51
|
Satou Y, Minami K, Hosono E, Okada H, Yasuoka Y, Shibano T, Tanaka T, Taira M. Phosphorylation states change Otx2 activity for cell proliferation and patterning in the Xenopus embryo. Development 2018; 145:dev.159640. [PMID: 29440302 DOI: 10.1242/dev.159640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022]
Abstract
The homeodomain transcription factor Otx2 has essential roles in head and eye formation via the negative and positive regulation of its target genes, but it remains elusive how this dual activity of Otx2 affects cellular functions. In the current study, we first demonstrated that both exogenous and endogenous Otx2 are phosphorylated at multiple sites. Using Xenopus embryos, we identified three possible cyclin-dependent kinase (Cdk) sites and one Akt site, and analyzed the biological activities of phosphomimetic (4E) and nonphosphorylatable (4A) mutants for those sites. In the neuroectoderm, the 4E but not the 4A mutant downregulated the Cdk inhibitor gene p27xic1 (cdknx) and posterior genes, and promoted cell proliferation, possibly forming a positive-feedback loop consisting of Cdk, Otx2 and p27xic1 for cell proliferation, together with anteriorization. Conversely, the 4A mutant functioned as an activator on its own and upregulated the expression of eye marker genes, resulting in enlarged eyes. Consistent with these results, the interaction of Otx2 with the corepressor Tle1 is suggested to be phosphorylation dependent. These data suggest that Otx2 orchestrates cell proliferation, anteroposterior patterning and eye formation via its phosphorylation state.
Collapse
Affiliation(s)
- Yumeko Satou
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kohei Minami
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Erina Hosono
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hajime Okada
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuuri Yasuoka
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.,Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Takashi Shibano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiaki Tanaka
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
52
|
Martinez-Morales JR, Cavodeassi F, Bovolenta P. Coordinated Morphogenetic Mechanisms Shape the Vertebrate Eye. Front Neurosci 2017; 11:721. [PMID: 29326547 PMCID: PMC5742352 DOI: 10.3389/fnins.2017.00721] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/11/2017] [Indexed: 11/22/2022] Open
Abstract
The molecular bases of vertebrate eye formation have been extensively investigated during the past 20 years. This has resulted in the definition of the backbone of the gene regulatory networks controlling the different steps of eye development and has further highlighted a substantial conservation of these networks among vertebrates. Yet, the precise morphogenetic events allowing the formation of the optic cup from a small group of cells within the anterior neural plate are still poorly understood. It is also unclear if the morphogenetic events leading to eyes of very similar shape are indeed comparable among all vertebrates or if there are any species-specific peculiarities. Improved imaging techniques have enabled to follow how the eye forms in living embryos of a few vertebrate models, whereas the development of organoid cultures has provided fascinating tools to recapitulate tissue morphogenesis of other less accessible species. Here, we will discuss what these advances have taught us about eye morphogenesis, underscoring possible similarities and differences among vertebrates. We will also discuss the contribution of cell shape changes to this process and how morphogenetic and patterning mechanisms integrate to assemble the final architecture of the eye.
Collapse
Affiliation(s)
| | - Florencia Cavodeassi
- Centro de Biología Molecular Severo Ochoa, (CSIC/UAM), Madrid, Spain.,CIBERER, ISCIII, Madrid, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa, (CSIC/UAM), Madrid, Spain.,CIBERER, ISCIII, Madrid, Spain
| |
Collapse
|
53
|
Hägglund AC, Jones I, Carlsson L. A novel mouse model of anterior segment dysgenesis (ASD): conditional deletion of Tsc1 disrupts ciliary body and iris development. Dis Model Mech 2017; 10:245-257. [PMID: 28250050 PMCID: PMC5374326 DOI: 10.1242/dmm.028605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/05/2017] [Indexed: 12/22/2022] Open
Abstract
Development of the cornea, lens, ciliary body and iris within the anterior segment of the eye involves coordinated interaction between cells originating from the ciliary margin of the optic cup, the overlying periocular mesenchyme and the lens epithelium. Anterior segment dysgenesis (ASD) encompasses a spectrum of developmental syndromes that affect these anterior segment tissues. ASD conditions arise as a result of dominantly inherited genetic mutations and result in both ocular-specific and systemic forms of dysgenesis that are best exemplified by aniridia and Axenfeld-Rieger syndrome, respectively. Extensive clinical overlap in disease presentation amongst ASD syndromes creates challenges for correct diagnosis and classification. The use of animal models has therefore proved to be a robust approach for unravelling this complex genotypic and phenotypic heterogeneity. However, despite these successes, it is clear that additional genes that underlie several ASD syndromes remain unidentified. Here, we report the characterisation of a novel mouse model of ASD. Conditional deletion of Tsc1 during eye development leads to a premature upregulation of mTORC1 activity within the ciliary margin, periocular mesenchyme and lens epithelium. This aberrant mTORC1 signalling within the ciliary margin in particular leads to a reduction in the number of cells that express Pax6, Bmp4 and Msx1 Sustained mTORC1 signalling also induces a decrease in ciliary margin progenitor cell proliferation and a consequent failure of ciliary body and iris development in postnatal animals. Our study therefore identifies Tsc1 as a novel candidate ASD gene. Furthermore, the Tsc1-ablated mouse model also provides a valuable resource for future studies concerning the molecular mechanisms underlying ASD and acts as a platform for evaluating therapeutic approaches for the treatment of visual disorders.
