subsequently co-opted through their gene regulatory networks to form NCC in vertebrates. Moreover, recent data suggest that the ability to undergo an EMT was one of the latter features co-opted by NCC. In this review, we discuss the potential origins of NCC and how they evolved to contribute to nearly all tissues and organs throughout the body, based on paleontological evidence together with an evaluation of the evolution of molecules involved in NCC development and their migratory cell paths.
Collapse
Affiliation(s)
- William A Muñoz
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
76
|
Musser MA, Correa H, Southard-Smith EM. Enteric neuron imbalance and proximal dysmotility in ganglionated intestine of the Sox10Dom/+ Hirschsprung mouse model. Cell Mol Gastroenterol Hepatol 2015; 1:87-101. [PMID: 25844395 PMCID: PMC4380251 DOI: 10.1016/j.jcmgh.2014.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS In Hirschsprung disease (HSCR), neural crest-derived progenitors (NCPs) fail to completely colonize the intestine so that the enteric nervous system (ENS) is absent from distal bowel. Despite removal of the aganglionic region, many HSCR patients suffer from residual intestinal dysmotility. To test the hypothesis that inappropriate lineage segregation of NCPs in proximal ganglionated regions of the bowel could contribute to such postoperative disease, we investigated neural crest (NC)-derived lineages and motility in ganglionated, postnatal intestine of the Sox10Dom/+ HSCR mouse model. METHODS Cre-mediated fate-mapping was applied to evaluate relative proportions of NC-derived cell types. Motility assays were performed to assess gastric emptying and small intestine motility while colonic inflammation was assessed by histopathology for Sox10Dom/+ mutants relative to wildtype controls. RESULTS Sox10Dom/+ mice showed regional alterations in neuron and glia proportions as well as Calretinin+ and nNOS+ neuronal subtypes. In the colon, imbalance of enteric NC derivatives correlated with the extent of aganglionosis. All Sox10Dom/+ mice exhibited reduced small intestinal transit at 4-weeks of age, and at 6-weeks, Sox10Dom/+ males had increased gastric emptying rates. Sox10Dom/+ mice surviving to 6-weeks of age had little or no colonic inflammation when compared to wildtype littermates, suggesting that these changes in GI motility are neurally mediated. CONCLUSIONS The Sox10Dom mutation disrupts the balance of NC-derived lineages and affects GI motility in the proximal, ganglionated intestine of adult animals. This is the first report identifying alterations in enteric neuronal classes in Sox10Dom/+ mutants, which suggests a previously unrecognized role for Sox10 in neuronal subtype specification.
Collapse
Affiliation(s)
- Melissa A. Musser
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hernan Correa
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - E. Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
77
|
Li D, Mei H, Qi M, Yang D, Zhao X, Xiang X, Pu J, Huang K, Zheng L, Tong Q. FOXD3 is a novel tumor suppressor that affects growth, invasion, metastasis and angiogenesis of neuroblastoma. Oncotarget 2014; 4:2021-44. [PMID: 24269992 PMCID: PMC3875767 DOI: 10.18632/oncotarget.1579] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The transcription factor forkhead box D3 (FOXD3) plays a crucial role in the development of neural crest cells. However, the function and underlying mechanisms of FOXD3 in the progression of neuroblastoma (NB), an embryonal tumor that is derived from the neural crest, still remain largely unknown. Here, we report that FOXD3 is an important oncosuppressor of NB tumorigenicity and aggressiveness. We found that FOXD3 was down-regulated in NB tissues and cell lines. Patients with high FOXD3 expression have greater survival probability. Over-expression or knockdown of FOXD3 responsively altered both the protein and mRNA levels of N-myc downstream regulated 1 (NDRG1) and its downstream genes, vascular endothelial growth factor and matrix metalloproteinase 9, in cultured NB cell lines SH-SY5Y and SK-N-SH. Luciferase reporter and chromatin immunoprecipitation assays indicated that FOXD3 directly targeted the binding site within NDRG1 promoter to facilitate its transcription. Ectopic expression of FOXD3 suppressed the growth, invasion, metastasis and angiogenesis of SH-SY5Y and SK-N-SH cells in vitro and in vivo. Conversely, knockdown of FOXD3 promoted the growth, migration, invasion and angiogenesis of NB cells. In addition, rescue experiments in FOXD3 over-expressed or silenced NB cells showed that restoration of NDRG1 expression prevented the tumor cells from FOXD3-mediated changes in these biological features. Our results indicate that FOXD3 exhibits tumor suppressive activity that affects the growth, aggressiveness and angiogenesis of NB through transcriptional regulation of NDRG1.
