51
|
Abstract
Embryos of many animal models express germ line determinants that suppress transcription and mediate early germ line commitment, which occurs before the somatic cell lineages are established. However, not all animals segregate their germ line in this manner. The 'last cell standing' model describes primordial germ cell (PGC) development in axolotls, in which PGCs are maintained by an extracellular signalling niche, and germ line commitment occurs after gastrulation. Here, we propose that this 'stochastic' mode of PGC specification is conserved in vertebrates, including non-rodent mammals. We postulate that early germ line segregation liberates genetic regulatory networks for somatic development to evolve, and that it therefore emerged repeatedly in the animal kingdom in response to natural selection.
Collapse
Affiliation(s)
- Andrew D Johnson
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Ramiro Alberio
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| |
Collapse
|
52
|
Haselman JT, Olmstead AW, Degitz SJ. Global gene expression during early differentiation of Xenopus (Silurana) tropicalis gonad tissues. Gen Comp Endocrinol 2015; 214:103-13. [PMID: 24960269 DOI: 10.1016/j.ygcen.2014.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/21/2014] [Accepted: 06/12/2014] [Indexed: 01/04/2023]
Abstract
African clawed frog Xenopus sp. is used extensively for developmental biology and toxicology research. Amid concerns of environmental pollutants disrupting endocrine systems and causing altered reproductive development in wildlife, eco-toxicology research has led to a focus on linking molecular initiating events to population-level effects. As such, efforts to better understand reproductive development at the molecular level in these model species are warranted. To that end, transcriptomes were characterized in differentiating Xenopus tropicalis gonad tissues at Nieuwkoop and Faber (NF) stage 58 (pro-metamorphosis), NF66 (completion of metamorphosis), 1week post-metamorphosis (1WPM), and 2weeks post-metamorphosis (2WPM). Differential expression analysis between tissue types at each developmental stage revealed a substantial divergence of ovary and testis transcriptomes starting between NF58 and NF66; transcriptomes continued to diverge through 2WPM. Generally, testis-enriched transcripts were expressed at relatively constant levels, while ovary-enriched transcripts were up-regulated within this developmental period. Functional analyses of differentially expressed transcripts allowed linkages to be made between their putative human orthologues and specific cellular processes associated with differentiating gonad tissues. In ovary tissue, genetic programs direct germ cells through meiosis to the diplotene stage when maternal mRNAs are transcribed and trafficked to oocytes for translation following fertilization. In the testis, gene expression is consistent with connective tissue development, tubule formation, and germ cell support (Leydig and Sertoli cells). This dataset exhibited remarkable consistency with transcript profiles previously described in gonad tissues across species, and emphasizes the universal importance of certain transcripts for germ cell development and preparation of these tissues for reproduction.
Collapse
Affiliation(s)
- Jonathan T Haselman
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA.
| | - Allen W Olmstead
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA.
| | - Sigmund J Degitz
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA.
| |
Collapse
|
53
|
Miles WO, Korenjak M, Griffiths LM, Dyer MA, Provero P, Dyson NJ. Post-transcriptional gene expression control by NANOS is up-regulated and functionally important in pRb-deficient cells. EMBO J 2014; 33:2201-15. [PMID: 25100735 PMCID: PMC4282507 DOI: 10.15252/embj.201488057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 11/09/2022] Open
Abstract
Inactivation of the retinoblastoma tumor suppressor (pRb) is a common oncogenic event that alters the expression of genes important for cell cycle progression, senescence, and apoptosis. However, in many contexts, the properties of pRb-deficient cells are similar to wild-type cells suggesting there may be processes that counterbalance the transcriptional changes associated with pRb inactivation. Therefore, we have looked for sets of evolutionary conserved, functionally related genes that are direct targets of pRb/E2F proteins. We show that the expression of NANOS, a key facilitator of the Pumilio (PUM) post-transcriptional repressor complex, is directly repressed by pRb/E2F in flies and humans. In both species, NANOS expression increases following inactivation of pRb/RBF1 and becomes important for tissue homeostasis. By analyzing datasets from normal retinal tissue and pRb-null retinoblastomas, we find a strong enrichment for putative PUM substrates among genes de-regulated in tumors. These include pro-apoptotic genes that are transcriptionally down-regulated upon pRb loss, and we characterize two such candidates, MAP2K3 and MAP3K1, as direct PUM substrates. Our data suggest that NANOS increases in importance in pRb-deficient cells and helps to maintain homeostasis by repressing the translation of transcripts containing PUM Regulatory Elements (PRE).
