51
|
Conditional deletion of Bmp2 in cranial neural crest cells recapitulates Pierre Robin sequence in mice. Cell Tissue Res 2018; 376:199-210. [PMID: 30413887 DOI: 10.1007/s00441-018-2944-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/22/2018] [Indexed: 12/20/2022]
Abstract
Bone morphogenetic protein (BMP) signaling plays a crucial role in the development of craniofacial organs. Mutations in numerous members of the BMP signaling pathway lead to several severe human syndromes, including Pierre Robin sequence (PRS) caused by heterozygous loss of BMP2. In this study, we generate mice carrying Bmp2-specific deletion in cranial neural crest cells using floxed Bmp2 and Wnt1-Cre alleles to mimic PRS in humans. Mutant mice exhibit severe PRS with a significantly reduced size of craniofacial bones, cleft palate, malformed tongue and micrognathia. Palate clefting is caused by the undescended tongue that prevents palatal shelf elevation. However, the tongue in Wnt1-Cre;Bmp2f/f mice does not exhibit altered rates of cell proliferation and apoptosis, suggesting contribution of extrinsic defects to the failure of tongue descent. Further studies revealed obvious reduction in cell proliferation and differentiation of osteogenic progenitors in the mandible of the mutants, attributing to the micrognathia phenotype. Our study illustrates the pathogenesis of PRS caused by Bmp2 mutation, highlights the crucial role of BMP2 in the development of craniofacial bones and emphasizes precise coordination in the morphogenesis of palate, tongue and mandible during embryonic development.
Collapse
|
52
|
Shin JO, Lee JM, Bok J, Jung HS. Inhibition of the Zeb family prevents murine palatogenesis through regulation of apoptosis and the cell cycle. Biochem Biophys Res Commun 2018; 506:223-230. [DOI: 10.1016/j.bbrc.2018.10.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 10/13/2018] [Indexed: 01/30/2023]
|
53
|
Tarr JT, Lambi AG, Bradley JP, Barbe MF, Popoff SN. Development of Normal and Cleft Palate: A Central Role for Connective Tissue Growth Factor (CTGF)/CCN2. J Dev Biol 2018; 6:jdb6030018. [PMID: 30029495 PMCID: PMC6162467 DOI: 10.3390/jdb6030018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/15/2018] [Accepted: 07/15/2018] [Indexed: 02/06/2023] Open
Abstract
Development of the palate is the result of an organized series of events that require exquisite spatial and temporal regulation at the cellular level. There are a myriad of growth factors, receptors and signaling pathways that have been shown to play an important role in growth, elevation and/or fusion of the palatal shelves. Altered expression or activation of a number of these factors, receptors and signaling pathways have been shown to cause cleft palate in humans or mice with varying degrees of penetrance. This review will focus on connective tissue growth factor (CTGF) or CCN2, which was recently shown to play an essential role in formation of the secondary palate. Specifically, the absence of CCN2 in KO mice results in defective cellular processes that contribute to failure of palatal shelf growth, elevation and/or fusion. CCN2 is unique in that it has been shown to interact with a number of other factors important for palate development, including bone morphogenetic proteins (BMPs), fibroblast growth factors (FGFs), epidermal growth factor (EGF), Wnt proteins and transforming growth factor-βs (TGF-βs), thereby influencing their ability to bind to their receptors and mediate intracellular signaling. The role that these factors play in palate development and their specific interactions with CCN2 will also be reviewed. Future studies to elucidate the precise mechanisms of action for CCN2 and its interactions with other regulatory proteins during palatogenesis are expected to provide novel information with the potential for development of new pharmacologic or genetic treatment strategies for clinical intervention of cleft palate during development.
Collapse
Affiliation(s)
- Joseph T Tarr
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| | - Alex G Lambi
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - James P Bradley
- Northwell Health Surgical Service Line, Department of Surgery, Zucker School of Medicine, Lake Success, NY 11042, USA.
| | - Mary F Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| | - Steven N Popoff
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
54
|
Suzuki A, Jun G, Abdallah N, Gajera M, Iwata J. Gene datasets associated with mouse cleft palate. Data Brief 2018; 18:655-673. [PMID: 29896534 PMCID: PMC5996166 DOI: 10.1016/j.dib.2018.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/01/2018] [Indexed: 12/20/2022] Open
Abstract
This article presents data on genes associated with cleft palate (CP), retrieved through both a full-text systematic review and a mouse genome informatics (MGI) database search. In order to group CP-associated genes according to function, pathway, biological process, and cellular component, the genes were analyzed using category enrichment bioinformatics tools, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). This approach provides invaluable opportunities for the identification of candidate pathways and genes in CP research.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Goo Jun
- Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Nada Abdallah
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mona Gajera
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
55
|
Jin JZ, Lei Z, Lan ZJ, Mukhopadhyay P, Ding J. Inactivation of Fgfr2 gene in mouse secondary palate mesenchymal cells leads to cleft palate. Reprod Toxicol 2018. [PMID: 29526646 DOI: 10.1016/j.reprotox.2018.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Numerous studies have been conducted to understand the molecular mechanisms controlling mammalian secondary palate development such as growth, reorientation and fusion. However, little is known about the signaling factors regulating palate initiation. Mouse fibroblast growth factor (FGF) receptor 2 gene (Fgfr2) is expressed on E11.5 in the palate outgrowth within the maxillary process, in a region that is responsible for palate cell specification and shelf initiation. Fgfr2 continues to express in palate on E12.5 and E13.5 in both epithelial and mesenchymal cells, and inactivation of Fgfr2 expression in mesenchymal cells using floxed Fgfr2 allele and Osr2-Cre leads to cleft palate at various stages including reorientation, horizontal growth and fusion. Notably, some mutant embryos displayed no sign of palate shelf formation suggesting that FGF receptor 2 mediated FGF signaling may play an important role in palate initiation.
Collapse
Affiliation(s)
- Jiu-Zhen Jin
- Department of Surgical and Hospital Dentistry, University of Louisville School of Dentistry, Louisville, KY, 40202, USA
| | - Zhenmin Lei
- Department of Obstetrics/Gynecology and Women's Health, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Zi-Jian Lan
- Center for Animal Nutrigenomics & Applied Animal Nutrition, Alltech Inc., 3031 Catnip Hill Road, Nicholasville, KY, 40356, USA
| | - Partha Mukhopadhyay
- Department of Surgical and Hospital Dentistry, University of Louisville School of Dentistry, Louisville, KY, 40202, USA
| | - Jixiang Ding
- Department of Surgical and Hospital Dentistry, University of Louisville School of Dentistry, Louisville, KY, 40202, USA.
| |
Collapse
|
56
|
Mostowska A, Gaczkowska A, Żukowski K, Ludwig K, Hozyasz K, Wójcicki P, Mangold E, Böhmer A, Heilmann-Heimbach S, Knapp M, Zadurska M, Biedziak B, Budner M, Lasota A, Daktera-Micker A, Jagodziński P. Common variants inDLG1locus are associated with non-syndromic cleft lip with or without cleft palate. Clin Genet 2018; 93:784-793. [DOI: 10.1111/cge.13141] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/31/2022]
Affiliation(s)
- A. Mostowska
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan Poland
| | - A. Gaczkowska
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan Poland
| | - K. Żukowski
- Department of Animal Genetics and Breeding; National Research Institute of Animal Production; Balice Poland
| | - K.U. Ludwig
- Institute of Human Genetics; University of Bonn; Bonn Germany
- Department of Genomics; Life and Brain Center, University of Bonn; Bonn Germany
| | - K.K. Hozyasz
- Department of Pediatrics; Institute of Mother and Child; Warsaw Poland
| | - P. Wójcicki
- Plastic Surgery Clinic of Medical University in Wroclaw; Wroclaw Poland
- Department of Plastic Surgery in Specialist Medical Center in Polanica Zdroj; Polanica Zdroj Poland
| | - E. Mangold
- Institute of Human Genetics; University of Bonn; Bonn Germany
| | - A.C. Böhmer
- Institute of Human Genetics; University of Bonn; Bonn Germany
- Department of Genomics; Life and Brain Center, University of Bonn; Bonn Germany
| | - S. Heilmann-Heimbach
- Institute of Human Genetics; University of Bonn; Bonn Germany
- Department of Genomics; Life and Brain Center, University of Bonn; Bonn Germany
| | - M. Knapp
- Institute for Medical Biometry, Informatics and Epidemiology; University of Bonn; Bonn Germany
| | - M. Zadurska
- Department of Orthodontics; Medical University of Warsaw; Warsaw Poland
| | - B. Biedziak
- Department of Dental Surgery, Division of Facial Malformation; Poznan University of Medical Sciences; Poznan Poland
| | - M. Budner
- Eastern Poland Burn Treatment and Reconstructive Center; Leczna Poland
| | - A. Lasota
- Department of Jaw Orthopedics; Medical University of Lublin; Lublin Poland
| | - A. Daktera-Micker
- Department of Dental Surgery, Division of Facial Malformation; Poznan University of Medical Sciences; Poznan Poland
| | - P.P. Jagodziński
- Department of Biochemistry and Molecular Biology; Poznan University of Medical Sciences; Poznan Poland
| |
Collapse
|
57
|
Gerhardt B, Leesman L, Burra K, Snowball J, Rosenzweig R, Guzman N, Ambalavanan M, Sinner D. Notum attenuates Wnt/β-catenin signaling to promote tracheal cartilage patterning. Dev Biol 2018; 436:14-27. [PMID: 29428562 DOI: 10.1016/j.ydbio.2018.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/20/2022]
Abstract
Tracheobronchomalacia (TBM) is a common congenital disorder in which the cartilaginous rings of the trachea are weakened or missing. Despite the high prevalence and clinical issues associated with TBM, the etiology is largely unknown. Our previous studies demonstrated that Wntless (Wls) and its associated Wnt pathways are critical for patterning of the upper airways. Deletion of Wls in respiratory endoderm caused TBM and ectopic trachealis muscle. To understand mechanisms by which Wls mediates tracheal patterning, we performed RNA sequencing in prechondrogenic tracheal tissue of Wlsf/f;ShhCre/wt embryos. Chondrogenic Bmp4, and Sox9 were decreased, while expression of myogenic genes was increased. We identified Notum, a deacylase that inactivates Wnt ligands, as a target of Wls induced Wnt signaling. Notum's mesenchymal ventral expression in prechondrogenic trachea overlaps with expression of Axin2, a Wnt/β-catenin target and inhibitor. Notum is induced by Wnt/β-catenin in developing trachea. Deletion of Notum activated mesenchymal Wnt/β-catenin and caused tracheal mispatterning of trachealis muscle and cartilage as well as tracheal stenosis. Notum is required for tracheal morphogenesis, influencing mesenchymal condensations critical for patterning of tracheal cartilage and muscle. We propose that Notum influences mesenchymal cell differentiation by generating a barrier for Wnt ligands produced and secreted by airway epithelial cells to attenuate Wnt signaling.