Collapse
Affiliation(s)
- Dan Li
- Department of Pediatric Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Kam MKM, Cheung M, Zhu JJ, Cheng WWC, Sat EWY, Tam PKH, Lui VCH. Homeobox b5 (Hoxb5) regulates the expression of Forkhead box D3 gene (Foxd3) in neural crest. Int J Biochem Cell Biol 2014; 55:144-52. [PMID: 25220476 DOI: 10.1016/j.biocel.2014.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 08/18/2014] [Accepted: 09/01/2014] [Indexed: 11/26/2022]
Abstract
Patterning of neural crest (NC) for the formation of specific structures along the anterio-posterior (A-P) body axis is governed by a combinatorial action of Hox genes, which are expressed in the neuroepithelium at the time of NC induction. Hoxb5 was expressed in NC at both induction and migratory stages, and our previous data suggested that Hoxb5 played a role in the NC development. However, the underlying mechanisms by which Hoxb5 regulates the early NC development are largely unknown. Current study showed that both the human and mouse Foxd3 promoters were bound and trans-activated by Hoxb5 in NC-derived neuroblastoma cells. The binding of Hoxb5 to Foxd3 promoter in vivo was further confirmed in the brain and neural tube of mouse embryos. Moreover, Wnt1-Cre mediated perturbation of Hoxb5 signaling at the dorsal neural tube in mouse embryos resulted in Foxd3 down-regulation. In ovo, Foxd3 alleviated the apoptosis of neural cells induced by perturbed Hoxb5 signaling, and Hoxb5 induced ectopic Foxd3 expression in the chick neural tube. This study demonstrated that Hoxb5 (an A-P patterning gene) regulated the NC development by directly inducing Foxd3 (a NC specifier and survival gene).
Collapse
Affiliation(s)
- Mandy Ka Man Kam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Martin Cheung
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; Centre for Reproduction, Development & Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Joe Jiang Zhu
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; Faculty of Medicine, Shenzhen University, Shenzhen, Guangdong Province, China
| | - William Wai Chun Cheng
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Eric Wai Yin Sat
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Paul Kwong Hang Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; Centre for Reproduction, Development & Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Vincent Chi Hang Lui
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; Centre for Reproduction, Development & Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China.
| |
Collapse
|
79
|
Fairchild CL, Conway JP, Schiffmacher AT, Taneyhill LA, Gammill LS. FoxD3 regulates cranial neural crest EMT via downregulation of tetraspanin18 independent of its functions during neural crest formation. Mech Dev 2014; 132:1-12. [PMID: 24582980 PMCID: PMC4001935 DOI: 10.1016/j.mod.2014.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 01/20/2014] [Accepted: 02/19/2014] [Indexed: 01/09/2023]
Abstract
The scaffolding protein tetraspanin18 (Tspan18) maintains epithelial cadherin-6B (Cad6B) to antagonize chick cranial neural crest epithelial-to-mesenchymal transition (EMT). For migration to take place, Tspan18 must be downregulated. Here, we characterize the role of the winged-helix transcription factor FoxD3 in the control of Tspan18 expression. Although we previously found that Tspan18 mRNA persists several hours past the stage it would normally be downregulated in FoxD3-deficient neural folds, we now show that Tspan18 expression eventually declines. This indicates that while FoxD3 is crucial for initial downregulation of Tspan18, other factors subsequently impact Tspan18 expression. Remarkably, the classical EMT transcription factor Snail2 is not one of these factors. As in other vertebrates, FoxD3 is required for chick cranial neural crest specification and migration, however, FoxD3 has surprisingly little impact on chick cranial neural crest cell survival. Strikingly, Tspan18 knockdown rescues FoxD3-dependent neural crest migration defects, although neural crest specification is still deficient. This indicates that FoxD3 promotes cranial neural crest EMT by eliciting Tspan18 downregulation separable from its Tspan18-independent activity during neural crest specification and survival.
Collapse
Affiliation(s)
- Corinne L Fairchild
- Department of Genetics, Cell Biology, and Development, 6-160 Jackson Hall, 321 Church St. SE, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph P Conway
- Department of Genetics, Cell Biology, and Development, 6-160 Jackson Hall, 321 Church St. SE, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andrew T Schiffmacher
- Department of Animal and Avian Sciences, 1405 Animal Sciences Center, University of Maryland, College Park, MD 20742, USA
| | - Lisa A Taneyhill
- Department of Animal and Avian Sciences, 1405 Animal Sciences Center, University of Maryland, College Park, MD 20742, USA
| | - Laura S Gammill
- Department of Genetics, Cell Biology, and Development, 6-160 Jackson Hall, 321 Church St. SE, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
80
|
Kameda Y. Signaling molecules and transcription factors involved in the development of the sympathetic nervous system, with special emphasis on the superior cervical ganglion. Cell Tissue Res 2014; 357:527-48. [PMID: 24770894 DOI: 10.1007/s00441-014-1847-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/12/2014] [Indexed: 12/16/2022]
Abstract
The cells that constitute the sympathetic nervous system originate from the neural crest. This review addresses the current understanding of sympathetic ganglion development viewed from molecular and morphological perspectives. Development of the sympathetic nervous system is categorized into three main steps, as follows: (1) differentiation and migration of cells in the neural crest lineage for formation of the primary sympathetic chain, (2) differentiation of sympathetic progenitors, and (3) growth and survival of sympathetic ganglia. The signaling molecules and transcription factors involved in each of these developmental stages are elaborated mostly on the basis of the results of targeted mutation of respective genes. Analyses in mutant mice revealed differences between the superior cervical ganglion (SCG) and the other posterior sympathetic ganglia. This review provides a summary of the similarities and differences in the development of the SCG and other posterior sympathetic ganglia. Relevant to the development of sympathetic ganglia is the demonstration that neuroendocrine cells, such as adrenal chromaffin cells and carotid body glomus cells, share a common origin with the sympathetic ganglia. Neural crest cells at the trunk level give rise to common sympathoadrenal progenitors of sympathetic neurons and chromaffin cells, while progenitors segregated from the SCG give rise to glomus cells. After separation from the sympathetic primordium, the progenitors of both chromaffin cells and glomus cells colonize the anlage of the adrenal gland and carotid body, respectively. This review highlights the biological properties of chromaffin cells and glomus cells, because, although both cell types are derivatives of sympathetic primordium, they are distinct in many respects.