Collapse
Affiliation(s)
- Anna-Carin Hägglund
- Umeå Center for Molecular Medicine (UCMM), Umeå University, Umeå 901 87, Sweden
| | - Iwan Jones
- Umeå Center for Molecular Medicine (UCMM), Umeå University, Umeå 901 87, Sweden
| | - Leif Carlsson
- Umeå Center for Molecular Medicine (UCMM), Umeå University, Umeå 901 87, Sweden
| |
Collapse
|
54
|
Lupu FI, Burnett JB, Eggenschwiler JT. Cell cycle-related kinase regulates mammalian eye development through positive and negative regulation of the Hedgehog pathway. Dev Biol 2017; 434:24-35. [PMID: 29166577 DOI: 10.1016/j.ydbio.2017.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 01/20/2023]
Abstract
Cell cycle-related kinase (CCRK) is a conserved regulator of ciliogenesis whose loss in mice leads to a wide range of developmental defects, including exencephaly, preaxial polydactyly, skeletal abnormalities, and microphthalmia. Here, we investigate the role of CCRK in mouse eye development. Ccrk mutants show dramatic patterning defects, with an expansion of the optic stalk domain into the optic cup, as well as an expansion of the retinal pigment epithelium (RPE) into neural retina (NR) territory. In addition, Ccrk mutants display a shortened optic stalk. These defects are associated with bimodal changes in Hedgehog (Hh) pathway activity within the eye, including the loss of proximal, high level responses but a gain in distal, low level responses. We simultaneously removed the Hh activator GLI2 in Ccrk mutants (Ccrk-/-;Gli2-/-), which resulted in rescue of optic cup patterning and exacerbation of optic stalk length defects. Next, we disrupted the Hh pathway antagonist GLI3 in mutants lacking CCRK (Ccrk-/-;Gli3-/-), which lead to even greater expansion of the RPE markers into the NR domain and a complete loss of NR specification within the optic cup. These results indicate that CCRK functions in eye development by both positively and negatively regulating the Hh pathway, and they reveal distinct requirements for Hh signaling in patterning and morphogenesis of the eyes.
Collapse
Affiliation(s)
- Floria I Lupu
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Jacob B Burnett
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
55
|
Sivagurunathan S, Arunachalam JP, Chidambaram S. PIWI-like protein, HIWI2 is aberrantly expressed in retinoblastoma cells and affects cell-cycle potentially through OTX2. Cell Mol Biol Lett 2017; 22:17. [PMID: 28861107 PMCID: PMC5576095 DOI: 10.1186/s11658-017-0048-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/22/2017] [Indexed: 12/30/2022] Open
Abstract
Retinoblastoma (RB), a childhood cancer, is caused by biallelic mutation of the RB1 gene, but its development is not clearly understood. Furthermore, the presence of a cancer stem cell subpopulation in RB might impact its treatment. PIWI protein, known for its role in stem cell self-renewal, is aberrantly expressed in cancers. We examined the role of the PIWI-like protein HIWI2 in RB and its effect on the stem cell markers in cells of the RB line, Y79. The expression of HIWI2 is significantly increased in Y79 compared with its level in HeLa and ARPE19 cells. The stem cell markers Oct-3/4, Nanog and Sox-2 were not altered upon HIWI2 knockdown in Y79 cells. Interestingly, OTX2 was significantly downregulated in the absence of HIWI2. Otx2 transcripts also decreased in HIWI2-silenced Y79 and ARPE19 cells. Moreover, silencing HIWI2 in Y79 accumulated the cells at G2–M phase and reduced the levels of proliferating cell nuclear antigen (PCNA) and the tumor suppressor, p16. Our results demonstrate that HIWI2 is aberrantly expressed in Y79 cells and silencing of HIWI2 downregulates OTX2, suggesting that HIWI2 might play a role in the progression of RB.
Collapse
Affiliation(s)
- Suganya Sivagurunathan
- RS Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Chennai, India.,School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Jayamuruga Pandian Arunachalam
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, India.,Central Inter-Disciplinary Research Facility (CIDRF), Sri Balaji Vidyapeeth University, Mahatma Gandhi Medical College and Research Institute Campus, Pondicherry, India
| | - Subbulakshmi Chidambaram
- RS Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Chennai, India.,Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| |
Collapse
|
56
|
Iida H, Yang T, Yasugi S, Ishii Y. Temporal dissociation of developmental events in the chick eye under low temperature conditions. Dev Growth Differ 2016; 58:741-749. [PMID: 27921294 DOI: 10.1111/dgd.12330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 11/28/2022]
Abstract
The chick embryonic eye is an excellent model for the study of vertebrate organogenesis. Key events in eye development involve thickening, invagination and cytodifferentiation of the lens primordium. While these events occur successively at different developmental stages, the extent to which these events are temporally related is largely unknown. Here we show that the lens invagination is highly sensitive to temperature. Lowering of incubation temperature to 29°C at embryonic day 2 delayed the onset of invagination of the lens, but not thickening and cytodifferentiation, leading to abnormal protrusion of the eye. The temperature shift also delayed the inward bending of the underlying retinal primordium, even in the absence of the lens. Taken together, our results suggest that lens invagination is initiated independently of thickening and cytodifferentiation, possibly by mechanisms associated with morphogenesis of the primordial retina.