Collapse
Affiliation(s)
- Wayne O Miles
- Massachusetts General Hospital Cancer Center and Harvard Medical School Laboratory of Molecular Oncology, Charlestown, MA, USA
| | - Michael Korenjak
- Massachusetts General Hospital Cancer Center and Harvard Medical School Laboratory of Molecular Oncology, Charlestown, MA, USA
| | - Lyra M Griffiths
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School Laboratory of Molecular Oncology, Charlestown, MA, USA
| |
Collapse
|
54
|
Maternal syntabulin is required for dorsal axis formation and is a germ plasm component in Xenopus. Differentiation 2014; 88:17-26. [PMID: 24798204 DOI: 10.1016/j.diff.2014.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/20/2014] [Accepted: 03/20/2014] [Indexed: 11/23/2022]
Abstract
In amphibians and teleosts, early embryonic axial development is driven by maternally deposited mRNAs and proteins, called dorsal determinants, which migrate to the presumptive dorsal side of the embryo in a microtubule-dependent manner after fertilization. Syntabulin is an adapter protein that binds to kinesin KIF5B and to the transmembrane protein Syntaxin1. In zebrafish, a mutation in Syntabulin causes complete embryo ventralization. It is unknown whether Syntabulin plays an analogous role during early development of other species, a question addressed here in Xenopus laevis. in situ hybridization of syntabulin mRNA was carried out at different stages of Xenopus development. In oocytes, syntabulin transcripts were localized to the vegetal cortex of large oocytes and the mitochondrial cloud of very young oocytes. We extended the zebrafish data by finding that during cleavage Xenopus syntabulin mRNA localized to the germ plasm and was later expressed in primordial germ cells (PGCs). This new finding suggested a role for Syntabulin during germ cell differentiation. The functional role of maternal syntabulin mRNA was investigated by knock-down with phosphorothioate DNA antisense oligos followed by oocyte transfer. The results showed that syntabulin mRNA depletion caused the complete loss of dorso-anterior axis formation in frog embryos. Consistent with the ventralized phenotype, syntabulin-depleted embryos displayed severe reduction of dorsal markers and ubiquitous transcription of the ventral marker sizzled. Syntabulin was required for the maternal Wnt/β-Catenin signal, since ventralization could be completely rescued by injection of β-catenin (or syntabulin) mRNA. The data suggest an evolutionarily conserved role for Syntabulin, a protein that bridges microtubule motors and membrane vesicles, during dorso-ventral axis formation in the vertebrates.
Collapse
|
55
|
Fresques T, Zazueta-Novoa V, Reich A, Wessel GM. Selective accumulation of germ-line associated gene products in early development of the sea star and distinct differences from germ-line development in the sea urchin. Dev Dyn 2014; 243:568-87. [PMID: 24038550 PMCID: PMC3996927 DOI: 10.1002/dvdy.24038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/12/2013] [Accepted: 08/16/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Echinodermata is a diverse phylum, a sister group to chordates, and contains diverse organisms that may be useful to understand varied mechanisms of germ-line specification. RESULTS We tested 23 genes in development of the sea star Patiria miniata that fall into five categories: (1) Conserved germ-line factors; (2) Genes involved in the inductive mechanism of germ-line specification; (3) Germ-line associated genes; (4) Molecules involved in left-right asymmetry; and (5) Genes involved in regulation and maintenance of the genome during early embryogenesis. Overall, our results support the contention that the posterior enterocoel is a source of the germ line in the sea star P. miniata. CONCLUSIONS The germ line in this organism appears to be specified late in embryogenesis, and in a pattern more consistent with inductive interactions amongst cells. This is distinct from the mechanism seen in sea urchins, a close relative of the sea star clad. We propose that P. miniata may serve as a valuable model to study inductive mechanisms of germ-cell specification and when compared with germ-line formation in the sea urchin S. purpuratus may reveal developmental transitions that occur in the evolution of inherited and inductive mechanisms of germ-line specification.