Collapse
Affiliation(s)
- Bradley Gerhardt
- Division of Neonatology and Pulmonary Biology, CCHMC, University of Cincinnati, College of Medicine and University Honors Program, Cincinnati, OH 45229, United States of America
| | - Lauren Leesman
- Division of Neonatology and Pulmonary Biology, CCHMC, University of Cincinnati, College of Medicine and University Honors Program, Cincinnati, OH 45229, United States of America
| | - Kaulini Burra
- Division of Neonatology and Pulmonary Biology, CCHMC, University of Cincinnati, College of Medicine and University Honors Program, Cincinnati, OH 45229, United States of America
| | - John Snowball
- Division of Neonatology and Pulmonary Biology, CCHMC, University of Cincinnati, College of Medicine and University Honors Program, Cincinnati, OH 45229, United States of America
| | - Rachel Rosenzweig
- Division of Neonatology and Pulmonary Biology, CCHMC, University of Cincinnati, College of Medicine and University Honors Program, Cincinnati, OH 45229, United States of America
| | - Natalie Guzman
- Division of Neonatology and Pulmonary Biology, CCHMC, University of Cincinnati, College of Medicine and University Honors Program, Cincinnati, OH 45229, United States of America
| | - Manoj Ambalavanan
- Division of Neonatology and Pulmonary Biology, CCHMC, University of Cincinnati, College of Medicine and University Honors Program, Cincinnati, OH 45229, United States of America
| | - Debora Sinner
- Division of Neonatology and Pulmonary Biology, CCHMC, University of Cincinnati, College of Medicine and University Honors Program, Cincinnati, OH 45229, United States of America
| |
Collapse
|
58
|
Hu X, Gao JH, Liao YJ, Tang SJ, Lu F. 2,3,7,8-Tetrachlorodibenzo-p-dioxin Delays Palatal Shelf Elevation and Suppresses Wnt5a and Lymphoid Enhancing-Binding Factor 1 Signaling in Developing Palate. Cleft Palate Craniofac J 2018; 52:54-61. [PMID: 24555447 DOI: 10.1597/13-018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE 2,3,7,8-Tetrachlorodibenzo-p-dioxin contributes to cleft palate, but the cellular and molecular mechanisms responsible for the deleterious effect on the developing palate are unclear. Because Wnt signaling is associated with 2,3,7,8-tetrachlorodibenzo-p-dioxin in organ development, we wondered whether the malformation of the palate also results from altered Wnt signaling. RESULTS The 2,3,7,8-tetrachlorodibenzo-p-dioxin administration affected cell proliferation of the anteroposterior axis of the palatal shelf and delayed shelf elevation in mice. The activity of Wnt5a and lymphoid enhancing-binding factor 1 was inhibited by 2,3,7,8-tetrachlorodibenzo-p-dioxin in the developing palate. CONCLUSIONS Downregulated Wnt5a and lymphoid enhancing-binding factor 1 are associated with 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cleft palate. Moreover, delayed shelf elevation by 2,3,7,8-tetrachlorodibenzo-p-dioxin is the crucial mechanism contributing to the high incidence of cleft palate. Our findings may help in elucidating the mechanisms of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cleft palate.
Collapse
|
59
|
Fontoura C, Silva RM, Granjeiro JM, Letra A. Association of WNT9B Gene Polymorphisms With Nonsyndromic Cleft Lip With or Without Cleft Palate in Brazilian Nuclear Families. Cleft Palate Craniofac J 2018; 52:44-8. [PMID: 24437584 DOI: 10.1597/13-146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Nonsyndromic cleft lip with or without cleft palate (NSCL±P) is a common craniofacial anomaly of complex etiology in people. WNT pathway genes have important roles during craniofacial development, and an association of WNT genes with NSCL±P has been demonstrated in different populations. The aim of this study was to evaluate the association between polymorphisms in WNT3 and WNT9B genes and CL/P in Brazilian families. PATIENTS Seventy nuclear families composed of an affected child and the child's unaffected parents were examined clinically. Saliva samples were collected for molecular analyses. DESIGN Three single nucleotide polymorphisms (SNPs) in the WNT3 gene and two in WNT9B were investigated in real-time polymerase chain reaction using TaqMan chemistry. The Family-Based Association Test and the transmission disequilibrium test were used to verify the association between each marker allele and NSCL±P. The level of significance was established at P ≤ .01 after Bonferroni correction. RESULTS A positive association was detected between NSCL±P and SNP rs1530364 in the WNT9B gene. Haplotype analysis showed an association of WNT3 and WNT9B haplotypes. No association was detected between NSCL±P and individual SNPs in WNT3. CONCLUSION Our study further supports the involvement of WNT9B as a cleft susceptibility gene in Brazilian families experiencing NSCL±P. Although additional studies are still necessary to unveil the exact mechanism by which WNT genes would contribute to NSCL±P, allelic polymorphisms in these genes and their interactions may partly explain the variance of individual susceptibility to NSCL±P.
Collapse
|
60
|
Zhu XJ, Fang Y, Xiong Y, Wang M, Yang X, Li Y, Zhang X, Dai ZM, Qiu M, Zhang Z, Zhang Z. Disruption of Wnt production in Shh
lineage causes bone malformation in mice, mimicking human Malik-Percin-type syndactyly. FEBS Lett 2018; 592:356-368. [DOI: 10.1002/1873-3468.12963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/08/2017] [Accepted: 12/22/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Xiao-Jing Zhu
- Institute of Life Sciences; College of Life and Environmental Science; Key Laboratory of Mammalian Organogenesis and Regeneration; Hangzhou Normal University; Zhejiang China
| | - Yukun Fang
- Institute of Life Sciences; College of Life and Environmental Science; Key Laboratory of Mammalian Organogenesis and Regeneration; Hangzhou Normal University; Zhejiang China
| | - Yanan Xiong
- Institute of Life Sciences; College of Life and Environmental Science; Key Laboratory of Mammalian Organogenesis and Regeneration; Hangzhou Normal University; Zhejiang China
| | - Min Wang
- Institute of Life Sciences; College of Life and Environmental Science; Key Laboratory of Mammalian Organogenesis and Regeneration; Hangzhou Normal University; Zhejiang China
| | - Xueqin Yang
- Institute of Life Sciences; College of Life and Environmental Science; Key Laboratory of Mammalian Organogenesis and Regeneration; Hangzhou Normal University; Zhejiang China
| | - Yan Li
- Institute of Life Sciences; College of Life and Environmental Science; Key Laboratory of Mammalian Organogenesis and Regeneration; Hangzhou Normal University; Zhejiang China
| | - Xiaoyun Zhang
- Institute of Life Sciences; College of Life and Environmental Science; Key Laboratory of Mammalian Organogenesis and Regeneration; Hangzhou Normal University; Zhejiang China
| | - Zhong-Min Dai
- Institute of Life Sciences; College of Life and Environmental Science; Key Laboratory of Mammalian Organogenesis and Regeneration; Hangzhou Normal University; Zhejiang China
| | - Mengsheng Qiu
- Institute of Life Sciences; College of Life and Environmental Science; Key Laboratory of Mammalian Organogenesis and Regeneration; Hangzhou Normal University; Zhejiang China
| | - Ze Zhang
- Department of Ophthalmology; Tulane Medical Center; Tulane University; New Orleans LA USA
| | - Zunyi Zhang
- Institute of Life Sciences; College of Life and Environmental Science; Key Laboratory of Mammalian Organogenesis and Regeneration; Hangzhou Normal University; Zhejiang China
| |
Collapse
|
61
|
Common basis for orofacial clefting and cortical interneuronopathy. Transl Psychiatry 2018; 8:8. [PMID: 29317601 PMCID: PMC5802454 DOI: 10.1038/s41398-017-0057-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/11/2017] [Accepted: 10/15/2017] [Indexed: 12/31/2022] Open
Abstract
Orofacial clefts (OFCs) of the lip and/or palate are among the most common human birth defects. Current treatment strategies focus on functional and cosmetic repair but even when this care is available, individuals born with OFCs are at high risk for persistent neurobehavioral problems. In addition to learning disabilities and reduced academic achievement, recent evidence associates OFCs with elevated risk for a constellation of psychiatric outcomes including anxiety disorders, autism spectrum disorder, and schizophrenia. The relationship between these outcomes and OFCs is poorly understood and controversial. Recent neuroimaging studies in humans and mice demonstrate subtle morphological brain abnormalities that co-occur with OFCs but specific molecular and cellular mechanisms have not been investigated. Here, we provide the first evidence directly linking OFC pathogenesis to abnormal development of GABAergic cortical interneurons (cINs). Lineage tracing revealed that the structures that form the upper lip and palate develop in molecular synchrony and spatiotemporal proximity to cINs, suggesting these populations may have shared sensitivity to genetic and/or teratogenic insult. Examination of cIN development in a mouse model of nonsyndromic OFCs revealed significant disruptions in cIN proliferation and migration, culminating in misspecification of the somatostatin-expressing subgroup. These findings reveal a unified developmental basis for orofacial clefting and disrupted cIN development, and may explain the significant overlap in neurobehavioral and psychiatric outcomes associated with OFCs and cIN dysfunction. This emerging mechanistic understanding for increased prevalence of adverse neurobehavioral outcomes in OFC patients is the entry-point for developing evidence-based therapies to improve patient outcomes.
Collapse
|
62
|
Vijayan V, Ummer R, Weber R, Silva R, Letra A. Association of WNT Pathway Genes With Nonsyndromic Cleft Lip With or Without Cleft Palate. Cleft Palate Craniofac J 2017; 55:335-341. [PMID: 29437498 DOI: 10.1177/1055665617732782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Nonsyndromic cleft lip with or without cleft palate (NSCL±P) is a common craniofacial anomaly with multifactorial etiology. Evidence suggests that variations in WNT pathway genes contribute to an increased susceptibility to NSCL±P. The aim of this study was to investigate the association of AXIN1, APC, CTNNB1, DVL2, and GSK3β gene variants with NSCL±P in a case-control data set from Brazil. PATIENTS 471 individuals with NSCL±P and 504 unrelated control individuals of Caucasian ethnicity. DESIGN Twenty single-nucleotide polymorphisms (SNPs) in/nearby AXIN1, APC, CTNNB1, DVL2, and GSK3B genes were genotyped using Taqman chemistry in a Viia7 sequence detection instrument. Genotype, allele, and haplotype frequencies were compared among NSCL±P patients and controls using Fisher exact test, implemented in PLINK software. The level of significance was established at P ≤.002 under Bonferroni correction. In silico analysis of SNP function was assessed using MirSNP database. RESULTS Significant association was found between GSK3B rs13314595 genotypes and NSCL±P ( P = .0006). Additionally, nominal associations were found between DVL2 (rs35594616) and APC (rs448475) with NSCL±P ( P = .02 and P = .03, respectively). SNP haplotypes for GSK3B and APC genes showed nominal associations with NSCL±P ( P < .05). In silico analysis predicted that APC rs448475 harbors a binding site for the microRNA miR-617 and that the switch from a G allele to C allele enhances binding, whereas DVL2 rs35594616 did not appear to harbor microRNA-binding sites. CONCLUSION This study shows for the first time the association between GSK3B and NSCL±P and confirms the role of additional WNT pathway genes as candidates for NSCL±P.