Collapse
Affiliation(s)
- Hideaki Iida
- Department of Biotechnology, Faculty of Engineering, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan
| | - Tiantian Yang
- Department of Biotechnology, Faculty of Engineering, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan
| | - Sadao Yasugi
- Department of Biotechnology, Faculty of Engineering, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan.,Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan
| | - Yasuo Ishii
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan
| |
Collapse
|
57
|
Yap is essential for retinal progenitor cell cycle progression and RPE cell fate acquisition in the developing mouse eye. Dev Biol 2016; 419:336-347. [PMID: 27616714 DOI: 10.1016/j.ydbio.2016.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 12/30/2022]
Abstract
Yap functions as a transcriptional regulator by acting together with sequence-specific DNA binding factors and transcription cofactors to mediate cell proliferation in developing epithelial tissues and tumors. An upstream kinase cascade controls nuclear localization and function in response to partially identified exogenous signals, including cell-to-cell contact. Nevertheless, its role in CNS development is poorly understood. In order to investigate Yap function in developing CNS, we characterized the cellular outcomes after selective Yap gene ablation in developing ocular tissues. When Yap was lost, presumptive retinal pigment epithelium acquired anatomical and molecular characteristics resembling those of the retinal epithelium rather than of RPE, including loss of pigmentation, pseudostratified epithelial morphology and ectopic induction of markers for retinal progenitor cells, like Chx10, and neurons, like β-Tubulin III. In addition, developing retina showed signs of progressive degeneration, including laminar folding, thinning and cell loss, which resulted from multiple defects in cell proliferation and survival, and in junction integrity. Furthermore, Yap-deficient retinal progenitors displayed decreased S-phase cells and altered cell cycle progression. Altogether, our studies not only illustrate the canonical function of Yap in promoting the proliferation of progenitors, but also shed new light on its evolutionarily conserved, instructive role in regional specification, maintenance of junctional integrity and precise regulation of cell proliferation during neuroepithelial development.
Collapse
|
58
|
Wang Z, Yasugi S, Ishii Y. Chx10 functions as a regulator of molecular pathways controlling the regional identity in the primordial retina. Dev Biol 2016; 413:104-11. [PMID: 27001188 DOI: 10.1016/j.ydbio.2016.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/01/2016] [Accepted: 03/17/2016] [Indexed: 11/29/2022]
Abstract
The light-sensitive neural retina (NR) and the retinal pigmented epithelium (RPE) develop from a common primordium, the optic vesicle, raising the question of how they acquire and maintain distinct identities. Here, we demonstrate that sustained misexpression of the Chx10 homeobox gene in the presumptive RPE in chick suppresses accumulation of melanin pigments and promotes ectopic NR-like neural differentiation. This phenotypic change involved ectopic expression of NR transcription factor genes, Sox2, Six3, Rx1 and Optx2, which, when misexpressed, counteracted RPE development without upregulating Chx10. These results suggest that Chx10 can function as a cell autonomous regulator of the regional identity in the primordial retina, presumably through a downstream transcriptional cascade.
Collapse
Affiliation(s)
- Zi Wang
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Sadao Yasugi
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Yasuo Ishii
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| |
Collapse
|
59
|
Zacharias AL, Murray JI. Combinatorial decoding of the invariant C. elegans embryonic lineage in space and time. Genesis 2016; 54:182-97. [PMID: 26915329 PMCID: PMC4840027 DOI: 10.1002/dvg.22928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/19/2022]
Abstract
Understanding how a single cell, the zygote, can divide and differentiate to produce the diverse animal cell types is a central goal of developmental biology research. The model organism Caenorhabditis elegans provides a system that enables a truly comprehensive understanding of this process across all cells. Its invariant cell lineage makes it possible to identify all of the cells in each individual and compare them across organisms. Recently developed methods automate the process of cell identification, allowing high-throughput gene expression characterization and phenotyping at single cell resolution. In this Review, we summarize the sequences of events that pattern the lineage including establishment of founder cell identity, the signaling pathways that diversify embryonic fate, and the regulators involved in patterning within these founder lineages before cells adopt their terminal fates. We focus on insights that have emerged from automated approaches to lineage tracking, including insights into mechanisms of robustness, context-specific regulation of gene expression, and temporal coordination of differentiation. We suggest a model by which lineage history produces a combinatorial code of transcription factors that act, often redundantly, to ensure terminal fate.