Collapse
Affiliation(s)
- Yoko Kameda
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan,
| |
Collapse
|
81
|
Neural crest-derived dental stem cells--where we are and where we are going. J Dent 2014; 42:1043-51. [PMID: 24769107 DOI: 10.1016/j.jdent.2014.04.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES There are five types of post-natal human dental stem cells that have been identified, isolated and characterized. Here, we review the information available on dental stem cells as well as their potential applications in dentistry, regenerative medicine and the development of other therapeutic approaches. DATA Data pertinent to dental stem cells and their applications, published in peer-reviewed journals from 1982 to 2013 in English were reviewed. SOURCES Sources were retrieved from PubMed databases as well as related references that the electronic search yielded. STUDY SELECTION Manuscripts describing the origin, retrieval, characterization and application of dental stem cells were obtained and reviewed. CONCLUSIONS Dental stem cell populations present properties similar to those of mesenchymal stem cells, such as the ability to self-renew and the potential for multilineage differentiation. While they have greater capacity to give rise to odontogenic cells and regenerate dental pulp and periodontal tissue, they have the capacity to differentiate into all three germ line cells, proving that a population of pluripotent stem cells exists in the dental tissues. CLINICAL SIGNIFICANCE Dental stem cells have the capacity to differentiate into endoderm, mesoderm and ectoderm tissues. Consequently they do not only have applications in dentistry, but also neurodegenerative and ischemic diseases, diabetes research, bone repair, and other applications in the field of tissue regeneration.
Collapse
|
82
|
Fish JL, Sklar RS, Woronowicz KC, Schneider RA. Multiple developmental mechanisms regulate species-specific jaw size. Development 2014; 141:674-84. [PMID: 24449843 DOI: 10.1242/dev.100107] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Variation in jaw size during evolution has been crucial for the adaptive radiation of vertebrates, yet variation in jaw size during development is often associated with disease. To test the hypothesis that early developmental events regulating neural crest (NC) progenitors contribute to species-specific differences in size, we investigated mechanisms through which two avian species, duck and quail, achieve their remarkably different jaw size. At early stages, duck exhibit an anterior shift in brain regionalization yielding a shorter, broader, midbrain. We find no significant difference in the total number of pre-migratory NC; however, duck concentrate their pre-migratory NC in the midbrain, which contributes to an increase in size of the post-migratory NC population allocated to the mandibular arch. Subsequent differences in proliferation lead to a progressive increase in size of the duck mandibular arch relative to that of quail. To test the role of pre-migratory NC progenitor number in regulating jaw size, we reduced and augmented NC progenitors. In contrast to previous reports of regeneration by NC precursors, we find that neural fold extirpation results in a loss of NC precursors. Despite this reduction in their numbers, post-migratory NC progenitors compensate, producing a symmetric and normal-sized jaw. Our results suggest that evolutionary modification of multiple aspects of NC cell biology, including NC allocation within the jaw primordia and NC-mediated proliferation, have been important to the evolution of jaw size. Furthermore, our finding of NC post-migratory compensatory mechanisms potentially extends the developmental time frame for treatments of disease or injury associated with NC progenitor loss.
Collapse
Affiliation(s)
- Jennifer L Fish
- University of California, 513 Parnassus Ave, S-1159 San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
83
|
Reinert RB, Cai Q, Hong JY, Plank JL, Aamodt K, Prasad N, Aramandla R, Dai C, Levy SE, Pozzi A, Labosky PA, Wright CVE, Brissova M, Powers AC. Vascular endothelial growth factor coordinates islet innervation via vascular scaffolding. Development 2014; 141:1480-91. [PMID: 24574008 DOI: 10.1242/dev.098657] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurovascular alignment is a common anatomical feature of organs, but the mechanisms leading to this arrangement are incompletely understood. Here, we show that vascular endothelial growth factor (VEGF) signaling profoundly affects both vascularization and innervation of the pancreatic islet. In mature islets, nerves are closely associated with capillaries, but the islet vascularization process during embryonic organogenesis significantly precedes islet innervation. Although a simple neuronal meshwork interconnects the developing islet clusters as they begin to form at E14.5, the substantial ingrowth of nerve fibers into islets occurs postnatally, when islet vascularization is already complete. Using genetic mouse models, we demonstrate that VEGF regulates islet innervation indirectly through its effects on intra-islet endothelial cells. Our data indicate that formation of a VEGF-directed, intra-islet vascular plexus is required for development of islet innervation, and that VEGF-induced islet hypervascularization leads to increased nerve fiber ingrowth. Transcriptome analysis of hypervascularized islets revealed an increased expression of extracellular matrix components and axon guidance molecules, with these transcripts being enriched in the islet-derived endothelial cell population. We propose a mechanism for coordinated neurovascular development within pancreatic islets, in which endocrine cell-derived VEGF directs the patterning of intra-islet capillaries during embryogenesis, forming a scaffold for the postnatal ingrowth of essential autonomic nerve fibers.