Collapse
Affiliation(s)
- V Vijayan
- 1 University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - R Ummer
- 2 University of Texas Health Science Center School of Dentistry, Houston, TX, USA
| | - R Weber
- 2 University of Texas Health Science Center School of Dentistry, Houston, TX, USA
| | - R Silva
- 3 Department of Endodontics and Center for Craniofacial Research, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA.,4 Pediatric Research Center, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - A Letra
- 4 Pediatric Research Center, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA.,5 Department of Diagnostic and Biomedical Sciences and Center for Craniofacial Research, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| |
Collapse
|
63
|
Hossein G, Arabzadeh S, Salehi-Dulabi Z, Dehghani-Ghobadi Z, Heidarian Y, Talebi-Juybari M. Wnt5A regulates the expression of ROR2 tyrosine kinase receptor in ovarian cancer cells. Biochem Cell Biol 2017; 95:609-615. [PMID: 28538104 DOI: 10.1139/bcb-2016-0216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Wnt5A and receptor tyrosine kinase-like orphan receptor 2 (ROR2) proteins both regulate developmental processes, cell movement, and cell polarity. The purpose of this study was to evaluate a possible regulatory role of Wnt5A on ROR2 expression in human ovarian cancer cell lines. Moreover, the expression of Wnt5A and ROR2 mRNA and protein levels were assessed in human epithelial serous ovarian cancer (HSOC) specimens. ROR2 was strongly decreased in cells treated with siRNA against Wnt5A compared with scramble-treated or lipofectamine-treated cells (P < 0.001). There was 34% decreased cell invasion (P < 0.01) in Wnt5A knock-down cells compared with lipofectamine-treated and scramble-treated cells; however, cell invasion remained unchanged upon addition of anti-ROR2 antibody to the culture media of these cells. In contrast, addition of anti-ROR2 antibody to the culture media for lipofectamine-treated and scramble-treated cells led to 32% decreased cell invasion (P < 0.01). Normal ovarian specimens were negative, and variable immunostaining was observed in HSOC for Wnt5A and ROR2 immunostaining. Furthermore, there was a positive correlation between Wnt5A and ROR2 expression in high-grade SOC samples at the mRNA level (P < 0.05; r = 0.38). This is the first report to show the regulatory role of Wnt5A on ROR2 expression in ovarian cancer.
Collapse
Affiliation(s)
- Ghamartaj Hossein
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Somayeh Arabzadeh
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Salehi-Dulabi
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zeinab Dehghani-Ghobadi
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Yassaman Heidarian
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Talebi-Juybari
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
64
|
Okello DO, Iyyanar PPR, Kulyk WM, Smith TM, Lozanoff S, Ji S, Nazarali AJ. Six2 Plays an Intrinsic Role in Regulating Proliferation of Mesenchymal Cells in the Developing Palate. Front Physiol 2017; 8:955. [PMID: 29218017 PMCID: PMC5704498 DOI: 10.3389/fphys.2017.00955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/09/2017] [Indexed: 02/04/2023] Open
Abstract
Cleft palate is a common congenital abnormality that results from defective secondary palate (SP) formation. The Sine oculis-related homeobox 2 (Six2) gene has been linked to abnormalities of craniofacial and kidney development. Our current study examined, for the first time, the specific role of Six2 in embryonic mouse SP development. Six2 mRNA and protein expression were identified in the palatal shelves from embryonic days (E)12.5 to E15.5, with peak levels during early stages of palatal shelf outgrowth. Immunohistochemical staining (IHC) showed that Six2 protein is abundant throughout the mesenchyme in the oral half of each palatal shelf, whereas there is a pronounced decline in Six2 expression by mesenchyme cells in the nasal half of the palatal shelf by stages E14.5-15.5. An opposite pattern was observed in the surface epithelium of the palatal shelf. Six2 expression was prominent at all stages in the epithelial cell layer located on the nasal side of each palatal shelf but absent from the epithelium located on the oral side of the palatal shelf. Six2 is a putative downstream target of transcription factor Hoxa2 and we previously demonstrated that Hoxa2 plays an intrinsic role in embryonic palate formation. We therefore investigated whether Six2 expression was altered in the developing SP of Hoxa2 null mice. Reverse transcriptase PCR and Western blot analyses revealed that Six2 mRNA and protein levels were upregulated in Hoxa2-/- palatal shelves at stages E12.5-14.5. Moreover, the domain of Six2 protein expression in the palatal mesenchyme of Hoxa2-/- embryos was expanded to include the entire nasal half of the palatal shelf in addition to the oral half. The palatal shelves of Hoxa2-/- embryos displayed a higher density of proliferating, Ki-67 positive palatal mesenchyme cells, as well as a higher density of Six2/Ki-67 double-positive cells. Furthermore, Hoxa2-/- palatal mesenchyme cells in culture displayed both increased proliferation and elevated Cyclin D1 expression relative to wild-type cultures. Conversely, siRNA-mediated Six2 knockdown restored proliferation and Cyclin D1 expression in Hoxa2-/- palatal mesenchyme cultures to near wild-type levels. Our findings demonstrate that Six2 functions downstream of Hoxa2 as a positive regulator of mesenchymal cell proliferation during SP development.
Collapse
Affiliation(s)
- Dennis O Okello
- Laboratory of Molecular Cell Biology, Neuroscience Research Cluster, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paul P R Iyyanar
- Laboratory of Molecular Cell Biology, Neuroscience Research Cluster, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - William M Kulyk
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tara M Smith
- Laboratory of Molecular Cell Biology, Neuroscience Research Cluster, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.,Med-life Discoveries LP, Saskatoon, SK, Canada
| | - Scott Lozanoff
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Shaoping Ji
- Laboratory of Molecular Cell Biology, Neuroscience Research Cluster, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, China
| | - Adil J Nazarali
- Laboratory of Molecular Cell Biology, Neuroscience Research Cluster, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
65
|
Iyyanar PPR, Nazarali AJ. Hoxa2 Inhibits Bone Morphogenetic Protein Signaling during Osteogenic Differentiation of the Palatal Mesenchyme. Front Physiol 2017; 8:929. [PMID: 29184513 PMCID: PMC5694536 DOI: 10.3389/fphys.2017.00929] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/02/2017] [Indexed: 12/15/2022] Open
Abstract
Cleft palate is one of the most common congenital birth defects worldwide. The homeobox (Hox) family of genes are key regulators of embryogenesis, with Hoxa2 having a direct role in secondary palate development. Hoxa2−/− mice exhibit cleft palate; however, the cellular and molecular mechanisms leading to cleft palate in Hoxa2−/− mice is largely unknown. Addressing this issue, we found that Hoxa2 regulates spatial and temporal programs of osteogenic differentiation in the developing palate by inhibiting bone morphogenetic protein (BMP) signaling dependent osteoblast markers. Expression of osteoblast markers, including Runx2, Sp7, and AlpI were increased in Hoxa2−/− palatal shelves at embryonic day (E) 13.5 and E15.5. Hoxa2−/− mouse embryonic palatal mesenchyme (MEPM) cells exhibited increased bone matrix deposition and mineralization in vitro. Moreover, loss of Hoxa2 resulted in increased osteoprogenitor cell proliferation and osteogenic commitment during early stages of palate development at E13.5. Consistent with upregulation of osteoblast markers, Hoxa2−/− palatal shelves displayed higher expression of canonical BMP signaling in vivo. Blocking BMP signaling in Hoxa2−/− primary MEPM cells using dorsomorphin restored cell proliferation and osteogenic differentiation to wild-type levels. Collectively, these data demonstrate for the first time that Hoxa2 may regulate palate development by inhibiting osteogenic differentiation of palatal mesenchyme via modulating BMP signaling.
Collapse
Affiliation(s)
- Paul P R Iyyanar
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition and Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
| | - Adil J Nazarali
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition and Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
66
|
Kamizaki K, Doi R, Hayashi M, Saji T, Kanagawa M, Toda T, Fukada SI, Ho HYH, Greenberg ME, Endo M, Minami Y. The Ror1 receptor tyrosine kinase plays a critical role in regulating satellite cell proliferation during regeneration of injured muscle. J Biol Chem 2017; 292:15939-15951. [PMID: 28790171 DOI: 10.1074/jbc.m117.785709] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/07/2017] [Indexed: 12/31/2022] Open
Abstract
The Ror family receptor tyrosine kinases, Ror1 and Ror2, play important roles in regulating developmental morphogenesis and tissue- and organogenesis, but their roles in tissue regeneration in adult animals remain largely unknown. In this study, we examined the expression and function of Ror1 and Ror2 during skeletal muscle regeneration. Using an in vivo skeletal muscle injury model, we show that expression of Ror1 and Ror2 in skeletal muscles is induced transiently by the inflammatory cytokines, TNF-α and IL-1β, after injury and that inhibition of TNF-α and IL-1β by neutralizing antibodies suppresses expression of Ror1 and Ror2 in injured muscles. Importantly, expression of Ror1, but not Ror2, was induced primarily in Pax7-positive satellite cells (SCs) after muscle injury, and administration of neutralizing antibodies decreased the proportion of Pax7-positive proliferative SCs after muscle injury. We also found that stimulation of a mouse myogenic cell line, C2C12 cells, with TNF-α or IL-1β induced expression of Ror1 via NF-κB activation and that suppressed expression of Ror1 inhibited their proliferative responses in SCs. Intriguingly, SC-specific depletion of Ror1 decreased the number of Pax7-positive SCs after muscle injury. Collectively, these findings indicate for the first time that Ror1 has a critical role in regulating SC proliferation during skeletal muscle regeneration. We conclude that Ror1 might be a suitable target in the development of diagnostic and therapeutic approaches to manage muscular disorders.
Collapse
Affiliation(s)
- Koki Kamizaki
- From the Division of Cell Physiology, Department of Physiology and Cell Biology, and
| | - Ryosuke Doi
- From the Division of Cell Physiology, Department of Physiology and Cell Biology, and
| | - Makoto Hayashi
- From the Division of Cell Physiology, Department of Physiology and Cell Biology, and
| | - Takeshi Saji
- From the Division of Cell Physiology, Department of Physiology and Cell Biology, and
| | - Motoi Kanagawa
- Division of Neurology/Molecular Brain Science, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Tatsushi Toda
- Division of Neurology/Molecular Brain Science, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - So-Ichiro Fukada
- the Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan, and
| | - Hsin-Yi Henry Ho
- the Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | | | - Mitsuharu Endo
- From the Division of Cell Physiology, Department of Physiology and Cell Biology, and
| | - Yasuhiro Minami
- From the Division of Cell Physiology, Department of Physiology and Cell Biology, and
| |
Collapse
|
67
|
Abstract
Development of the mammalian secondary palate involves highly dynamic morphogenetic processes, including outgrowth of palatal shelves from the oral side of the embryonic maxillary prominences, elevation of the initially vertically oriented palatal shelves to the horizontal position above the embryonic tongue, and subsequently adhesion and fusion of the paired palatal shelves at the midline to separate the oral cavity from the nasal cavity. Perturbation of any of these processes could cause cleft palate, a common birth defect that significantly affects patients' quality of life even after surgical treatment. In addition to identifying a large number of genes required for palate development, recent studies have begun to unravel the extensive cross-regulation of multiple signaling pathways, including Sonic hedgehog, bone morphogenetic protein, fibroblast growth factor, transforming growth factor β, and Wnt signaling, and multiple transcription factors during palatal shelf growth and patterning. Multiple studies also provide new insights into the gene regulatory networks and/or dynamic cellular processes underlying palatal shelf elevation, adhesion, and fusion. Here we summarize major recent advances and integrate the genes and molecular pathways with the cellular and morphogenetic processes of palatal shelf growth, patterning, elevation, adhesion, and fusion.