Collapse
Affiliation(s)
- Amanda L. Zacharias
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| |
Collapse
|
60
|
Kim HT, Kim SJ, Sohn YI, Paik SS, Caplette R, Simonutti M, Moon KH, Lee EJ, Min KW, Kim MJ, Lee DG, Simeone A, Lamonerie T, Furukawa T, Choi JS, Kweon HS, Picaud S, Kim IB, Shong M, Kim JW. Mitochondrial Protection by Exogenous Otx2 in Mouse Retinal Neurons. Cell Rep 2015; 13:990-1002. [PMID: 26565912 DOI: 10.1016/j.celrep.2015.09.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/15/2015] [Accepted: 09/25/2015] [Indexed: 10/22/2022] Open
Abstract
OTX2 (orthodenticle homeobox 2) haplodeficiency causes diverse defects in mammalian visual systems ranging from retinal dysfunction to anophthalmia. We find that the retinal dystrophy of Otx2(+/GFP) heterozygous knockin mice is mainly due to the loss of bipolar cells and consequent deficits in retinal activity. Among bipolar cell types, OFF-cone bipolar subsets, which lack autonomous Otx2 gene expression but receive Otx2 proteins from photoreceptors, degenerate most rapidly in Otx2(+/GFP) mouse retinas, suggesting a neuroprotective effect of the imported Otx2 protein. In support of this hypothesis, retinal dystrophy in Otx2(+/GFP) mice is prevented by intraocular injection of Otx2 protein, which localizes to the mitochondria of bipolar cells and facilitates ATP synthesis as a part of mitochondrial ATP synthase complex. Taken together, our findings demonstrate a mitochondrial function for Otx2 and suggest a potential therapeutic application of OTX2 protein delivery in human retinal dystrophy.
Collapse
Affiliation(s)
- Hyoung-Tai Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea
| | - Soung Jung Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, South Korea
| | - Young-In Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea
| | - Sun-Sook Paik
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Romain Caplette
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Manuel Simonutti
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - Kyeong Hwan Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea
| | - Eun Jung Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea
| | - Kwang Wook Min
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea
| | - Mi Jeong Kim
- Nano-Bio Electron Microscopy Research Group, Korea Basic Science Institute (KBSI), Daejeon 305-806, South Korea
| | - Dong-Gi Lee
- Biological Disaster Analysis Group, Korea Basic Science Institute (KBSI), Daejeon 305-806, Korea
| | - Antonio Simeone
- Institute of Genetics and Biophysics, Adriano Buzzati-Traverso, Via Pietro Castellino 111, 80131 Napoli, Italy; IRCCS Neuromed, Pozzilli, IS 86077, Italy
| | - Thomas Lamonerie
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, UMR UNS/CNRS 7277/INSERM 1091, Nice 06108, France
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Jong-Soon Choi
- Biological Disaster Analysis Group, Korea Basic Science Institute (KBSI), Daejeon 305-806, Korea
| | - Hee-Seok Kweon
- Nano-Bio Electron Microscopy Research Group, Korea Basic Science Institute (KBSI), Daejeon 305-806, South Korea
| | - Serge Picaud
- INSERM, U968, Paris 75012, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris 75012, France; CNRS, UMR_7210, Paris 75012, France
| | - In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 137-701, South Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon 301-721, South Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, South Korea.
| |
Collapse
|
61
|
|
62
|
Singh RK, Mallela RK, Cornuet PK, Reifler AN, Chervenak AP, West MD, Wong KY, Nasonkin IO. Characterization of Three-Dimensional Retinal Tissue Derived from Human Embryonic Stem Cells in Adherent Monolayer Cultures. Stem Cells Dev 2015; 24:2778-95. [PMID: 26283078 DOI: 10.1089/scd.2015.0144] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Stem cell-based therapy of retinal degenerative conditions is a promising modality to treat blindness, but requires new strategies to improve the number of functionally integrating cells. Grafting semidifferentiated retinal tissue rather than progenitors allows preservation of tissue structure and connectivity in retinal grafts, mandatory for vision restoration. Using human embryonic stem cells (hESCs), we derived retinal tissue growing in adherent conditions consisting of conjoined neural retina and retinal pigment epithelial (RPE) cells and evaluated cell fate determination and maturation in this tissue. We found that deriving such tissue in adherent conditions robustly induces all eye field genes (RX, PAX6, LHX2, SIX3, SIX6) and produces four layers of pure populations of retinal cells: RPE (expressing NHERF1, EZRIN, RPE65, DCT, TYR, TYRP, MITF, PMEL), early photoreceptors (PRs) (coexpressing CRX and RCVRN), inner nuclear layer neurons (expressing CALB2), and retinal ganglion cells [RGCs, expressing BRN3B and Neurofilament (NF) 200]. Furthermore, we found that retinal progenitors divide at the apical side of the hESC-derived retinal tissue (next to the RPE layer) and then migrate toward the basal side, similar to that found during embryonic retinogenesis. We detected synaptogenesis in hESC-derived retinal tissue, and found neurons containing many synaptophysin-positive boutons within the RGC and PR layers. We also observed long NF200-positive axons projected by RGCs toward the apical side. Whole-cell recordings demonstrated that putative amacrine and/or ganglion cells exhibited electrophysiological responses reminiscent of those in normal retinal neurons. These responses included voltage-gated Na(+) and K(+) currents, depolarization-induced spiking, and responses to neurotransmitter receptor agonists. Differentiation in adherent conditions allows generation of long and flexible pieces of 3D retinal tissue suitable for isolating transplantable slices of tissue for retinal replacement therapies.