Collapse
Affiliation(s)
- Rachel B Reinert
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Zhao H, Chen D, Wang J, Yin Y, Gao Q, Zhang Y. Downregulation of the transcription factor, FoxD3, is associated with lymph node metastases in invasive ductal carcinomas of the breast. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:670-676. [PMID: 24551288 PMCID: PMC3925912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/08/2014] [Indexed: 06/03/2023]
Abstract
FoxD3 is a transcription factor of the forkhead gene family. We investigated its expression in invasive ductal carcinomas (IDC) of the breast and its association with metastasis. The expression of FoxD3, human epidermal growth factor receptor-2 (HER-2), estrogen receptor (ER), progesterone receptor (PR) and Ki67 was examined by immunohistochemistry in samples from 121 patients with IDC. Non-tumorous breast adenosis tissues served as controls. HER2 expression was confirmed by fluorescence in situ hybridization (FISH). The expression levels of FoxD3 in IDC tissues and the breast cancer cell lines MCF-7 and MDA-MB-231 were additionally measured by western blotting. A greater percentage of total IDC patients and patients with lymph node metastases showed reduced FoxD3 expression compared to adenosis controls (p<0.05). Overall, FoxD3 was associated with metastatic status of IDC but not with age, pathological or clinical staging, or status of HER-2, ER, or PR. In particular, FoxD3 protein expression was down-regulated in the tumor epithelia of IDC samples from patients with metastases. Furthermore, FoxD3 protein expression was decreased in the metastatic MDA-MB-231 breast cancer cell line relative to the non-metastatic cell line, MCF-7. A greater number of patients with invasive, triple-negative breast cancer were also negative for FoxD3 expression than in other, non-triple-negative tumor types. These results suggest an inverse relationship between FoxD3 expression and tumor metastasis and warrants further investigation.
Collapse
MESH Headings
- Adult
- Aged
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/secondary
- Case-Control Studies
- Down-Regulation
- Female
- Forkhead Transcription Factors/metabolism
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Ki-67 Antigen/metabolism
- Lymphatic Metastasis
- MCF-7 Cells
- Middle Aged
- Neoplasm Staging
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/metabolism
- Triple Negative Breast Neoplasms/pathology
Collapse
Affiliation(s)
- Hua Zhao
- Department of Pathology, The Affiliated Maternity and Child Health Hospital of Nanjing Medical UniversityWuxi, China
| | - Daozhen Chen
- Department of Pathology, The Affiliated Maternity and Child Health Hospital of Nanjing Medical UniversityWuxi, China
| | - Jiayuan Wang
- Department of Pathology, The Affiliated Maternity and Child Health Hospital of Nanjing Medical UniversityWuxi, China
| | - Yongxiang Yin
- Department of Pathology, The Affiliated Maternity and Child Health Hospital of Nanjing Medical UniversityWuxi, China
| | - Qiong Gao
- Department of Gynecology, The Affiliated Maternity and Child Health Hospital of Nanjing Medical UniversityWuxi, China
| | - Ye Zhang
- Department of Gynecology, The Affiliated Maternity and Child Health Hospital of Nanjing Medical UniversityWuxi, China
| |
Collapse
|
85
|
Coelho-Aguiar JM, Le Douarin NM, Dupin E. Environmental factors unveil dormant developmental capacities in multipotent progenitors of the trunk neural crest. Dev Biol 2013; 384:13-25. [DOI: 10.1016/j.ydbio.2013.09.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 12/13/2022]
|
86
|
Plank JL, Suflita MT, Galindo CL, Labosky PA. Transcriptional targets of Foxd3 in murine ES cells. Stem Cell Res 2013; 12:233-40. [PMID: 24270162 DOI: 10.1016/j.scr.2013.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/26/2013] [Accepted: 10/25/2013] [Indexed: 11/30/2022] Open
Abstract
Understanding gene regulatory networks controlling properties of pluripotent stem cells will facilitate development of stem cell-based therapies. The transcription factor Foxd3 is critical for maintenance of self-renewal, survival, and pluripotency in murine embryonic stem cells (ESCs). Using a conditional deletion of Foxd3 followed by gene expression analyses, we demonstrate that genes required for several developmental processes including embryonic organ development, epithelium development, and epithelial differentiation were misregulated in the absence of Foxd3. Additionally, we identified 6 novel targets of Foxd3 (Sox4, Safb, Sox15, Fosb, Pmaip1 and Smarcd3). Finally, we present data suggesting that Foxd3 functions upstream of genes required for skeletal muscle development. Together, this work provides further evidence that Foxd3 is a critical regulator of murine development through the regulation of lineage specific differentiation.