Collapse
Affiliation(s)
- C Li
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Y Lan
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,2 Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - R Jiang
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,2 Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
68
|
Li C, Lan Y, Krumlauf R, Jiang R. Modulating Wnt Signaling Rescues Palate Morphogenesis in Pax9 Mutant Mice. J Dent Res 2017; 96:1273-1281. [PMID: 28692808 DOI: 10.1177/0022034517719865] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cleft palate is a common birth defect caused by disruption of palatogenesis during embryonic development. Although mutations disrupting components of the Wnt signaling pathway have been associated with cleft lip and palate in humans and mice, the mechanisms involving canonical Wnt signaling and its regulation in secondary palate development are not well understood. Here, we report that canonical Wnt signaling plays an important role in Pax9-mediated regulation of secondary palate development. We found that cleft palate pathogenesis in Pax9-deficient embryos is accompanied by significantly reduced expression of Axin2, an endogenous target of canonical Wnt signaling, in the developing palatal mesenchyme, particularly in the posterior regions of the palatal shelves. We found that expression of Dkk2, encoding a secreted Wnt antagonist, is significantly increased whereas the levels of active β-catenin protein, the essential transcriptional coactivator of canonical Wnt signaling, is significantly decreased in the posterior regions of the palatal shelves in embryonic day 13.5 Pax9-deficent embryos in comparison with control littermates. We show that small molecule-mediated inhibition of Dickkopf (DKK) activity in utero during palatal shelf morphogenesis partly rescued secondary palate development in Pax9-deficient embryos. Moreover, we found that genetic inactivation of Wise, which is expressed in the developing palatal shelves and encodes another secreted antagonist of canonical Wnt signaling, also rescued palate morphogenesis in Pax9-deficient mice. Furthermore, whereas Pax9del/del embryos exhibit defects in palatal shelf elevation/reorientation and significant reduction in accumulation of hyaluronic acid-a high molecular extracellular matrix glycosaminoglycan implicated in playing an important role in palatal shelf elevation-80% of Pax9del/del;Wise-/- double-mutant mouse embryos exhibit rescued palatal shelf elevation/reorientation, accompanied by restored hyaluronic acid accumulation in the palatal mesenchyme. Together, these data identify a crucial role for canonical Wnt signaling in acting downstream of Pax9 to regulate palate morphogenesis.
Collapse
Affiliation(s)
- C Li
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Y Lan
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,2 Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - R Krumlauf
- 3 Stowers Institute for Medical Research, Kansas City, MO, USA.,4 Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - R Jiang
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,2 Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
69
|
Hosseini-Farahabadi S, Gignac S, Danescu A, Fu K, Richman J. Abnormal WNT5A Signaling Causes Mandibular Hypoplasia in Robinow Syndrome. J Dent Res 2017; 96:1265-1272. [DOI: 10.1177/0022034517716916] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The study of rare genetic diseases provides valuable insights into human gene function. Here, we investigate dominant Robinow syndrome (RS), which affects the WNT5A signaling pathway. Autosomal dominant RS is caused by missense mutations in WNT5A or nonsense mutations in the adaptor protein DVL1 or DVL3. The recessive form of the disease is caused by loss-of-function mutations in the receptor ROR2. RS is characterized by hypertelorism, midface, and mandibular hypoplasia. Here, we focus on the missense mutations in WNT5A, since the impact on function is difficult to predict from in silico analysis. We used chicken embryo to express wild-type or 2 mutant versions of human WNT5A in the mandible and then examined the morphologic, cellular, and molecular effects. The 3 experimental viruses—wt WNT5A, WNT5AC83S, or WNT5AC182R—all caused shortening of the mandible on the injected side as compared with GFP controls. Although the phenotypes initially appeared similar, we uncovered specific disruption of chondrocyte polarity and shape, inhibition of cell migration, differences in target gene expression, and absence of JNK signaling only in the presence of mutant viruses. In addition, the missense mutations do not appear to block receptor binding, since in paracrine experiments, the mutant protein inhibits cell migration. In this study, we ruled out a straightforward gain or loss of function caused by the WNT5A missense mutations. Instead, the mutations are likely redirecting WNT signaling away from JNK-PCP toward other noncanonical pathways. We conclude that in RS, WNT5A missense mutations have dominant neomorphic effects that interfere with the function of the wild-type protein.
Collapse
Affiliation(s)
- S. Hosseini-Farahabadi
- Life Sciences Institute, Department of Oral Health Sciences, University of British Columbia, Vancouver, BC, Canada
| | - S.J. Gignac
- Life Sciences Institute, Department of Oral Health Sciences, University of British Columbia, Vancouver, BC, Canada
| | - A. Danescu
- Life Sciences Institute, Department of Oral Health Sciences, University of British Columbia, Vancouver, BC, Canada
| | - K. Fu
- Life Sciences Institute, Department of Oral Health Sciences, University of British Columbia, Vancouver, BC, Canada
| | - J.M. Richman
- Life Sciences Institute, Department of Oral Health Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
70
|
Abstract
OBJECTIVE Our previous study showed that WNT5A, a member of the noncanonical WNT pathway, is involved in interleukin-1beta induced matrix metalloproteinase expression in temporomandibular joint (TMJ) condylar chondrocytes. The purpose of this study is to further explore the roles of WNT5A in cartilage biology of the TMJ. METHODS An early TMJ osteoarthritis-like rat model was constructed by a mechanical method (steady mouth-opening). The gene and protein levels of WNT5A during the condylar cartilage changes were measured. Effects of WNT5A on chondrocyte proliferation, hypertrophy and migration were analyzed after WNT5A gain or loss of function in vitro. A c-Jun N-terminal kinase (JNK) inhibitor SP600125 was used to evaluate the involvement of JNK pathway in these effects of WNT5A. The expression and transcription activity of cell cycle regulators c-MYC and Cyclin D1 were examined to determine the mechanism behind WNT5A regulation of chondrocyte proliferation. RESULTS WNT5A was significantly upregulated in the condylar cartilage of rats in the early TMJ osteoarthritis-like model. Activating WNT5A facilitated condylar chondrocyte proliferation, hypertrophy and migration. Conversely, inhibiting WNT5A activity in chondrocytes decreased their proliferation, hypertrophy and migration. Blockage of the JNK pathway by its inhibitor, SP600125, impaired these effects of WNT5A on chondrocytes. WNT5A regulated both the expression and transcriptional activity of c-MYC and Cyclin D1 in chondrocytes, both of which were upregulated in condylar cartilage of the rat early TMJ osteoarthritis. CONCLUSION WNT5A regulates condylar chondrocyte proliferation, hypertrophy and migration. These findings provide new insights into the role of WNT5A signaling in TMJ cartilage biology and its potential in future therapy for TMJ degenerative diseases.
Collapse
|
71
|
A pilot study: Screening target miRNAs in tissue of nonsyndromic cleft lip with or without cleft palate. Exp Ther Med 2017; 13:2570-2576. [PMID: 28565881 DOI: 10.3892/etm.2017.4248] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/26/2017] [Indexed: 12/11/2022] Open
Abstract
Nonsyndromic cleft lip with or without cleft palate (NSCLP) has been recognized as a condition resulting from a combination of environmental and genetic factors. Studies have demonstrated that microRNAs (miRNAs) are involved in embryonic development. However, few studies have focused on screening potential target miRNAs in human NSCLP tissue. Using microarray-based miRNA expression profiling, miRNA expression was compared in tissue samples from 4 NSCLP patients and 4 healthy control subjects. Two hundred and fifty-four miRNAs were found to be differentially expressed. Changes in Homo sapiens (hsa)-miR-24-3p, hsa-miR-27b-3p, hsa-miR-205-5p, hsa-miR-1260b and hsa-miR-720 were of particular interest with respect to Wnt signaling (fold-changes were 12.5, 12.2, 12.1, 12.3 and 10.5, respectively; P<0.005 for all). The levels of hsa-miR-24-3p, hsa-miR-1260b and hsa-miR-205-5p were higher in tissues from NSCLP patients than in those from controls according to PCR analysis. Hsa-miR-24-3p, hsa-miR-1260b and hsa-miR-205-5p may be candidate miRNAs involved in the etiology of NSCLP via Wnt signaling.
Collapse
|
72
|
Mammadova A, Zhou H, Carels CE, Von den Hoff JW. Retinoic acid signalling in the development of the epidermis, the limbs and the secondary palate. Differentiation 2016; 92:326-335. [DOI: 10.1016/j.diff.2016.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/20/2016] [Accepted: 05/02/2016] [Indexed: 01/06/2023]
|
73
|
Abstract
ROR-family receptor tyrosine kinases form a small subfamily of receptor tyrosine kinases (RTKs), characterized by a conserved, unique domain architecture. ROR RTKs are evolutionary conserved throughout the animal kingdom and act as alternative receptors and coreceptors of WNT ligands. The intracellular signaling cascades activated downstream of ROR receptors are diverse, including but not limited to ROR-Frizzled-mediated activation of planar cell polarity signaling, RTK-like signaling, and antagonistic regulation of WNT/β-Catenin signaling. In line with their diverse repertoire of signaling functions, ROR receptors are involved in the regulation of multiple processes in embryonic development such as development of the axial and paraxial mesoderm, the nervous system and the neural crest, the axial and appendicular skeleton, and the kidney. In humans, mutations in the ROR2 gene cause two distinct developmental syndromes, recessive Robinow syndrome (RRS; MIM 268310) and dominant brachydactyly type B1 (BDB1; MIM 113000). In Robinow syndrome patients and animal models, the development of multiple organs is affected, whereas BDB1 results only in shortening of the distal phalanges of fingers and toes, reflecting the diversity of functions and signaling activities of ROR-family RTKs. In this chapter, we give an overview on ROR receptor structure and function. We discuss their signaling functions and role in vertebrate embryonic development with a focus on those developmental processes that are affected by mutations in the ROR2 gene in human patients.
Collapse
|
74
|
Nishihara H, Kobayashi N, Kimura-Yoshida C, Yan K, Bormuth O, Ding Q, Nakanishi A, Sasaki T, Hirakawa M, Sumiyama K, Furuta Y, Tarabykin V, Matsuo I, Okada N. Coordinately Co-opted Multiple Transposable Elements Constitute an Enhancer for wnt5a Expression in the Mammalian Secondary Palate. PLoS Genet 2016; 12:e1006380. [PMID: 27741242 PMCID: PMC5065162 DOI: 10.1371/journal.pgen.1006380] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/21/2016] [Indexed: 11/18/2022] Open
Abstract
Acquisition of cis-regulatory elements is a major driving force of evolution, and there are several examples of developmental enhancers derived from transposable elements (TEs). However, it remains unclear whether one enhancer element could have been produced via cooperation among multiple, yet distinct, TEs during evolution. Here we show that an evolutionarily conserved genomic region named AS3_9 comprises three TEs (AmnSINE1, X6b_DNA and MER117), inserted side-by-side, and functions as a distal enhancer for wnt5a expression during morphogenesis of the mammalian secondary palate. Functional analysis of each TE revealed step-by-step retroposition/transposition and co-option together with acquisition of a binding site for Msx1 for its full enhancer function during mammalian evolution. The present study provides a new perspective suggesting that a huge variety of TEs, in combination, could have accelerated the diversity of cis-regulatory elements involved in morphological evolution.