Collapse
Affiliation(s)
| | | | - Adrian Reich
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI 02912 USA
| | - Gary M. Wessel
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI 02912 USA
| |
Collapse
|
56
|
Oulhen N, Wessel GM. Every which way--nanos gene regulation in echinoderms. Genesis 2014; 52:279-86. [PMID: 24376110 DOI: 10.1002/dvg.22737] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/16/2013] [Indexed: 12/12/2022]
Abstract
Nanos is an essential factor of germ line success in all animals tested. This gene encodes a Zn-finger RNA-binding protein that in complex with its partner pumilio binds to and changes the fate of several known transcripts. We summarize here the documented functions of Nanos in several key organisms, and then emphasize echinoderms as a working model for how nanos expression is regulated. Nanos presence outside of the target cells is often detrimental to the animal, and in sea urchins, nanos expression appears to be regulated at every step of transcription, and post-transcriptional activity, making this gene product exciting, every which way.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | | |
Collapse
|
57
|
Grant PA, Yan B, Johnson MA, Johnson DLE, Moody SA. Novel animal pole-enriched maternal mRNAs are preferentially expressed in neural ectoderm. Dev Dyn 2013; 243:478-96. [PMID: 24155242 DOI: 10.1002/dvdy.24082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/27/2013] [Accepted: 09/04/2013] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Many animals utilize maternal mRNAs to pre-pattern the embryo before the onset of zygotic transcription. In Xenopus laevis, vegetal factors specify the germ line, endoderm, and dorsal axis, but there are few studies demonstrating roles for animal-enriched maternal mRNAs. Therefore, we carried out a microarray analysis to identify novel maternal transcripts enriched in 8-cell-stage animal blastomeres. RESULTS We identified 39 mRNAs isolated from 8-cell animal blastomeres that are >4-fold enriched compared to vegetal pole mRNAs. We characterized 14 of these that are of unknown function. We validated the microarray results for 8/14 genes by qRT-PCR and for 14/14 genes by in situ hybridization assays. Because no developmental functions are reported yet, we provide the expression patterns for each of the 14 genes. Each is expressed in the animal hemisphere of unfertilized eggs, 8-cell animal blastomeres, and diffusely in blastula animal cap ectoderm, gastrula ectoderm and neural ectoderm, neural crest (and derivatives) and cranial placodes (and derivatives). They have varying later expression in some mesodermal and endodermal tissues in tail bud through larval stages. CONCLUSIONS Novel animal-enriched maternal mRNAs are preferentially expressed in ectodermal derivatives, particularly neural ectoderm. However, they are later expressed in derivatives of other germ layers.