Collapse
Affiliation(s)
- Ratnesh K Singh
- 1 Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Ramya K Mallela
- 1 Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Pamela K Cornuet
- 1 Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Aaron N Reifler
- 2 Department of Ophthalmology and Visual Sciences, University of Michigan , Ann Arbor, Michigan
| | - Andrew P Chervenak
- 2 Department of Ophthalmology and Visual Sciences, University of Michigan , Ann Arbor, Michigan
| | | | - Kwoon Y Wong
- 2 Department of Ophthalmology and Visual Sciences, University of Michigan , Ann Arbor, Michigan
| | - Igor O Nasonkin
- 1 Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| |
Collapse
|
63
|
Ohana R, Weiman-Kelman B, Raviv S, Tamm ER, Pasmanik-Chor M, Rinon A, Netanely D, Shamir R, Solomon AS, Ashery-Padan R. MicroRNAs are essential for differentiation of the retinal pigmented epithelium and maturation of adjacent photoreceptors. Development 2015; 142:2487-98. [PMID: 26062936 DOI: 10.1242/dev.121533] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 06/03/2015] [Indexed: 12/21/2022]
Abstract
Dysfunction of the retinal pigmented epithelium (RPE) results in degeneration of photoreceptors and vision loss and is correlated with common blinding disorders in humans. Although many protein-coding genes are known to be expressed in RPE and are important for its development and maintenance, virtually nothing is known about the in vivo roles of non-coding transcripts. The expression patterns of microRNAs (miRNAs) have been analyzed in a variety of ocular tissues, and a few were implicated to play role in RPE based on studies in cell lines. Here, through RPE-specific conditional mutagenesis of Dicer1 or Dgcr8 in mice, the importance of miRNAs for RPE differentiation was uncovered. miRNAs were found to be dispensable for maintaining RPE fate and survival, and yet they are essential for the acquisition of important RPE properties such as the expression of genes involved in the visual cycle pathway, pigmentation and cell adhesion. Importantly, miRNAs of the RPE are required for maturation of adjacent photoreceptors, specifically for the morphogenesis of the outer segments. The alterations in the miRNA and mRNA profiles in the Dicer1-deficient RPE point to a key role of miR-204 in regulation of the RPE differentiation program in vivo and uncover the importance of additional novel RPE miRNAs. This study reveals the combined regulatory activity of miRNAs that is required for RPE differentiation and for the development of the adjacent neuroretina.
Collapse
Affiliation(s)
- Reut Ohana
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Benjamin Weiman-Kelman
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shaul Raviv
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ernst R Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, D-93053 Regensburg, Germany
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ariel Rinon
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dvir Netanely
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ron Shamir
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Arie S Solomon
- The Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
64
|
Stenkamp DL. Development of the Vertebrate Eye and Retina. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:397-414. [PMID: 26310167 DOI: 10.1016/bs.pmbts.2015.06.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The mature, functional, and healthy eye is generated by the coordinated regulatory interaction of numerous and diverse developing tissues. The neural retina of the eye must undergo the neurogenesis of multiple retinal cell types in the correct ratios and spatial patterns. This chapter provides an overview of retinal development, and includes a summary of the process of eye organogenesis, a discussion of major principles of retinal neurogenesis, and describes some of the key molecular factors critical for retinal development. Defects in many of these factors underlie diseases of the eye, and an understanding of the process of retinal development will be critical for successful future applications of regenerative therapies for eye disease.
Collapse
Affiliation(s)
- Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.
| |
Collapse
|
65
|
Fujimura N, Klimova L, Antosova B, Smolikova J, Machon O, Kozmik Z. Genetic interaction between Pax6 and β-catenin in the developing retinal pigment epithelium. Dev Genes Evol 2015; 225:121-8. [PMID: 25689933 DOI: 10.1007/s00427-015-0493-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/03/2015] [Indexed: 12/01/2022]
Abstract
Wnt/β-catenin signaling plays an essential role in the retinal pigment epithelium (RPE) determination. Since activity of Pax6 (together with Pax2) is also required for the RPE determination, we investigated a possible genetic interaction between Pax6 and Wnt/β-catenin signaling pathway by analyzing Pax6, β-catenin, and Pax6/β-catenin conditional knockout mice. Although Pax6 inactivation alone had no impact on initial specification determined by the expression of Mitf and Otx2, melanin pigmentation was reduced in the RPE. This suggests that along with Mitf and Otx2, Pax6 is required for the full differentiation of RPE. Reporter gene assays in vitro suggest that hypopigmentation is at least in part due to the direct regulation of genes encoding enzymes involved in melanin synthesis by Pax6, Mitf, and β-catenin. The RPE of a β-catenin/Pax6 double mutant was differentiated into the neural retina; however, the tissue was thinner than that of the conditional β-catenin mutant due to reduced proliferation. Together, our data demonstrate that Pax6 is required for the RPE differentiation by regulating pigmentation and accountable for hyperproliferation in the transdifferentiated RPE. In this context, Pax6 appears to function as a pleiotropic regulator, directing development of ocular tissues in concert with the signaling pathway and, at the same time, regulating expression of structural component of the eye, such as shielding pigment.