Collapse
Affiliation(s)
- Hidenori Nishihara
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
| | - Naoki Kobayashi
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
| | - Chiharu Kimura-Yoshida
- Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan
| | - Kuo Yan
- Institute of Cell Biology and Neurobiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Olga Bormuth
- Institute of Cell Biology and Neurobiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Qiong Ding
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
| | - Akiko Nakanishi
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
| | - Takeshi Sasaki
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
| | - Mika Hirakawa
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Kenta Sumiyama
- National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yasuhide Furuta
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Chuou-ku, Kobe, Japan
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Chuou-ku, Kobe, Japan
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Isao Matsuo
- Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan
| | - Norihiro Okada
- Department of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- Foundation for Advancement of International Science, Tsukuba, Japan
- * E-mail: ,
| |
Collapse
|
75
|
Endo M, Ubulkasim G, Kobayashi C, Onishi R, Aiba A, Minami Y. Critical role of Ror2 receptor tyrosine kinase in regulating cell cycle progression of reactive astrocytes following brain injury. Glia 2016; 65:182-197. [DOI: 10.1002/glia.23086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/28/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine; Kobe University; Kobe 650-0017 Japan
| | - Guljahan Ubulkasim
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine; Kobe University; Kobe 650-0017 Japan
| | - Chiho Kobayashi
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine; Kobe University; Kobe 650-0017 Japan
| | - Reiko Onishi
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine; Kobe University; Kobe 650-0017 Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Faculty of Medicine; The University of Tokyo; Bunkyo-ku, Tokyo 113-0033 Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine; Kobe University; Kobe 650-0017 Japan
| |
Collapse
|
76
|
Henry C, Llamosas E, Knipprath-Meszaros A, Schoetzau A, Obermann E, Fuenfschilling M, Caduff R, Fink D, Hacker N, Ward R, Heinzelmann-Schwarz V, Ford C. Targeting the ROR1 and ROR2 receptors in epithelial ovarian cancer inhibits cell migration and invasion. Oncotarget 2016; 6:40310-26. [PMID: 26515598 PMCID: PMC4741897 DOI: 10.18632/oncotarget.5643] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/08/2015] [Indexed: 12/12/2022] Open
Abstract
AIM In recent years, the Wnt signalling pathway has been implicated in epithelial ovarian cancer and its members have potential as diagnostic, prognostic and therapeutic targets. Here we investigated the role of two Wnt receptor tyrosine kinases (RTKs), ROR1 and ROR2, and their putative ligand, Wnt5a, in ovarian cancer. METHODS Immunohistochemistry for ROR2 was performed in a large patient cohort, including benign controls, borderline tumours and epithelial ovarian cancer. In addition, siRNA was used to silence ROR1, ROR2 and Wnt5a individually, and together, in two ovarian cancer cell lines, and the effects on cell proliferation, adhesion, migration and invasion were measured. RESULTS ROR2 expression is significantly increased in ovarian cancer patients compared to patients with benign disease. In vitro assays showed that silencing either receptor inhibits ovarian cancer cell migration and invasion, and concurrently silencing both receptors has an even stronger inhibitory effect on proliferation, migration and invasion. CONCLUSIONS ROR2 expression is increased in epithelial ovarian cancer, and silencing ROR2 and its sister receptor ROR1 has a strong inhibitory effect on the ability of ovarian cancer cells to proliferate, migrate and invade through an extracellular matrix.
Collapse
Affiliation(s)
- Claire Henry
- Metastasis Research Group, Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, New South Wales, Australia
| | - Estelle Llamosas
- Metastasis Research Group, Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, New South Wales, Australia
| | - Alexandra Knipprath-Meszaros
- Department of Gynecology and Gynecological Oncology, Hospital for Women, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Andreas Schoetzau
- Department of Gynecology and Gynecological Oncology, Hospital for Women, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ellen Obermann
- Department of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Maya Fuenfschilling
- Department of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Rosemarie Caduff
- Department of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Daniel Fink
- Department of Gynecology, University Hospital Zurich, Zurich, Switzerland
| | - Neville Hacker
- Gynaecological Cancer Centre, Royal Hospital for Women, Sydney, Australia
| | - Robyn Ward
- Department of Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Viola Heinzelmann-Schwarz
- Department of Gynecology and Gynecological Oncology, Hospital for Women, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Caroline Ford
- Metastasis Research Group, Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, New South Wales, Australia
| |
Collapse
|
77
|
Arabzadeh S, Hossein G, Salehi-Dulabi Z, Zarnani AH. WNT5A-ROR2 is induced by inflammatory mediators and is involved in the migration of human ovarian cancer cell line SKOV-3. Cell Mol Biol Lett 2016; 21:9. [PMID: 28536612 PMCID: PMC5415827 DOI: 10.1186/s11658-016-0003-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/08/2015] [Indexed: 02/03/2023] Open
Abstract
Background Wnt5A, which is a member of the non-transforming Wnt protein family, is implicated in inflammatory processes. It is also highly expressed by ovarian cancer cells. ROR2, which is a member of the Ror-family of receptor tyrosine kinases, acts as a receptor or co-receptor for Wnt5A. The Wnt5A–ROR2 signaling pathway plays essential roles in the migration and invasion of several types of tumor cell and influences their cell polarity. We investigated the modulation of Wnt5A–ROR2 by inflammatory mediators and its involvement in the migration of the human ovarian cancer cell line SKOV-3. Methods SKOV-3 cells were treated with LPS (lipopolysaccharide), LTA (lipoteichoic acid) and recombinant human IL-6 alone or in combination with STAT3 inhibitor (S1155S31-201) or NF-kB inhibitor (BAY11-7082) for 4, 8, 12, 24 and 48 h. The Wnt5A and ROR2 expression levels were determined at the gene and protein levels. Cells were transfected with specific siRNA against Wnt5A in the absence or presence of human anti-ROR2 antibody and cell migration was assessed using transwells. Results There was a strong downregulation of Wnt5A expression in the presence of STAT3 or NF-kB inhibitors. Cell stimulation with LTA or IL-6 for 8 h led to significantly increased levels of Wnt5A (5- and 3-fold higher, respectively). LPS, LTA or IL-6 treatment significantly increased ROR2 expression (2-fold after 48 h). LPS- or LTA-induced Wnt5A or ROR2 expression was abrogated in the presence of STAT3 inhibitor (p < 0.001). IL-6-induced Wnt5A expression was abrogated by both STAT3 and NF-kB inhibitors (p < 0.001). Although not significant, IL-6-induced ROR2 expression showed a modest decrease when STAT3 inhibitor was used. Moreover, cell migration was decreased by 80 % in siRNA Wnt5A-transfected cells in the presence of anti-human ROR2 antibody (p < 0.001). Conclusions This study revealed for the first time that inflammatory mediators modulate Wnt5A and ROR2 through NF-kB and STAT3 transcription factors and this may play a role in ovarian cancer cell migration. The results described here provide new insight into the role of the Wnt5A–ROR2 complex in ovarian cancer progression in relation to inflammation.
Collapse
Affiliation(s)
- Somayeh Arabzadeh
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ghamartaj Hossein
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Salehi-Dulabi
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Amir Hassan Zarnani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.,Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
78
|
Mammary Development and Breast Cancer: A Wnt Perspective. Cancers (Basel) 2016; 8:cancers8070065. [PMID: 27420097 PMCID: PMC4963807 DOI: 10.3390/cancers8070065] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022] Open
Abstract
The Wnt pathway has emerged as a key signaling cascade participating in mammary organogenesis and breast oncogenesis. In this review, we will summarize the current knowledge of how the pathway regulates stem cells and normal development of the mammary gland, and discuss how its various components contribute to breast carcinoma pathology.
Collapse
|
79
|
Yu J, Chen L, Cui B, Widhopf GF, Shen Z, Wu R, Zhang L, Zhang S, Briggs SP, Kipps TJ. Wnt5a induces ROR1/ROR2 heterooligomerization to enhance leukemia chemotaxis and proliferation. J Clin Invest 2016; 126:585-98. [PMID: 26690702 DOI: 10.1172/jci83535] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/12/2015] [Indexed: 12/31/2022] Open
Abstract
Evolutionarily conserved receptor tyrosine kinase–like orphan receptor-1 and -2 (ROR1/2) are considered distinct receptors for Wnt5a and are implicated in noncanonical Wnt signaling in organogenesis and cancer metastasis. We found that Wnt5a enhanced proliferation and migration of chronic lymphocytic leukemia (CLL) cells and that these effects were blocked by the humanized anti-ROR1 mAb cirmtuzumab (UC-961). Treatment of CLL cells with Wnt5a induced ROR1 to oligomerize with ROR2 and recruit guanine exchange factors (GEFs), which activated Rac1 and RhoA; siRNA-mediated silencing of either ROR1 or ROR2 or treatment with UC-961 inhibited these effects. Using the ROR1-deficient CLL cell line MEC1, we demonstrated that ectopic ROR1 expression induced ROR1/ROR2 heterooligomers, which recruited GEFs, and enhanced proliferation, cytokine-directed migration, and engraftment potential of MEC1 cells in immune-deficient mice. Notably, treatment with UC-961 inhibited engraftment of ROR1+ leukemia cells in immune-competent ROR1-transgenic mice. Molecular analysis revealed that the extracellular Kringle domain is required for ROR1/ROR2 heterooligomerization and the cysteine-rich domain or intracellular proline-rich domain is required for Wnt5a-induced recruitment of GEFs to ROR1/ROR2. This study identifies an interaction between ROR1 and ROR2 that is required for Wnt5a signaling that promotes leukemia chemotaxis and proliferation.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Chemotaxis
- Heterografts
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Mice, Knockout
- Neoplasm Transplantation
- Protein Multimerization
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Receptor Tyrosine Kinase-like Orphan Receptors/genetics
- Receptor Tyrosine Kinase-like Orphan Receptors/metabolism
- Wnt Proteins/genetics
- Wnt Proteins/metabolism
- Wnt-5a Protein
- rac1 GTP-Binding Protein/genetics
- rac1 GTP-Binding Protein/metabolism
Collapse
|
80
|
Yang Q, Chen D, Xiong F, Chen D, Liu C, Liu Y, Yu Q, Xiong J, Liu J, Li K, Zhao L, Ye Y, Zhou H, Hu L, Tian Z, Shang X, Zhang L, Wei X, Zhou W, Li D, Zhang W, Xu X. A splicing mutation inVPS4Bcauses dentin dysplasia I. J Med Genet 2016; 53:624-33. [DOI: 10.1136/jmedgenet-2015-103619] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/08/2016] [Indexed: 12/22/2022]
|
81
|
Wnt5a and Ror2 expression associate with the disease progress of primary thyroid lymphoma. Tumour Biol 2016. [DOI: 10.1007/s13277-015-4470-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
82
|
Warner DR, Smith SC, Smolenkova IA, Pisano MM, Greene RM. Inhibition of p300 histone acetyltransferase activity in palate mesenchyme cells attenuates Wnt signaling via aberrant E-cadherin expression. Exp Cell Res 2016; 342:32-8. [PMID: 26921506 DOI: 10.1016/j.yexcr.2016.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/27/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
Abstract
p300 is a multifunctional transcriptional coactivator that interacts with numerous transcription factors and exhibits protein/histone acetyltransferase activity. Loss of p300 function in humans and in mice leads to craniofacial defects. In this study, we demonstrated that inhibition of p300 histone acetyltransferase activity with the compound, C646, altered the expression of several genes, including Cdh1 (E-cadherin) in mouse maxillary mesenchyme cells, which are the cells that give rise to the secondary palate. The increased expression of plasma membrane-bound E-cadherin was associated with reduced cytosolic β-catenin, that led to attenuated signaling through the canonical Wnt pathway. Furthermore, C646 reduced both cell proliferation and the migratory ability of these cells. These results suggest that p300 histone acetyltransferase activity is critical for Wnt-dependent palate mesenchymal cell proliferation and migration, both processes that play a significant role in morphogenesis of the palate.