Collapse
Affiliation(s)
- Paaqua A Grant
- Department of Biological Sciences, The George Washington University, Columbian College of Arts and Sciences, Washington, DC
| | | | | | | | | |
Collapse
|
58
|
Nijjar S, Woodland HR. Protein interactions in Xenopus germ plasm RNP particles. PLoS One 2013; 8:e80077. [PMID: 24265795 PMCID: PMC3827131 DOI: 10.1371/journal.pone.0080077] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 10/09/2013] [Indexed: 11/19/2022] Open
Abstract
Hermes is an RNA-binding protein that we have previously reported to be found in the ribonucleoprotein (RNP) particles of Xenopus germ plasm, where it is associated with various RNAs, including that encoding the germ line determinant Nanos1. To further define the composition of these RNPs, we performed a screen for Hermes-binding partners using the yeast two-hybrid system. We have identified and validated four proteins that interact with Hermes in germ plasm: two isoforms of Xvelo1 (a homologue of zebrafish Bucky ball) and Rbm24b and Rbm42b, both RNA-binding proteins containing the RRM motif. GFP-Xvelo fusion proteins and their endogenous counterparts, identified with antisera, were found to localize with Hermes in the germ plasm particles of large oocytes and eggs. Only the larger Xvelo isoform was naturally found in the Balbiani body of previtellogenic oocytes. Bimolecular fluorescence complementation (BiFC) experiments confirmed that Hermes and the Xvelo variants interact in germ plasm, as do Rbm24b and 42b. Depletion of the shorter Xvelo variant with antisense oligonucleotides caused a decrease in the size of germ plasm aggregates and loosening of associated mitochondria from these structures. This suggests that the short Xvelo variant, or less likely its RNA, has a role in organizing and maintaining the integrity of germ plasm in Xenopus oocytes. While GFP fusion proteins for Rbm24b and 42b did not localize into germ plasm as specifically as Hermes or Xvelo, BiFC analysis indicated that both interact with Hermes in germ plasm RNPs. They are very stable in the face of RNA depletion, but additive effects of combinations of antisense oligos suggest they may have a role in germ plasm structure and may influence the ability of Hermes protein to effectively enter RNP particles.
Collapse
Affiliation(s)
- Sarbjit Nijjar
- School of Life Sciences, University of Warwick, Coventry, Warwickshire, United Kingdom
| | - Hugh R. Woodland
- School of Life Sciences, University of Warwick, Coventry, Warwickshire, United Kingdom
| |
Collapse
|
59
|
Mei W, Jin Z, Lai F, Schwend T, Houston DW, King ML, Yang J. Maternal Dead-End1 is required for vegetal cortical microtubule assembly during Xenopus axis specification. Development 2013; 140:2334-44. [PMID: 23615278 DOI: 10.1242/dev.094748] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vertebrate axis specification is an evolutionarily conserved developmental process that relies on asymmetric activation of Wnt signaling and subsequent organizer formation on the future dorsal side of the embryo. Although roles of Wnt signaling during organizer formation have been studied extensively, it is unclear how the Wnt pathway is asymmetrically activated. In Xenopus and zebrafish, the Wnt pathway is triggered by dorsal determinants, which are translocated from the vegetal pole to the future dorsal side of the embryo shortly after fertilization. The transport of dorsal determinants requires a unique microtubule network formed in the vegetal cortex shortly after fertilization. However, molecular mechanisms governing the formation of vegetal cortical microtubule arrays are not fully understood. Here we report that Dead-End 1 (Dnd1), an RNA-binding protein required for primordial germ cell development during later stages of embryogenesis, is essential for Xenopus axis specification. We show that knockdown of maternal Dnd1 specifically interferes with the formation of vegetal cortical microtubules. This, in turn, impairs translocation of dorsal determinants, the initiation of Wnt signaling, organizer formation, and ultimately results in ventralized embryos. Furthermore, we found that Dnd1 binds to a uridine-rich sequence in the 3'-UTR of trim36, a vegetally localized maternal RNA essential for vegetal cortical microtubule assembly. Dnd1 anchors trim36 to the vegetal cortex in the egg, promoting high concentrations of Trim36 protein there. Our work thus demonstrates a novel and surprising function for Dnd1 during early development and provides an important link between Dnd1, mRNA localization, the microtubule cytoskeleton and axis specification.