Collapse
Affiliation(s)
- Naoko Fujimura
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, Czech Republic
| | | | | | | | | | | |
Collapse
|
66
|
Phillips MJ, Perez ET, Martin JM, Reshel ST, Wallace KA, Capowski EE, Singh R, Wright LS, Clark EM, Barney PM, Stewart R, Dickerson SJ, Miller MJ, Percin EF, Thomson JA, Gamm DM. Modeling human retinal development with patient-specific induced pluripotent stem cells reveals multiple roles for visual system homeobox 2. Stem Cells 2015; 32:1480-92. [PMID: 24532057 DOI: 10.1002/stem.1667] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/07/2014] [Accepted: 01/12/2014] [Indexed: 12/14/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) have been shown to differentiate along the retinal lineage in a manner that mimics normal mammalian development. Under certain culture conditions, hiPSCs form optic vesicle-like structures (OVs), which contain proliferating progenitors capable of yielding all neural retina (NR) cell types over time. Such observations imply conserved roles for regulators of retinogenesis in hiPSC-derived cultures and the developing embryo. However, whether and to what extent this assumption holds true has remained largely uninvestigated. We examined the role of a key NR transcription factor, visual system homeobox 2 (VSX2), using hiPSCs derived from a patient with microphthalmia caused by an R200Q mutation in the VSX2 homeodomain region. No differences were noted between (R200Q)VSX2 and sibling control hiPSCs prior to OV generation. Thereafter, (R200Q)VSX2 hiPSC-OVs displayed a significant growth deficit compared to control hiPSC-OVs, as well as increased production of retinal pigmented epithelium at the expense of NR cell derivatives. Furthermore, (R200Q)VSX2 hiPSC-OVs failed to produce bipolar cells, a distinctive feature previously observed in Vsx2 mutant mice. (R200Q)VSX2 hiPSC-OVs also demonstrated delayed photoreceptor maturation, which could be overcome via exogenous expression of wild-type VSX2 at early stages of retinal differentiation. Finally, RNAseq analysis on isolated hiPSC-OVs implicated key transcription factors and extracellular signaling pathways as potential downstream effectors of VSX2-mediated gene regulation. Our results establish hiPSC-OVs as versatile model systems to study retinal development at stages not previously accessible in humans and support the bona fide nature of hiPSC-OV-derived retinal progeny.
Collapse
Affiliation(s)
- M Joseph Phillips
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Marcos S, González-Lázaro M, Beccari L, Carramolino L, Martin-Bermejo MJ, Amarie O, Martín DMS, Torroja C, Bogdanović O, Doohan R, Puk O, de Angelis MH, Graw J, Gomez-Skarmeta JL, Casares F, Torres M, Bovolenta P. Meis1 coordinates a network of genes implicated in eye development and microphthalmia. Development 2015; 142:3009-20. [DOI: 10.1242/dev.122176] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 07/17/2015] [Indexed: 01/08/2023]
Abstract
Microphthalmos is a rare congenital anomaly characterized by reduced eye size and visual deficits of variable degrees. Sporadic and hereditary microphthalmos has been associated to heterozygous mutations in genes fundamental for eye development. Yet, many cases are idiopathic or await the identification of molecular causes. Here we show that haploinsufficiency of Meis1, a transcription factor with an evolutionary conserved expression in the embryonic trunk, brain and sensory organs, including the eye, causes microphthalmic traits and visual impairment, in adult mice. By combining the analysis of Meis1 loss-of-function and conditional Meis1 functional rescue with ChIP-seq and RNA-seq approaches we show that, in contrast to Meis1 preferential association with Hox-Pbx binding sites in the trunk, Meis1 binds to Hox/Pbx-independent sites during optic cup development. In the eye primordium, Meis1 coordinates, in a dose-dependent manner, retinal proliferation and differentiation by regulating genes responsible for human microphthalmia and components the Notch signalling pathway. In addition, Meis1 is required for eye patterning by controlling a set of eye territory-specific transcription factors, so that in Meis1−/− embryos boundaries among the different eye territories are shifted or blurred. We thus propose that Meis1 is at the core of a genetic network implicated in eye patterning/microphthalmia, itself representing an additional candidate for syndromic cases of these ocular malformations.
Collapse
Affiliation(s)
- Séverine Marcos
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
| | - Monica González-Lázaro
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/ Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Leonardo Beccari
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
| | - Laura Carramolino
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/ Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Maria Jesus Martin-Bermejo
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
| | - Oana Amarie
- Institute of Developmental Genetics Helmholtz Center Munich; D-85764 Neuherberg, Germany
| | - Daniel Mateos-San Martín
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/ Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Carlos Torroja
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/ Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Ozren Bogdanović
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO, Carretera de Utrera Km1, E-41013 Sevilla, Spain
- ARC Center of Excellence in Plant Energy Biology, School of Chemistry and Biochemistry, Faculty of Science, The University of Western Australia, Perth, WA 6009, Australia
| | - Roisin Doohan
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/ Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Oliver Puk
- Institute of Developmental Genetics Helmholtz Center Munich; D-85764 Neuherberg, Germany
| | | | - Jochen Graw
- Institute of Developmental Genetics Helmholtz Center Munich; D-85764 Neuherberg, Germany
| | - Jose Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO, Carretera de Utrera Km1, E-41013 Sevilla, Spain
| | - Fernando Casares
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO, Carretera de Utrera Km1, E-41013 Sevilla, Spain
| | - Miguel Torres
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/ Melchor Fernández Almagro, 3, E-28029 Madrid, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), c/ Nicolás Cabrera, 1, E-28049 Madrid, Spain
| |
Collapse
|
68
|
Leivada E, Boeckx C. Schizophrenia and cortical blindness: protective effects and implications for language. Front Hum Neurosci 2014; 8:940. [PMID: 25506321 PMCID: PMC4246684 DOI: 10.3389/fnhum.2014.00940] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/04/2014] [Indexed: 01/20/2023] Open
Abstract
The repeatedly noted absence of case-reports of individuals with schizophrenia and congenital/early developed blindness has led several authors to argue that the latter can confer protective effects against the former. In this work, we present a number of relevant case-reports from different syndromes that show comorbidity of congenital and early blindness with schizophrenia. On the basis of these reports, we argue that a distinction between different types of blindness in terms of the origin of the visual deficit, cortical or peripheral, is crucial for understanding the observed patterns of comorbidity. We discuss the genetic underpinnings and the brain structures involved in schizophrenia and blindness, with insights from language processing, laying emphasis on the three structures that particularly stand out: the occipital cortex, the lateral geniculate nucleus (LGN), and the pulvinar. Last, we build on previous literature on the nature of the protective effects in order to offer novel insights into the nature of the protection mechanism from the perspective of the brain structures involved in each type of blindness.