Collapse
Affiliation(s)
- Dennis R Warner
- University of Louisville Birth Defects Center, School of Dentistry, 501 South Preston Street, Louisville, KY 40202, United States
| | - Scott C Smith
- University of Louisville Birth Defects Center, School of Dentistry, 501 South Preston Street, Louisville, KY 40202, United States
| | - Irina A Smolenkova
- University of Louisville Birth Defects Center, School of Dentistry, 501 South Preston Street, Louisville, KY 40202, United States
| | - M Michele Pisano
- University of Louisville Birth Defects Center, School of Dentistry, 501 South Preston Street, Louisville, KY 40202, United States.
| | - Robert M Greene
- University of Louisville Birth Defects Center, School of Dentistry, 501 South Preston Street, Louisville, KY 40202, United States
| |
Collapse
|
83
|
Xavier GM, Miletich I, Cobourne MT. Ephrin Ligands and Eph Receptors Show Regionally Restricted Expression in the Developing Palate and Tongue. Front Physiol 2016; 7:60. [PMID: 26941654 PMCID: PMC4763095 DOI: 10.3389/fphys.2016.00060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/08/2016] [Indexed: 12/25/2022] Open
Abstract
The Eph family receptor-interacting (ephrin) ligands and erythropoietin-producing hepatocellular carcinoma (Eph) receptors constitute the largest known family of receptor tyrosine kinases. Ephrin ligands and their receptors form an important cell communication system with widespread roles in normal physiology and disease pathogenesis. In order to investigate potential roles of the ephrin-Eph system during palatogenesis and tongue development, we have characterized the cellular mRNA expression of family members EphrinA1-A3, EphA1–A8, and EphrinB2, EphB1, EphB4 during murine embryogenesis between embryonic day 13.5–16.5 using radioactive in situ hybridization. With the exception of EphA6 and ephrinA3, all genes were regionally expressed during the process of palatogenesis, with restricted and often overlapping domains. Transcripts were identified in the palate epithelium, localized at the tip of the palatal shelves, in the mesenchyme and also confined to the medial epithelium seam. Numerous Eph transcripts were also identified during tongue development. In particular, EphA1 and EphA2 demonstrated a highly restricted and specific expression in the tongue epithelium at all stages examined, whereas EphA3 was strongly expressed in the lateral tongue mesenchyme. These results suggest regulatory roles for ephrin-EphA signaling in development of the murine palate and tongue.
Collapse
Affiliation(s)
- Guilherme M Xavier
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Guy's HospitalLondon, UK; Department of Orthodontics, King's College London Dental Institute, Guy's HospitalLondon, UK
| | - Isabelle Miletich
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Guy's Hospital London, UK
| | - Martyn T Cobourne
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Guy's HospitalLondon, UK; Department of Orthodontics, King's College London Dental Institute, Guy's HospitalLondon, UK
| |
Collapse
|
84
|
Zhu XJ, Liu Y, Yuan X, Wang M, Zhao W, Yang X, Zhang X, Hsu W, Qiu M, Zhang Z, Zhang Z. Ectodermal Wnt controls nasal pit morphogenesis through modulation of the BMP/FGF/JNK signaling axis. Dev Dyn 2016; 245:414-26. [PMID: 26661618 DOI: 10.1002/dvdy.24376] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 11/29/2015] [Accepted: 11/30/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Mutations of WNT3, WNT5A, WNT9B, and WNT11 genes are associated with orofacial birth defects, including nonsyndromic cleft lip with cleft palate in humans. However, the source of Wnt ligands and their signaling effects on the orofacial morphogenetic process remain elusive. RESULTS Using Foxg1-Cre to impair Wnt secretion through the inactivation of Gpr177/mWls, we investigate the relevant regulation of Wnt production and signaling in nasal-facial development. Ectodermal ablation of Gpr177 leads to severe facial deformities resulting from dramatically reduced cell proliferation and increased cell death due to a combined loss of WNT, FGF and BMP signaling in the developing facial prominence. In the invaginating nasal pit, the Gpr177 disruption also causes a detrimental effect on migration of the olfactory epithelial cells into the mesenchymal region. The blockage of Wnt secretion apparently impairs the olfactory epithelial cells through modulation of JNK signaling. CONCLUSIONS Our study thus suggests the head ectoderm, including the facial ectoderm and the neuroectoderm, as the source of canonical as well as noncanonical Wnt ligands during early development of the nasal-facial prominence. Both β-catenin-dependent and -independent signaling pathways are required for proper development of these morphogenetic processes.
Collapse
Affiliation(s)
- Xiao-Jing Zhu
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Yudong Liu
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Xueyan Yuan
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Min Wang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Wanxin Zhao
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Xueqin Yang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Xiaoyun Zhang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Wei Hsu
- Department of Biomedical Genetics, Center for Oral Biology, James P Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
| | - Mengsheng Qiu
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China.,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky
| | - Ze Zhang
- Department of Ophthalmology, Tulane University Medical center, New Orleans, Louisiana
| | - Zunyi Zhang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| |
Collapse
|
85
|
Brock LJ, Economou AD, Cobourne MT, Green JBA. Mapping cellular processes in the mesenchyme during palatal development in the absence of Tbx1 reveals complex proliferation changes and perturbed cell packing and polarity. J Anat 2015; 228:464-73. [PMID: 26689739 PMCID: PMC4988468 DOI: 10.1111/joa.12425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2015] [Indexed: 12/29/2022] Open
Abstract
The 22q11 deletion syndromes represent a spectrum of overlapping conditions including cardiac defects and craniofacial malformations. Amongst the craniofacial anomalies that are seen, cleft of the secondary palate is a common feature. Haploinsufficiency of TBX1 is believed to be a major contributor toward many of the developmental structural anomalies that occur in these syndromes, and targeted deletion of Tbx1 in the mouse reproduces many of these malformations, including cleft palate. However, the cellular basis of this defect is only poorly understood. Here, palatal development in the absence of Tbx1 has been analysed, focusing on cellular properties within the whole mesenchymal volume of the palatal shelves. Novel image analyses and data presentation tools were applied to quantify cell proliferation rates, including regions of elevated as well as reduced proliferation, and cell packing in the mesenchyme. Also, cell orientations (nucleus–Golgi axis) were mapped as a potential marker of directional cell movement. Proliferation differed only subtly between wild‐type and mutant until embryonic day (E)15.5 when proliferation in the mutant was significantly lower. Tbx1−/− palatal shelves had slightly different cell packing than wild‐type, somewhat lower before elevation and higher at E15.5 when the wild‐type palate has elevated and fused. Cell orientation is biased towards the shelf distal edge in the mid‐palate of wild‐type embryos but is essentially random in the Tbx1−/− mutant shelves, suggesting that polarised processes such as directed cell rearrangement might be causal for the cleft phenotype. The implications of these findings in the context of further understanding Tbx1 function during palatogenesis and of these methods for the more general analysis of genotype–phenotype functional relationships are discussed.
Collapse
Affiliation(s)
- Lara J Brock
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, UK
| | - Andrew D Economou
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, UK
| | - Martyn T Cobourne
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, UK
| | - Jeremy B A Green
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, UK
| |
Collapse
|
86
|
Podleschny M, Grund A, Berger H, Rollwitz E, Borchers A. A PTK7/Ror2 Co-Receptor Complex Affects Xenopus Neural Crest Migration. PLoS One 2015; 10:e0145169. [PMID: 26680417 PMCID: PMC4683079 DOI: 10.1371/journal.pone.0145169] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 11/30/2015] [Indexed: 12/15/2022] Open
Abstract
Neural crest cells are a highly migratory pluripotent cell population that generates a wide array of different cell types and failure in their migration can result in severe birth defects and malformation syndromes. Neural crest migration is controlled by various means including chemotaxis, repellent guidance cues and cell-cell interaction. Non-canonical Wnt PCP (planar cell polarity) signaling has previously been shown to control cell-contact mediated neural crest cell guidance. PTK7 (protein tyrosine kinase 7) is a transmembrane pseudokinase and a known regulator of Wnt/PCP signaling, which is expressed in Xenopus neural crest cells and required for their migration. PTK7 functions as a Wnt co-receptor; however, it remains unclear by which means PTK7 affects neural crest migration. Expressing fluorescently labeled proteins in Xenopus neural crest cells we find that PTK7 co-localizes with the Ror2 Wnt-receptor. Further, co-immunoprecipitation experiments demonstrate that PTK7 interacts with Ror2. The PTK7/Ror2 interaction is likely relevant for neural crest migration, because Ror2 expression can rescue the PTK7 loss of function migration defect. Live cell imaging of explanted neural crest cells shows that PTK7 loss of function affects the formation of cell protrusions as well as cell motility. Co-expression of Ror2 can rescue these defects. In vivo analysis demonstrates that a kinase dead Ror2 mutant cannot rescue PTK7 loss of function. Thus, our data suggest that Ror2 can substitute for PTK7 and that the signaling function of its kinase domain is required for this effect.