Collapse
Affiliation(s)
- Jennifer L Plank
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA; Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA.
| | - Michael T Suflita
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA; Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Cristi L Galindo
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Patricia A Labosky
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA; Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
87
|
Powell DR, Hernandez-Lagunas L, LaMonica K, Artinger KB. Prdm1a directly activates foxd3 and tfap2a during zebrafish neural crest specification. Development 2013; 140:3445-55. [PMID: 23900542 DOI: 10.1242/dev.096164] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The neural crest comprises multipotent precursor cells that are induced at the neural plate border by a series of complex signaling and genetic interactions. Several transcription factors, termed neural crest specifiers, are necessary for early neural crest development; however, the nature of their interactions and regulation is not well understood. Here, we have established that the PR/SET domain-containing transcription factor Prdm1a is co-expressed with two essential neural crest specifiers, foxd3 and tfap2a, at the neural plate border. Through rescue experiments, chromatin immunoprecipitation and reporter assays, we have determined that Prdm1a directly binds to and transcriptionally activates enhancers for foxd3 and tfap2a and that they are functional, direct targets of Prdm1a at the neural plate border. Additionally, analysis of dominant activator and dominant repressor Prdm1a constructs suggests that Prdm1a is required both as a transcriptional activator and transcriptional repressor for neural crest development in zebrafish embryos.
Collapse
Affiliation(s)
- Davalyn R Powell
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
88
|
Wiszniak S, Kabbara S, Lumb R, Scherer M, Secker G, Harvey N, Kumar S, Schwarz Q. The ubiquitin ligase Nedd4 regulates craniofacial development by promoting cranial neural crest cell survival and stem-cell like properties. Dev Biol 2013; 383:186-200. [PMID: 24080509 DOI: 10.1016/j.ydbio.2013.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 12/20/2022]
Abstract
The integration of multiple morphogenic signalling pathways and transcription factor networks is essential to mediate neural crest (NC) cell induction, delamination, survival, stem-cell properties, fate choice and differentiation. Although the transcriptional control of NC development is well documented in mammals, the role of post-transcriptional modifications, and in particular ubiquitination, has not been explored. Here we report an essential role for the ubiquitin ligase Nedd4 in cranial NC cell development. Our analysis of Nedd4(-/-) embryos identified profound deficiency of cranial NC cells in the absence of structural defects in the neural tube. Nedd4 is expressed in migrating cranial NC cells and was found to positively regulate expression of the NC transcription factors Sox9, Sox10 and FoxD3. We found that in the absence of these factors, a subset of cranial NC cells undergo apoptosis. In accordance with a lack of cranial NC cells, Nedd4(-/-) embryos have deficiency of the trigeminal ganglia, NC derived bone and malformation of the craniofacial skeleton. Our analyses therefore uncover an essential role for Nedd4 in a subset of cranial NC cells and highlight E3 ubiquitin ligases as a likely point of convergence for multiple NC signalling pathways and transcription factor networks.
Collapse
Affiliation(s)
- Sophie Wiszniak
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, 5000, Australia
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Van Raamsdonk CD, Deo M. Links between Schwann cells and melanocytes in development and disease. Pigment Cell Melanoma Res 2013; 26:634-45. [DOI: 10.1111/pcmr.12134] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/28/2013] [Indexed: 01/31/2023]
Affiliation(s)
| | - Mugdha Deo
- Department of Medical Genetics; University of British Columbia; Vancouver; BC; Canada
| |
Collapse
|
90
|
Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3. Proc Natl Acad Sci U S A 2013; 110:12709-14. [PMID: 23858437 DOI: 10.1073/pnas.1306287110] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Skin melanocytes arise from two sources: either directly from neural crest progenitors or indirectly from neural crest-derived Schwann cell precursors after colonization of peripheral nerves. The relationship between these two melanocyte populations and the factors controlling their specification remains poorly understood. Direct lineage tracing reveals that neural crest and Schwann cell progenitor-derived melanocytes are differentially restricted to the epaxial and hypaxial body domains, respectively. Furthermore, although both populations are initially part of the Foxd3 lineage, hypaxial melanocytes lose Foxd3 at late stages upon separation from the nerve, whereas we recently found that epaxial melanocytes segregate earlier from Foxd3-positive neural progenitors while still residing in the dorsal neural tube. Gain- and loss-of-function experiments in avians and mice, respectively, reveal that Foxd3 is both sufficient and necessary for regulating the balance between melanocyte and Schwann cell development. In addition, Foxd3 is also sufficient to regulate the switch between neuronal and glial fates in sensory ganglia. Together, we propose that differential fate acquisition of neural crest-derived cells depends on their progressive segregation from the Foxd3-positive lineage.