Collapse
Affiliation(s)
- Evelina Leivada
- Department of Linguistics, Universitat de BarcelonaBarcelona, Spain
| | - Cedric Boeckx
- Department of Linguistics, Universitat de BarcelonaBarcelona, Spain
- Catalan Institute for Advanced Studies and Research (ICREA)Barcelona, Spain
| |
Collapse
|
69
|
Bankhead EJ, Colasanto MP, Dyorich KM, Jamrich M, Murtaugh LC, Fuhrmann S. Multiple requirements of the focal dermal hypoplasia gene porcupine during ocular morphogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:197-213. [PMID: 25451153 DOI: 10.1016/j.ajpath.2014.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/25/2014] [Accepted: 09/02/2014] [Indexed: 12/13/2022]
Abstract
Wnt glycoproteins control key processes during development and disease by activating various downstream pathways. Wnt secretion requires post-translational modification mediated by the O-acyltransferase encoded by the Drosophila porcupine homolog gene (PORCN). In humans, PORCN mutations cause focal dermal hypoplasia (FDH, or Goltz syndrome), an X-linked dominant multisystem birth defect that is frequently accompanied by ocular abnormalities such as coloboma, microphthalmia, or even anophthalmia. Although genetic ablation of Porcn in mouse has provided insight into the etiology of defects caused by ectomesodermal dysplasia in FDH, the requirement for Porcn and the actual Wnt ligands during eye development have been unknown. In this study, Porcn hemizygosity occasionally caused ocular defects reminiscent of FDH. Conditional inactivation of Porcn in periocular mesenchyme led to defects in mid- and hindbrain and in craniofacial development, but was insufficient to cause ocular abnormalities. However, a combination of conditional Porcn depletion in optic vesicle neuroectoderm, lens, and neural crest-derived periocular mesenchyme induced severe eye abnormalities with high penetrance. In particular, we observed coloboma, transdifferentiation of the dorsal and ventral retinal pigment epithelium, defective optic cup periphery, and closure defects of the eyelid, as well as defective corneal morphogenesis. Thus, Porcn is required in both extraocular and neuroectodermal tissues to regulate distinct Wnt-dependent processes during morphogenesis of the posterior and anterior segments of the eye.
Collapse
Affiliation(s)
- Elizabeth J Bankhead
- Departments of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Mary P Colasanto
- Departments of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Kayla M Dyorich
- Departments of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Milan Jamrich
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Sabine Fuhrmann
- Departments of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
70
|
Choi SW, Kim JJ, Seo MS, Park SB, Kang TW, Lee JY, Lee BC, Kang I, Shin TH, Kim HS, Yu KR, Kang KS. miR-410 Inhibition Induces RPE Differentiation of Amniotic Epithelial Stem Cells via Overexpression of OTX2 and RPE65. Stem Cell Rev Rep 2014; 11:376-86. [DOI: 10.1007/s12015-014-9568-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
71
|
Vincent A, Forster N, Maynes JT, Paton TA, Billingsley G, Roslin NM, Ali A, Sutherland J, Wright T, Westall CA, Paterson AD, Marshall CR, Héon E. OTX2 mutations cause autosomal dominant pattern dystrophy of the retinal pigment epithelium. J Med Genet 2014; 51:797-805. [PMID: 25293953 DOI: 10.1136/jmedgenet-2014-102620] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE To identify the genetic cause of autosomal-dominant pattern dystrophy (PD) of the retinal pigment epithelium (RPE) in two families. METHODS AND RESULTS Two families with autosomal-dominant PD were identified. Eight members of family 1 (five affected) were subjected to whole-genome SNP genotyping; multipoint genome-wide linkage analysis identified 7 regions of potential linkage, and genotyping four additional individuals from family 1 resulted in a maximum logarithm of odds score of 2.09 observed across four chromosomal regions. Exome sequencing of two affected family 1 members identified 15 shared non-synonymous rare coding sequence variants within the linked regions; candidate genes were prioritised and further analysed. Sanger sequencing confirmed a novel heterozygous missense variant (E79K) in orthodenticle homeobox 2 (OTX2) that segregated with the disease phenotype. Family 2 with PD (two affected) harboured the same missense variant in OTX2. A shared haplotype of 19.68 cM encompassing OTX2 was identified between affected individuals in the two families. Within the two families, all except one affected demonstrated distinct 'patterns' at the macula. In vivo structural retinal imaging showed discrete areas of RPE-photoreceptor separation at the macula in all cases. Electroretinogram testing showed generalised photoreceptor degeneration in three cases. Mild developmental anomalies were observed, including optic nerve head dysplasia (four cases), microcornea (one case) and Rathke's cleft cyst (one case); pituitary hormone levels were normal. CONCLUSIONS This is the first report implicating OTX2 to underlie PD. The retinal disease resembles conditional mice models that show slow photoreceptor degeneration secondary to loss of Otx2 function in the adult RPE.