Collapse
Affiliation(s)
- Martina Podleschny
- Faculty of Biology, Molecular Embryology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Anita Grund
- Faculty of Biology, Molecular Embryology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Hanna Berger
- Faculty of Biology, Molecular Embryology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Erik Rollwitz
- Faculty of Biology, Molecular Embryology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Annette Borchers
- Faculty of Biology, Molecular Embryology, Philipps-Universität Marburg, 35043 Marburg, Germany
- * E-mail:
| |
Collapse
|
87
|
Wang L, Yang D, Wang YH, Li X, Gao HM, Lv JY, Wang L, Xin SJ. Wnt5a and Ror2 expression associate with the disease progress of primary thyroid lymphoma. Tumour Biol 2015; 37:6085-90. [PMID: 26608372 PMCID: PMC4875128 DOI: 10.1007/s13277-015-4471-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/18/2014] [Indexed: 01/08/2023] Open
Abstract
Primary thyroid lymphoma (PTL) is a rare malignant thyroid tumor; its pathogenesis is closely related to chronic lymphocytic thyroiditis. The different pathological subtypes and stages of PTL have distinct clinical characteristics and prognosis, but the specific reasons are not clear. Wnt5a is a representative protein of non-canonical Wnt signaling. It plays an important role in many different types of tumors. This study is to explore the changes of Wnt5a and its receptor Ror2 in PTL development process and the clinical significance of their represent. We collected 22 PTL patient tumor specimens and clinical data. We observed the expression of Wnt5a and Ror2 in PTL tumor tissues by immunohistochemistry. Wnt5a was expressed positively in 12 (54.5 %) cases, and Ror2 was expressed positively in 18 (81.8 %) cases. The expression of Wnt5a had a significant difference in different pathological subtypes of PTL (P < 0.05). Wnt5a and Ror2 expression were associated with local invasion and clinical stage, respectively (P < 0.05), and had no significant correlation with age, gender, and tumor size. Although, no significant difference in overall survival was found between positive and negative groups of Wnt5a (P = 0.416) or Ror2 (P = 0.256), respectively. We still consider that Wnt5a and Ror2 play a complex and subtle role in the pathogenesis and progression of PTL and may become potential biomarkers and therapeutic targets of PTL.
Collapse
Affiliation(s)
- Lei Wang
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Dong Yang
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Ying-Hou Wang
- Department of General Surgery, NO.202 Hospital of PLA, Shenyang, China
| | - Xi Li
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Hong-Ming Gao
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jun-Yuan Lv
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Lei Wang
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital, China Medical University, Shenyang, China
| | - Shi-Jie Xin
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
88
|
Deák VA, Skroblin P, Dittmayer C, Knobeloch KP, Bachmann S, Klussmann E. The A-kinase Anchoring Protein GSKIP Regulates GSK3β Activity and Controls Palatal Shelf Fusion in Mice. J Biol Chem 2015; 291:681-90. [PMID: 26582204 DOI: 10.1074/jbc.m115.701177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Indexed: 12/20/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) represent a family of structurally diverse proteins, all of which bind PKA. A member of this family is glycogen synthase kinase 3β (GSK3β) interaction protein (GSKIP). GSKIP interacts with PKA and also directly interacts with GSK3β. The physiological function of the GSKIP protein in vivo is unknown. We developed and characterized a conditional knock-out mouse model and found that GSKIP deficiency caused lethality at birth. Embryos obtained through Caesarean section at embryonic day 18.5 were cyanotic, suffered from respiratory distress, and failed to initiate breathing properly. Additionally, all GSKIP-deficient embryos showed an incomplete closure of the palatal shelves accompanied by a delay in ossification along the fusion area of secondary palatal bones. On the molecular level, GSKIP deficiency resulted in decreased phosphorylation of GSK3β at Ser-9 starting early in development (embryonic day 10.5), leading to enhanced GSK3β activity. At embryonic day 18.5, GSK3β activity decreased to levels close to that of wild type. Our findings reveal a novel, crucial role for GSKIP in the coordination of GSK3β signaling in palatal shelf fusion.
Collapse
Affiliation(s)
- Veronika Anita Deák
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin
| | - Philipp Skroblin
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin
| | - Carsten Dittmayer
- the Institute of Anatomy, Charité University Medicine, Philippstrasse 12, 10115 Berlin, Germany
| | - Klaus-Peter Knobeloch
- the Institute for Neuropathology, University of Freiburg, Breisacher Strasse 64, 79106 Freiburg, and
| | - Sebastian Bachmann
- the Institute of Anatomy, Charité University Medicine, Philippstrasse 12, 10115 Berlin, Germany
| | - Enno Klussmann
- From the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, the DZHK (German Centre for Cardiovascular Research), partner site Berlin, Oudenarder Strasse 16, 13347 Berlin, Germany
| |
Collapse
|
89
|
van der Werf CS, Halim D, Verheij JB, Alves MM, Hofstra RM. Congenital Short Bowel Syndrome: from clinical and genetic diagnosis to the molecular mechanisms involved in intestinal elongation. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2352-61. [DOI: 10.1016/j.bbadis.2015.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 12/16/2022]
|
90
|
Wu W, Gu S, Sun C, He W, Xie X, Li X, Ye W, Qin C, Chen Y, Xiao J, Liu C. Altered FGF Signaling Pathways Impair Cell Proliferation and Elevation of Palate Shelves. PLoS One 2015; 10:e0136951. [PMID: 26332583 PMCID: PMC4558018 DOI: 10.1371/journal.pone.0136951] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 08/10/2015] [Indexed: 01/15/2023] Open
Abstract
In palatogenesis, palatal shelves are patterned along the mediolateral axis as well as the anteroposterior axis before the onset of palatal fusion. Fgf10 specifically expressed in lateral mesenchyme of palate maintains Shh transcription in lateral epithelium, while Fgf7 activated in medial mesenchyme by Dlx5, suppressed the expansion of Shh expression to medial epithelium. How FGF signaling pathways regulate the cell behaviors of developing palate remains elusive. In our study, we found that when Fgf8 is ectopically expressed in the embryonic palatal mesenchyme, the elevation of palatal shelves is impaired and the posterior palatal shelves are enlarged, especially in the medial side. The palatal deformity results from the drastic increase of cell proliferation in posterior mesenchyme and decrease of cell proliferation in epithelium. The expression of mesenchymal Fgf10 and epithelial Shh in the lateral palate, as well as the Dlx5 and Fgf7 transcription in the medial mesenchyme are all interrupted, indicating that the epithelial-mesenchymal interactions during palatogenesis are disrupted by the ectopic activation of mesenchymal Fgf8. Besides the altered Fgf7, Fgf10, Dlx5 and Shh expression pattern, the reduced Osr2 expression domain in the lateral mesenchyme also suggests an impaired mediolateral patterning of posterior palate. Moreover, the ectopic Fgf8 expression up-regulates pJak1 throughout the palatal mesenchyme and pErk in the medial mesenchyme, but down-regulates pJak2 in the epithelium, suggesting that during normal palatogenesis, the medial mesenchymal cell proliferation is stimulated by FGF/Erk pathway, while the epithelial cell proliferation is maintained through FGF/Jak2 pathway.
Collapse
Affiliation(s)
- Weijie Wu
- Department of Stomatology, Shanghai Zhongshan Hospital, Shanghai, China
- Department of Cell & Molecular Biology, Sciences and Engineering School, Tulane University, New Orleans, Louisiana, United States of America
| | - Shuping Gu
- Department of Cell & Molecular Biology, Sciences and Engineering School, Tulane University, New Orleans, Louisiana, United States of America
| | - Cheng Sun
- Department of Cell & Molecular Biology, Sciences and Engineering School, Tulane University, New Orleans, Louisiana, United States of America
| | - Wei He
- Department of Cell & Molecular Biology, Sciences and Engineering School, Tulane University, New Orleans, Louisiana, United States of America
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Zunyi Medical University, Zunyi, China
| | - Xiaohua Xie
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Sciences Center, Dallas, Texas, United States of America
- Department of Endodontics, Institute of Hard Tissue Development and Regeneration, the 2 Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xihai Li
- Department of Cell & Molecular Biology, Sciences and Engineering School, Tulane University, New Orleans, Louisiana, United States of America
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wenduo Ye
- Department of Cell & Molecular Biology, Sciences and Engineering School, Tulane University, New Orleans, Louisiana, United States of America
| | - Chunlin Qin
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Sciences Center, Dallas, Texas, United States of America
| | - Yiping Chen
- Department of Cell & Molecular Biology, Sciences and Engineering School, Tulane University, New Orleans, Louisiana, United States of America
| | - Jing Xiao
- Department of Oral Biology, College of Stomatology, Dalian Medical University, Dalian, China
- * E-mail: (JX); (CL)
| | - Chao Liu
- Department of Cell & Molecular Biology, Sciences and Engineering School, Tulane University, New Orleans, Louisiana, United States of America
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Sciences Center, Dallas, Texas, United States of America
- Department of Oral Biology, College of Stomatology, Dalian Medical University, Dalian, China
- * E-mail: (JX); (CL)
| |
Collapse
|
91
|
Jin Y, Wang W, Chai S, Liu J, Yang T, Wang J. Wnt5a attenuates hypoxia-induced pulmonary arteriolar remodeling and right ventricular hypertrophy in mice. Exp Biol Med (Maywood) 2015; 240:1742-51. [PMID: 25956683 DOI: 10.1177/1535370215584889] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/24/2015] [Indexed: 12/14/2022] Open
Abstract
Hypoxic pulmonary hypertension (HPH), which is characterized by pulmonary arteriolar remodeling and right ventricular hypertrophy, is still a life-threatening disease with the current treatment strategies. The underlying molecular mechanisms of HPH remain unclear. Our previously published study showed that Wnt5a, one of the ligands in the Wnt family, was critically involved in the inhibition of hypoxia-induced pulmonary arterial smooth muscle cell proliferation by downregulation of β-catenin/cyclin D1 in vitro. In this study, we investigated the possible functions and mechanisms of Wnt5a in HPH in vivo. Recombinant mouse Wnt5a (rmWnt5a) or phosphate buffered saline (PBS) was administered to male C57/BL6 mice weekly from the first day to the end of the two or four weeks after exposed to hypoxia (10% O2). Hypoxia-induced pulmonary hypertension was associated with a marked increase in β-catenin/cyclin D1 expression in lungs. Right ventricular systolic pressure and right ventricular hypertrophy index were reduced in animals treated with rmWnt5a compared with PBS. Histology showed less pulmonary vascular remodeling and right ventricular hypertrophy in the group treated with rmWnt5a than with PBS. Treatment with rmWnt5a resulted in a concomitant reduction in β-catenin/cyclin D1 levels in lungs. These data demonstrate that Wnt5a exerts its beneficial effects on HPH by regulating pulmonary vascular remodeling and right ventricular hypertrophy in a manner that is associated with reduction in β-catenin/cyclin D1 signaling. A therapy targeting the β-catenin/cyclin D1 signaling pathway might be a potential strategy for HPH treatment.