Collapse
|
91
|
Lander R, Nasr T, Ochoa SD, Nordin K, Prasad MS, Labonne C. Interactions between Twist and other core epithelial-mesenchymal transition factors are controlled by GSK3-mediated phosphorylation. Nat Commun 2013; 4:1542. [PMID: 23443570 DOI: 10.1038/ncomms2543] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 01/24/2013] [Indexed: 01/05/2023] Open
Abstract
A subset of transcription factors classified as neural crest 'specifiers' are also core epithelial-mesenchymal transition regulatory factors, both in the neural crest and in tumour progression. The bHLH factor Twist is among the least well studied of these factors. Here we demonstrate that Twist is required for cranial neural crest formation and fate determination in Xenopus. We further show that Twist function in the neural crest is dependent upon its carboxy-terminal WR domain. The WR domain mediates physical interactions between Twist and other core epithelial-mesenchymal transition factors, including Snail1 and Snail2, which are essential for proper function. Interaction with Snail1/2, and Twist function more generally, is regulated by GSK-3-β-mediated phosphorylation of conserved sites in the WR domain. Together, these findings elucidate a mechanism for coordinated control of a group of structurally diverse factors that function as a regulatory unit in both developmental and pathological epithelial-mesenchymal transitions.
Collapse
Affiliation(s)
- Rachel Lander
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | | | |
Collapse
|
92
|
Nitzan E, Krispin S, Pfaltzgraff ER, Klar A, Labosky PA, Kalcheim C. A dynamic code of dorsal neural tube genes regulates the segregation between neurogenic and melanogenic neural crest cells. Development 2013; 140:2269-79. [PMID: 23615280 DOI: 10.1242/dev.093294] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Understanding when and how multipotent progenitors segregate into diverse fates is a key question during embryonic development. The neural crest (NC) is an exemplary model system with which to investigate the dynamics of progenitor cell specification, as it generates a multitude of derivatives. Based on 'in ovo' lineage analysis, we previously suggested an early fate restriction of premigratory trunk NC to generate neural versus melanogenic fates, yet the timing of fate segregation and the underlying mechanisms remained unknown. Analysis of progenitors expressing a Foxd3 reporter reveals that prospective melanoblasts downregulate Foxd3 and have already segregated from neural lineages before emigration. When this downregulation is prevented, late-emigrating avian precursors fail to upregulate the melanogenic markers Mitf and MC/1 and the guidance receptor Ednrb2, generating instead glial cells that express P0 and Fabp. In this context, Foxd3 lies downstream of Snail2 and Sox9, constituting a minimal network upstream of Mitf and Ednrb2 to link melanogenic specification with migration. Consistent with the gain-of-function data in avians, loss of Foxd3 function in mouse NC results in ectopic melanogenesis in the dorsal tube and sensory ganglia. Altogether, Foxd3 is part of a dynamically expressed gene network that is necessary and sufficient to regulate fate decisions in premigratory NC. Their timely downregulation in the dorsal neural tube is thus necessary for the switch between neural and melanocytic phases of NC development.
Collapse
Affiliation(s)
- Erez Nitzan
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University, Hadassah Medical School, Jerusalem 91120, PO Box 12272, Israel
| | | | | | | | | | | |
Collapse
|
93
|
Wiszniak S, Lumb R, Kabbara S, Scherer M, Schwarz Q. Li-gazing at the crest: modulation of the neural crest by the ubiquitin pathway. Int J Biochem Cell Biol 2013; 45:1087-91. [PMID: 23458963 DOI: 10.1016/j.biocel.2013.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/08/2013] [Accepted: 02/22/2013] [Indexed: 10/27/2022]
Abstract
Neural crest cells are a transient population of stem cells that give rise to a diverse range of cell types during embryonic development. Through gain-of-function and loss-of-function studies in several model organisms many key signalling pathways and cell-type specific transcription factors essential for neural crest cell development have been identified. However, the role of post-translational regulation remains largely unexplored. Here we review this cell type with a foray into the known and potential roles of the ubiquitination pathway in key signalling events during neural crest cell development.
Collapse
Affiliation(s)
- Sophie Wiszniak
- Centre for Cancer Biology, SA Pathology, Adelaide 5000, Australia
| | | | | | | | | |
Collapse
|
94
|
Suflita MT, Pfaltzgraff ER, Mundell NA, Pevny LH, Labosky PA. Ground-state transcriptional requirements for skin-derived precursors. Stem Cells Dev 2013; 22:1779-88. [PMID: 23316968 DOI: 10.1089/scd.2012.0501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Skin-derived precursors (SKPs) are an attractive stem cell model for cell-based therapies. SKPs can be readily generated from embryonic and adult mice and adult humans, exhibit a high degree of multipotency, and have the potential to serve as a patient autologous stem cell. The advancement of these cells toward therapeutic use depends on the ability to control precisely the self-renewal and differentiation of SKPs. Here we show that two well-known stem cell factors, Foxd3 and Sox2, are critical regulators of the stem cell properties of SKPs. Deletion of Foxd3 completely abolishes the sphere-forming potential of these cells. In the absence of Sox2, SKP spheres can be formed, but with reduced size and frequency. Our results provide entry points into the gene regulatory networks dictating SKP behavior, and pave the way for future studies on a therapeutically relevant stem cell.