Collapse
Affiliation(s)
- Wenyan Mei
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, 3411 Veterinary Medicine Basic Sciences Building, Urbana, IL 61802, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Nijjar S, Woodland HR. Localisation of RNAs into the germ plasm of vitellogenic Xenopus oocytes. PLoS One 2013; 8:e61847. [PMID: 23626739 PMCID: PMC3633952 DOI: 10.1371/journal.pone.0061847] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/14/2013] [Indexed: 11/21/2022] Open
Abstract
We have studied the localisation of mRNAs in full-grown Xenopus laevis oocytes by injecting fluorescent RNAs, followed by confocal microscopy of the oocyte cortex. Concentrating on RNA encoding the Xenopus Nanos homologue, nanos1 (formerly Xcat2), we find that it consistently localised into aggregated germ plasm ribonucleoprotein (RNP) particles, independently of cytoskeletal integrity. This implies that a diffusion/entrapment-mediated mechanism is active, as previously reported for previtellogenic oocytes. Sometimes this was accompanied by localisation into scattered particles of the “late”, Vg1/VegT pathway; occasionally only late pathway localisation was seen. The Xpat RNA behaved in an identical fashion and for neither RNA was the localisation changed by any culture conditions tested. The identity of the labelled RNP aggregates as definitive germ plasm was confirmed by their inclusion of abundant mitochondria and co-localisation with the germ plasm protein Hermes. Further, the nanos1/Hermes RNP particles are interspersed with those containing the germ plasm protein Xpat. These aggregates may be followed into the germ plasm of unfertilized eggs, but with a notable reduction in its quantity, both in terms of injected molecules and endogenous structures. Our results conflict with previous reports that there is no RNA localisation in large oocytes, and that during mid-oogenesis even germ plasm RNAs localise exclusively by the late pathway. We find that in mid oogenesis nanos1 RNA also localises to germ plasm but also by the late pathway. Late pathway RNAs, Vg1 and VegT, also may localise into germ plasm. Our results support the view that mechanistically the two modes of localisation are extremely similar, and that in an injection experiment RNAs might utilise either pathway, the distinction in fates being very subtle and subject to variation. We discuss these results in relation to their biological significance and the results of others.
Collapse
Affiliation(s)
- Sarbjit Nijjar
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Hugh R. Woodland
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
61
|
Lai F, King ML. Repressive translational control in germ cells. Mol Reprod Dev 2013; 80:665-76. [DOI: 10.1002/mrd.22161] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/02/2013] [Indexed: 02/04/2023]
Affiliation(s)
- Fangfang Lai
- Department of Cell Biology; University of Miami Miller School of Medicine; Miami; Florida
| | - Mary Lou King
- Department of Cell Biology; University of Miami Miller School of Medicine; Miami; Florida
| |
Collapse
|
62
|
Seervai RNH, Wessel GM. Lessons for inductive germline determination. Mol Reprod Dev 2013; 80:590-609. [PMID: 23450642 DOI: 10.1002/mrd.22151] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 01/03/2013] [Indexed: 12/25/2022]
Abstract
Formation of the germline in an embryo marks a fresh round of reproductive potential, yet the developmental stage and location within the embryo where the primordial germ cells (PGCs) form differs wildly among species. In most animals, the germline is formed either by an inherited mechanism, in which maternal provisions within the oocyte drive localized germ-cell fate once acquired in the embryo, or an inductive mechanism that involves signaling between cells that directs germ-cell fate. The inherited mechanism has been widely studied in model organisms such as Drosophila melanogaster, Caenorhabditis elegans, Xenopus laevis, and Danio rerio. Given the rapid generation time and the effective adaptation for laboratory research of these organisms, it is not coincidental that research on these organisms has led the field in elucidating mechanisms for germline specification. The inductive mechanism, however, is less well understood and is studied primarily in the mouse (Mus musculus). In this review, we compare and contrast these two fundamental mechanisms for germline determination, beginning with the key molecular determinants that play a role in the formation of germ cells across all animal taxa. We next explore the current understanding of the inductive mechanism of germ-cell determination in mice, and evaluate the hypotheses for selective pressures on these contrasting mechanisms. We then discuss the hypothesis that the transition between these determination mechanisms, which has happened many times in phylogeny, is more of a continuum than a binary change. Finally, we propose an analogy between germline determination and sex determination in vertebrates-two of the milestones of reproduction and development-in which animals use contrasting strategies to activate similar pathways.