Collapse
Affiliation(s)
- Yuling Jin
- Department of Physiology, Capital Medical University, Beijing 100069, P.R. China
| | - Wang Wang
- Department of Physiology, Capital Medical University, Beijing 100069, P.R. China
| | - Sanbao Chai
- Department of Physiology, Capital Medical University, Beijing 100069, P.R. China
| | - Jie Liu
- Department of Physiology, Capital Medical University, Beijing 100069, P.R. China
| | - Ting Yang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100016, P.R. China
| | - Jun Wang
- Department of Physiology, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
92
|
Abstract
Cleft palate represents one of the major congenital birth defects in humans. Despite the essential roles of ectodermal canonical Wnt and mesenchymal Wnt signaling in the secondary palate development, the function of mesenchymal canonical Wnt activity in secondary palate development remains elusive. Here we show that Gpr177, a highly conserved transmembrane protein essential for Wnt trafficking, is required for secondary palate development. Gpr177 is expressed in both epithelium and mesenchyme of palatal shelves during mouse development. Wnt1Cre-mediated deletion of Gpr177 in craniofacial neural crest cells leads to a complete cleft secondary palate, which is formed mainly due to aberrant cell proliferation and increased cell death in palatal shelves. By BATGAL staining, we reveal an intense canonical Wnt activity in the anterior palate mesenchyme of E12.5 wild-type embryos but not in Gpr177Wnt1-Cre embryos, suggesting that mesenchymal canonical Wnt signaling activated by Gpr177-mediated mesenchymal Wnts is critical for secondary palate development. Moreover, phosphorylation of JNK and c-Jun is impaired in the Gpr177Wnt1-Cre palate and is restored by implantation of Wnt5a-soaked beads in the in vitro palate explants, suggesting that Gpr177 probably regulates palate development via the Wnt5a-mediated noncanonical Wnt pathway in which c-Jun and JNK are involved. Importantly, certain cellular processes and the altered gene expression in palates lacking Gpr177 are distinct from that of the Wnt5a mutant, further demonstrating involvement of other mesenchymal Wnts in the process of palate development. Together, these results suggest that mesenchymal Gpr177 is required for secondary palate development by regulating and integrating mesenchymal canonical and noncanonical Wnt signals.
Collapse
|
93
|
Abramyan J, Thivichon-Prince B, Richman JM. Diversity in primary palate ontogeny of amniotes revealed with 3D imaging. J Anat 2015; 226:420-33. [PMID: 25904546 DOI: 10.1111/joa.12291] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2015] [Indexed: 12/23/2022] Open
Abstract
The amniote primary palate encompasses the upper lip and the nasal cavities. During embryonic development, the primary palate forms from the fusion of the maxillary, medial nasal and lateral nasal prominences. In mammals, as the primary palate fuses, the nasal and oral cavities become completely separated. Subsequently, the tissue demarcating the future internal nares (choanae) thins and becomes the bucconasal membrane, which eventually ruptures and allows for the essential connection of the oral and nasal cavities to form. In reptiles (including birds), the other major amniote group, primary palate ontogeny is poorly studied with respect to prominence fusion, especially the formation of a bucconasal membrane. Using 3D optical projection tomography, we found that the prominences that initiate primary palate formation are similar between mammals and crocodilians but distinct from turtles and lizards, which are in turn similar to each other. Chickens are distinct from all non-avian lineages and instead resemble human embryos in this aspect. The majority of reptiles maintain a communication between the oral and nasal cavities via the choanae during primary palate formation. However, crocodiles appear to have a transient separation between the oral and nasal cavities. Furthermore, the three lizard species examined here, exhibit temporary closure of their external nares via fusion of the lateral nasal prominences with the frontonasal mass, subsequently reopening them just before hatching. The mechanism of the persistent choanal opening was examined in chicken embryos. The mesenchyme posterior/dorsal to the choana had a significant decline in proliferation index, whereas the mesenchyme of the facial processes remained high. This differential proliferation allows the choana to form a channel between the oral and nasal cavities as the facial prominences grow and fuse around it. Our data show that primary palate ontogeny has been modified extensively to support the array of morphological diversity that has evolved among amniotes.
Collapse
Affiliation(s)
- John Abramyan
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Beatrice Thivichon-Prince
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Joy Marion Richman
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
94
|
Tang Q, Li L, Jin C, Lee JM, Jung HS. Role of region-distinctive expression of Rac1 in regulating fibronectin arrangement during palatal shelf elevation. Cell Tissue Res 2015; 361:857-68. [PMID: 25843690 DOI: 10.1007/s00441-015-2169-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 03/05/2015] [Indexed: 01/22/2023]
Abstract
Palatal shelf elevation is a crucial process in palate development, with the contribution of various factors. Disturbances in any factor during this process result in cleft palate. Prior to palatal shelf elevation starting from embryonic day 12.5, the Rac1 expression level in the bend region of the mid-palatal shelf progressively increases and the cell densities in the bend and groove regions gradually become higher than those in the middle region. The comparative decrease of cell density in the middle region is correlated with a gradual alteration of the arrangement of fibronectin (FN) fibers, whereas the bend and groove regions with higher cell densities maintain ring-like FN arrangements. Rac1 overexpression alters the fibrillar FN arrangement in the middle region to the ring-like arrangement by increasing cell density. This alteration is sufficient to induce the failure of palatal shelf elevation, ultimately leading to cleft palate. Furthermore, the inhibition of FN delays palatal shelf elevation. Thus, the spatiotemporal expression of Rac1 plays an impressive role in palatal shelf elevation by regulating FN arrangement within the palatal shelf.
Collapse
Affiliation(s)
- Qinghuang Tang
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea
| | | | | | | | | |
Collapse
|
95
|
Saal HM, Prows CA, Guerreiro I, Donlin M, Knudson L, Sund KL, Chang CF, Brugmann SA, Stottmann RW. A mutation in FRIZZLED2 impairs Wnt signaling and causes autosomal dominant omodysplasia. Hum Mol Genet 2015; 24:3399-409. [PMID: 25759469 DOI: 10.1093/hmg/ddv088] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 03/06/2015] [Indexed: 01/18/2023] Open
Abstract
Autosomal dominant omodysplasia is a rare skeletal dysplasia characterized by short humeri, radial head dislocation, short first metacarpals, facial dysmorphism and genitourinary anomalies. We performed next-generation whole-exome sequencing and comparative analysis of a proband with omodysplasia, her unaffected parents and her affected daughter. We identified a de novo mutation in FRIZZLED2 (FZD2) in the proband and her daughter that was not found in unaffected family members. The FZD2 mutation (c.1644G>A) changes a tryptophan residue at amino acid 548 to a premature stop (p.Trp548*). This altered protein is still produced in vitro, but we show reduced ability of this mutant form of FZD2 to interact with its downstream target DISHEVELLED. Furthermore, expressing the mutant form of FZD2 in vitro is not able to facilitate the cellular response to canonical Wnt signaling like wild-type FZD2. We therefore conclude that the FRIZZLED2 mutation is a de novo, novel cause for autosomal dominant omodysplasia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ching-Fang Chang
- Division of Developmental Biology and Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA
| | - Samantha A Brugmann
- Division of Developmental Biology and Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA
| | - Rolf W Stottmann
- Division of Human Genetics, Division of Developmental Biology and
| |
Collapse
|
96
|
Liu S, Higashihori N, Yahiro K, Moriyama K. Retinoic acid inhibits histone methyltransferase Whsc1 during palatogenesis. Biochem Biophys Res Commun 2015; 458:525-530. [DOI: 10.1016/j.bbrc.2015.01.148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/30/2015] [Indexed: 12/29/2022]
|
97
|
Fantauzzo KA, Soriano P. Receptor tyrosine kinase signaling: regulating neural crest development one phosphate at a time. Curr Top Dev Biol 2015; 111:135-82. [PMID: 25662260 PMCID: PMC4363133 DOI: 10.1016/bs.ctdb.2014.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Receptor tyrosine kinases (RTKs) bind to a subset of growth factors on the surface of cells and elicit responses with broad roles in developmental and postnatal cellular processes. Receptors in this subclass consist of an extracellular ligand-binding domain, a single transmembrane domain, and an intracellular domain harboring a catalytic tyrosine kinase and regulatory sequences that are phosphorylated either by the receptor itself or by various interacting proteins. Once activated, RTKs bind signaling molecules and recruit effector proteins to mediate downstream cellular responses through various intracellular signaling pathways. In this chapter, we highlight the role of a subset of RTK families in regulating the activity of neural crest cells (NCCs) and the development of their derivatives in mammalian systems. NCCs are migratory, multipotent cells that can be subdivided into four axial populations, cranial, cardiac, vagal, and trunk. These cells migrate throughout the vertebrate embryo along defined pathways and give rise to unique cell types and structures. Interestingly, individual RTK families often have specific functions in a subpopulation of NCCs that contribute to the diversity of these cells and their derivatives in the mammalian embryo. We additionally discuss current methods used to investigate RTK signaling, including genetic, biochemical, large-scale proteomic, and biosensor approaches, which can be applied to study intracellular signaling pathways active downstream of this receptor subclass during NCC development.
Collapse
Affiliation(s)
- Katherine A Fantauzzo
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Philippe Soriano
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
98
|
Jackson HW, Prakash D, Litaker M, Ferreira T, Jezewski PA. Zebrafish Wnt9b Patterns the First Pharyngeal Arch into D-I-V Domains and Promotes Anterior-Medial Outgrowth. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajmb.2015.53006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
99
|
Biggs LC, Goudy SL, Dunnwald M. Palatogenesis and cutaneous repair: A two-headed coin. Dev Dyn 2014; 244:289-310. [PMID: 25370680 DOI: 10.1002/dvdy.24224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The reparative mechanism that operates following post-natal cutaneous injury is a fundamental survival function that requires a well-orchestrated series of molecular and cellular events. At the end, the body will have closed the hole using processes like cellular proliferation, migration, differentiation and fusion. RESULTS These processes are similar to those occurring during embryogenesis and tissue morphogenesis. Palatogenesis, the formation of the palate from two independent palatal shelves growing towards each other and fusing, intuitively, shares many similarities with the closure of a cutaneous wound from the two migrating epithelial fronts. CONCLUSIONS In this review, we summarize the current information on cutaneous development, wound healing, palatogenesis and orofacial clefting and propose that orofacial clefting and wound healing are conserved processes that share common pathways and gene regulatory networks.
Collapse
Affiliation(s)
- Leah C Biggs
- Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | | | | |
Collapse
|
100
|
Endo M, Nishita M, Fujii M, Minami Y. Insight into the role of Wnt5a-induced signaling in normal and cancer cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 314:117-48. [PMID: 25619716 DOI: 10.1016/bs.ircmb.2014.10.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Wnt5a is involved in the activation of noncanonical Wnt signaling, including planar cell polarity (PCP) and Wnt-Ca(2+) pathways. The Ror-family of receptor tyrosine kinases is composed of Ror1 and Ror2 in mammals. Ror2 acts as a receptor or coreceptor for Wnt5a and regulates Wnt5a-induced activation of PCP pathway, and Wnt5a-Ror2 axis indeed plays critical roles in the developmental morphogenesis by regulating cell polarity and migration. Furthermore, Wnt5a-Ror2 axis is constitutively activated in cancer cells and confers highly motile and invasive properties on cancer cells through the expression of matrix metalloproteinase genes and enhanced formation of invadopodia. Meanwhile, Wnt5a also exhibits a tumor-suppressive function in certain cancers, including breast and colorectal carcinomas. Thus, it is of great importance to understand the respective molecular mechanisms governing Wnt5a-mediated tumor-progressive and tumor-suppressive functions, in order to develop novel and proper diagnostic and therapeutic strategies targeting Wnt5a signaling for human cancers.
Collapse
Affiliation(s)
- Mitsuharu Endo
- Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Japan
| | - Michiru Nishita
- Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Japan
| | - Masanori Fujii
- Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Japan
| | - Yasuhiro Minami
- Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Japan
| |
Collapse
|