Collapse
Affiliation(s)
- Michael T Suflita
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|
95
|
Holland LZ. Evolution of new characters after whole genome duplications: insights from amphioxus. Semin Cell Dev Biol 2013; 24:101-9. [PMID: 23291260 DOI: 10.1016/j.semcdb.2012.12.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/25/2012] [Indexed: 12/31/2022]
Abstract
Additional copies of genes resulting from two whole genome duplications at the base of the vertebrates have been suggested as enabling the evolution of vertebrate-specific structures such as neural crest, a midbrain/hindbrain organizer and neurogenic placodes. These structures, however, did not evolve entirely de novo, but arose from tissues already present in an ancestral chordate. This review discusses the evolutionary history of co-option of old genes for new roles in vertebrate development as well as the relative contributions of changes in cis-regulation and in protein structure. Particular examples are the FoxD, FGF8/17/18 and Pax2/5/8 genes. Comparisons with invertebrate chordates (amphioxus and tunicates) paint a complex picture with co-option of genes into new structures occurring both after and before the whole genome duplications. In addition, while cis-regulatory changes are likely of primary importance in evolution of vertebrate-specific structures, changes in protein structure including alternative splicing are non-trivial.
Collapse
Affiliation(s)
- Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA.
| |
Collapse
|
96
|
Obermayr F, Hotta R, Enomoto H, Young HM. Development and developmental disorders of the enteric nervous system. Nat Rev Gastroenterol Hepatol 2013; 10:43-57. [PMID: 23229326 DOI: 10.1038/nrgastro.2012.234] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The enteric nervous system (ENS) arises from neural crest-derived cells that migrate into and along the gut, leading to the formation of a complex network of neurons and glial cells that regulates motility, secretion and blood flow. This Review summarizes the progress made in the past 5 years in our understanding of ENS development, including the migratory pathways of neural crest-derived cells as they colonize the gut. The importance of interactions between neural crest-derived cells, between signalling pathways and between developmental processes (such as proliferation and migration) in ensuring the correct development of the ENS is also presented. The signalling pathways involved in ENS development that were determined using animal models are also described, as is the evidence for the involvement of the genes encoding these molecules in Hirschsprung disease-the best characterized paediatric enteric neuropathy. Finally, the aetiology and treatment of Hirschsprung disease in the clinic and the potential involvement of defects in ENS development in other paediatric motility disorders are outlined.
Collapse
Affiliation(s)
- Florian Obermayr
- Department of Pediatric Surgery, University Children's Hospital, University of Tübingen, Hoppe-Seyler Straße 3, Tübingen 72076, Germany
| | | | | | | |
Collapse
|
97
|
Simões-Costa MS, McKeown SJ, Tan-Cabugao J, Sauka-Spengler T, Bronner ME. Dynamic and differential regulation of stem cell factor FoxD3 in the neural crest is Encrypted in the genome. PLoS Genet 2012; 8:e1003142. [PMID: 23284303 PMCID: PMC3527204 DOI: 10.1371/journal.pgen.1003142] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 10/18/2012] [Indexed: 11/19/2022] Open
Abstract
The critical stem cell transcription factor FoxD3 is expressed by the premigratory and migrating neural crest, an embryonic stem cell population that forms diverse derivatives. Despite its important role in development and stem cell biology, little is known about what mediates FoxD3 activity in these cells. We have uncovered two FoxD3 enhancers, NC1 and NC2, that drive reporter expression in spatially and temporally distinct manners. Whereas NC1 activity recapitulates initial FoxD3 expression in the cranial neural crest, NC2 activity recapitulates initial FoxD3 expression at vagal/trunk levels while appearing only later in migrating cranial crest. Detailed mutational analysis, in vivo chromatin immunoprecipitation, and morpholino knock-downs reveal that transcription factors Pax7 and Msx1/2 cooperate with the neural crest specifier gene, Ets1, to bind to the cranial NC1 regulatory element. However, at vagal/trunk levels, they function together with the neural plate border gene, Zic1, which directly binds to the NC2 enhancer. These results reveal dynamic and differential regulation of FoxD3 in distinct neural crest subpopulations, suggesting that heterogeneity is encrypted at the regulatory level. Isolation of neural crest enhancers not only allows establishment of direct regulatory connections underlying neural crest formation, but also provides valuable tools for tissue specific manipulation and investigation of neural crest cell identity in amniotes. FoxD3 is an important stem cell factor expressed in many types of embryonic cells including neural crest cells. In the embryo, neural crest cells are a type of stem cell that forms diverse derivatives, including nerve cells, pigment cells, and facial structures. To better understand neural crest development and differentiation, we have explored how FoxD3 expression is regulated in these cells. By examining non-coding DNA, we have identified distinct genomic regions that mediate expression of green fluorescent protein (GFP) in a pattern that recapitulates FoxD3 expression. Interestingly, we find two genomic “on–off” switches or enhancers, called NC1 and NC2, that drive GFP expression in a pattern that recapitulates FoxD3 expression at different times and places during neural crest development. We find that Pax and Msx proteins turn on both NC1 and NC2 enhancers by directly binding to them. In addition, cranial expression driven by NC1 requires a protein called Ets1, whereas trunk expression of NC2 requires a different protein called Zic1. The results show that FoxD3 in differentially regulated in distinct neural crest cell populations in a manner that is specifically encoded in the genome. These enhancers provide valuable tools for understanding neural crest development in birds and mammals.