Collapse
Affiliation(s)
- Riyad N H Seervai
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, 02192, USA
| | | |
Collapse
|
63
|
Beer RL, Draper BW. nanos3 maintains germline stem cells and expression of the conserved germline stem cell gene nanos2 in the zebrafish ovary. Dev Biol 2013; 374:308-18. [DOI: 10.1016/j.ydbio.2012.12.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 11/30/2012] [Accepted: 12/04/2012] [Indexed: 01/17/2023]
|
64
|
Regulation of cell polarity and RNA localization in vertebrate oocytes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:127-85. [PMID: 24016525 DOI: 10.1016/b978-0-12-407694-5.00004-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has long been appreciated that the inheritance of maternal cytoplasmic determinants from different regions of the egg can lead to differential specification of blastomeres during cleavage. Localized RNAs are important determinants of cell fate in eggs and embryos but are also recognized as fundamental regulators of cell structure and function. This chapter summarizes recent molecular and genetic experiments regarding: (1) mechanisms that regulate polarity during different stages of vertebrate oogenesis, (2) pathways that localize presumptive protein and RNA determinants within the polarized oocyte and egg, and (3) how these determinants act in the embryo to determine the ultimate cell fates. Emphasis is placed on studies done in Xenopus, where extensive work has been done in these areas, and comparisons are drawn with fish and mammals. The prospects for future work using in vivo genome manipulation and other postgenomic approaches are also discussed.
Collapse
|
65
|
Yamaguchi T, Taguchi A, Watanabe K, Orii H. DEADSouth protein localizes to germ plasm and is required for the development of primordial germ cells in Xenopus laevis. Biol Open 2012; 2:191-9. [PMID: 23429978 PMCID: PMC3575653 DOI: 10.1242/bio.20123111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/11/2012] [Indexed: 12/26/2022] Open
Abstract
DEADSouth mRNA is a component of germ plasm in Xenopus laevis and encodes a DDX25 DEAD-box RNA helicase. To determine the intracellular localization of DEADSouth protein, we injected mRNA encoding DEADSouth tagged with mCherry fluorescent protein into fertilized eggs from transgenic Xenopus expressing EGFP fused with a mitochondrial targeting signal. The DEADSouth-mCherry fusion protein was localized to the germ plasm, a mitochondria-rich region in primordial germ cells (PGCs). DEADSouth overexpression resulted in a reduction of PGC numbers after stage 20. Conversely, DEADSouth knockdown using an antisense locked nucleic acid gapmer inhibited movement of the germ plasm from the cortex to the perinuclear region, resulting in inhibition of PGC division at stage 12 and a decrease in PGC numbers at later stages. The knockdown phenotype was rescued by intact DEADSouth mRNA, but not mutant mRNA encoding inactive DEADSouth helicase. Surprisingly, it was also rescued by mouse vasa homolog and Xenopus vasa-like gene 1 mRNAs that encode DDX4 RNA helicases. The rescue was dependent on the 3' untranslated region (3'UTR) of DEADSouth mRNA, which was used for PGC-specific expression. The 3'UTR contributed to localization of the injected mRNA to the germ plasm, resulting in effective localization of DEADSouth protein. These results demonstrate that localization of DEADSouth helicase to the germ plasm is required for proper PGC development in Xenopus laevis.