Collapse
Affiliation(s)
- Marcos S. Simões-Costa
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Sonja J. McKeown
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Joanne Tan-Cabugao
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Tatjana Sauka-Spengler
- The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail: (TS-S); (MEB)
| | - Marianne E. Bronner
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (TS-S); (MEB)
| |
Collapse
|
98
|
Hochgreb-Hägele T, Bronner ME. A novel FoxD3 gene trap line reveals neural crest precursor movement and a role for FoxD3 in their specification. Dev Biol 2012; 374:1-11. [PMID: 23228892 DOI: 10.1016/j.ydbio.2012.11.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 10/30/2012] [Accepted: 11/26/2012] [Indexed: 11/17/2022]
Abstract
Neural crest cells migrate extensively and contribute to diverse derivatives, including the craniofacial skeleton, peripheral neurons and glia, and pigment cells. Although several transgenic lines label neural crest subpopulations, few are suited for studying early events in neural crest development. Here, we present a zebrafish gene/protein trap line gt(foxd3-citrine)(ct110a) that expresses a Citrine fusion protein with FoxD3, a transcription factor expressed in premigratory and migrating neural crest cells. In this novel line, citrine expression exactly parallels endogenous foxd3 expression. High-resolution time-lapse imaging reveals the dynamic phases of precursor and migratory neural crest cell movements from the neural keel stage to times of active cell migration. In addition, Cre-recombination produces a variant line FoxD3-mCherry-pA whose homozygosis generates a FoxD3 mutant. Taking advantage of the endogenously regulated expression of FoxD3-mCherry fusion protein, we directly assess early effects of FoxD3 loss-of-function on specification and morphogenesis of dorsal root ganglia, craniofacial skeleton and melanophores. These novel lines provide new insights and useful new tools for studying specification, migration and differentiation of neural crest cells.
Collapse
Affiliation(s)
- Tatiana Hochgreb-Hägele
- Division of Biology, California Institute of Technology, 1200 E. California Blvd., MC139-74, Pasadena, CA 91125, USA.
| | | |
Collapse
|
99
|
Lin CJ, Lin CY, Chen CH, Zhou B, Chang CP. Partitioning the heart: mechanisms of cardiac septation and valve development. Development 2012; 139:3277-99. [PMID: 22912411 DOI: 10.1242/dev.063495] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heart malformations are common congenital defects in humans. Many congenital heart defects involve anomalies in cardiac septation or valve development, and understanding the developmental mechanisms that underlie the formation of cardiac septal and valvular tissues thus has important implications for the diagnosis, prevention and treatment of congenital heart disease. The development of heart septa and valves involves multiple types of progenitor cells that arise either within or outside the heart. Here, we review the morphogenetic events and genetic networks that regulate spatiotemporal interactions between the cells that give rise to septal and valvular tissues and hence partition the heart.
Collapse
Affiliation(s)
- Chien-Jung Lin
- Division of Cardiovascular Medicine, Department of Medicine, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
100
|
Epigenomic annotation of enhancers predicts transcriptional regulators of human neural crest. Cell Stem Cell 2012; 11:633-48. [PMID: 22981823 DOI: 10.1016/j.stem.2012.07.006] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/31/2012] [Accepted: 07/09/2012] [Indexed: 01/29/2023]
Abstract
Neural crest cells (NCC) are a transient, embryonic cell population characterized by unusual migratory ability and developmental plasticity. To annotate and characterize cis-regulatory elements utilized by the human NCC, we coupled a hESC differentiation model with genome-wide profiling of histone modifications and of coactivator and transcription factor (TF) occupancy. Sequence analysis predicted major TFs binding at epigenomically annotated hNCC enhancers, including a master NC regulator, TFAP2A, and nuclear receptors NR2F1 and NR2F2. Although many TF binding events occur outside enhancers, sites coinciding with enhancer chromatin signatures show significantly higher sequence constraint, nucleosomal depletion, correlation with gene expression, and functional conservation in NCC isolated from chicken embryos. Simultaneous co-occupancy by TFAP2A and NR2F1/F2 is associated with permissive enhancer chromatin states, characterized by high levels of p300 and H3K27ac. Our results provide global insights into human NC chromatin landscapes and a rich resource for studies of craniofacial development and disease.
Collapse
|