Collapse
Affiliation(s)
- Takeshi Yamaguchi
- Department of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori, Akou-gun , Hyogo 678-1297 , Japan
| | | | | | | |
Collapse
|
66
|
Maintaining sufficient nanos is a critical function for polar granule component in the specification of primordial germ cells. G3-GENES GENOMES GENETICS 2012; 2:1397-403. [PMID: 23173091 PMCID: PMC3484670 DOI: 10.1534/g3.112.004192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/10/2012] [Indexed: 11/18/2022]
Abstract
Primordial germ cells (PGC) are the precursors of germline stem cells. In Drosophila, PGC specification is thought to require transcriptional quiescence and three genes, polar granule component (pgc), nanos (nos), and germ cell less (gcl) function to downregulate Pol II transcription. While it is not understood how nos or gcl represses transcription, pgc does so by inhibiting the transcription elongation factor b (P-TEFb), which is responsible for phosphorylating Ser2 residues in the heptad repeat of the C-terminal domain (CTD) of the largest Pol II subunit. In the studies reported here, we demonstrate that nos are a critical regulatory target of pgc. We show that a substantial fraction of the PGCs in pgc embryos have greatly reduced levels of Nos protein and exhibit phenotypes characteristic of nos PGCs. Lastly, restoring germ cell–specific expression of Nos is sufficient to ameliorate the pgc phenotype.
Collapse
|
67
|
Harikae K, Miura K, Kanai Y. Early gonadogenesis in mammals: significance of long and narrow gonadal structure. Dev Dyn 2012; 242:330-8. [PMID: 22987627 DOI: 10.1002/dvdy.23872] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2012] [Indexed: 11/11/2022] Open
Abstract
In mammalian embryogenesis, the gonadal primordium arises from the thickening of the coelomic epithelium, which results in a pair of extremely long and narrow gonadal structures along the anteroposterior axis. These gonadal structures are conserved in various mammalian species, suggesting a great advantage in properly receiving migrating primordial germ cells (PGCs) that are widely scattered throughout the hindgut tube. Soon after the PGCs settle, the bipotential gonads undergo sex determination into testes or ovaries by the sex-determining gene, Sry, which is expressed in supporting cell precursors in a center-to-pole manner. Such a long, narrow gonadal structure bestows a considerable time lag on Sry expression between the center and pole regions, but testiculogenesis with cord formation and Leydig cell differentiation occurs synchronously throughout the whole organ. This synchronous testiculogenesis could be explained by a positive-feedback mechanism between SOX9 (another SRY-related transcription factor) and FGF9 downstream of Sry. FGF signals are likely secreted from the center region, rapidly diffuse into the poles, and then induce the establishment of SOX9 expression in Sertoli cells in the pole domains. This work focuses on recent knowledge of the molecular and cellular events of PGC migration, gonadogenesis, and testiculogenesis, and their biological significance in mammalian embryogenesis.
Collapse
Affiliation(s)
- Kyoko Harikae
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
68
|
Luo YJ, Su YH. Opposing nodal and BMP signals regulate left-right asymmetry in the sea urchin larva. PLoS Biol 2012; 10:e1001402. [PMID: 23055827 PMCID: PMC3467216 DOI: 10.1371/journal.pbio.1001402] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 08/28/2012] [Indexed: 12/28/2022] Open
Abstract
Nodal and BMP signals are important for establishing left-right (LR) asymmetry in vertebrates. In sea urchins, Nodal signaling prevents the formation of the rudiment on the right side. However, the opposing pathway to Nodal signaling during LR axis establishment is not clear. Here, we revealed that BMP signaling is activated in the left coelomic pouch, specifically in the veg2 lineage, but not in the small micromeres. By perturbing BMP activities, we demonstrated that BMP signaling is required for activating the expression of the left-sided genes and the formation of the left-sided structures. On the other hand, Nodal signals on the right side inhibit BMP signaling and control LR asymmetric separation and apoptosis of the small micromeres. Our findings show that BMP signaling is the positive signal for left-sided development in sea urchins, suggesting that the opposing roles of Nodal and BMP signals in establishing LR asymmetry are conserved in deuterostomes.
Collapse
Affiliation(s)
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| |
Collapse
|