Collapse
Affiliation(s)
- Ajoy Vincent
- Department of Ophthalmology, The Hospital for Sick Children, Toronto, Ontario, Canada Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada University of Toronto, Toronto, Ontario, Canada
| | - Nicole Forster
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason T Maynes
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada Program in Molecular Structure and Function, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tara A Paton
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gail Billingsley
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nicole M Roslin
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Arfan Ali
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joanne Sutherland
- Department of Ophthalmology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tom Wright
- Department of Ophthalmology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Carol A Westall
- Department of Ophthalmology, The Hospital for Sick Children, Toronto, Ontario, Canada University of Toronto, Toronto, Ontario, Canada
| | - Andrew D Paterson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada University of Toronto, Toronto, Ontario, Canada The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christian R Marshall
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Elise Héon
- Department of Ophthalmology, The Hospital for Sick Children, Toronto, Ontario, Canada Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
72
|
Zagozewski JL, Zhang Q, Eisenstat DD. Genetic regulation of vertebrate eye development. Clin Genet 2014; 86:453-60. [PMID: 25174583 DOI: 10.1111/cge.12493] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/04/2014] [Accepted: 08/20/2014] [Indexed: 01/14/2023]
Abstract
Eye development is a complex and highly regulated process that consists of several overlapping stages: (i) specification then splitting of the eye field from the developing forebrain; (ii) genesis and patterning of the optic vesicle; (iii) regionalization of the optic cup into neural retina and retina pigment epithelium; and (iv) specification and differentiation of all seven retinal cell types that develop from a pool of retinal progenitor cells in a precise temporal and spatial manner: retinal ganglion cells, horizontal cells, cone photoreceptors, amacrine cells, bipolar cells, rod photoreceptors and Müller glia. Genetic regulation of the stages of eye development includes both extrinsic (such as morphogens, growth factors) and intrinsic factors (primarily transcription factors of the homeobox and basic helix-loop helix families). In the following review, we will provide an overview of the stages of eye development highlighting the role of several important transcription factors in both normal developmental processes and in inherited human eye diseases.
Collapse
Affiliation(s)
- J L Zagozewski
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
73
|
Zagozewski JL, Zhang Q, Pinto VI, Wigle JT, Eisenstat DD. The role of homeobox genes in retinal development and disease. Dev Biol 2014; 393:195-208. [PMID: 25035933 DOI: 10.1016/j.ydbio.2014.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/02/2014] [Accepted: 07/08/2014] [Indexed: 11/18/2022]
Abstract
Homeobox genes are an evolutionarily conserved class of transcription factors that are critical for development of many organ systems, including the brain and eye. During retinogenesis, homeodomain-containing transcription factors, which are encoded by homeobox genes, play essential roles in the regionalization and patterning of the optic neuroepithelium, specification of retinal progenitors and differentiation of all seven of the retinal cell classes that derive from a common progenitor. Homeodomain transcription factors control retinal cell fate by regulating the expression of target genes required for retinal progenitor cell fate decisions and for terminal differentiation of specific retinal cell types. The essential role of homeobox genes during retinal development is demonstrated by the number of human eye diseases, including colobomas and anophthalmia, which are attributed to homeobox gene mutations. In the following review, we highlight the role of homeodomain transcription factors during retinogenesis and regulation of their gene targets. Understanding the complexities of vertebrate retina development will enhance our ability to drive differentiation of specific retinal cell types towards novel cell-based replacement therapies for retinal degenerative diseases.
Collapse
Affiliation(s)
- Jamie L Zagozewski
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Qi Zhang
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada R3E 0J9
| | - Vanessa I Pinto
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada R3E 0J9
| | - Jeffrey T Wigle
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada R3E 0J9; Institute of Cardiovascular Sciences, St. Boniface Hospital Research Institute, Winnipeg, MB, Canada R2H 2A6
| | - David D Eisenstat
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada T6G 2H7; Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada R3E 0J9; Department of Pediatrics, University of Alberta, Edmonton, AB, Canada T6G 1C9.
| |
Collapse
|
74
|
Maintenance of postmitotic neuronal cell identity. Nat Neurosci 2014; 17:899-907. [PMID: 24929660 DOI: 10.1038/nn.3731] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/28/2014] [Indexed: 02/08/2023]
Abstract
The identity of specific cell types in the nervous system is defined by the expression of neuron type-specific gene batteries. How the expression of such batteries is initiated during nervous system development has been under intensive study over the past few decades. However, comparatively little is known about how gene batteries that define the terminally differentiated state of a neuron type are maintained throughout the life of an animal. Here we provide an overview of studies in invertebrate and vertebrate model systems that have carved out the general and not commonly appreciated principle that neuronal identity is maintained in postmitotic neurons by the sustained, and often autoregulated, expression of the same transcription factors that initiate terminal differentiation in a developing organism. Disruption of postmitotic maintenance mechanisms may result in neuropsychiatric and neurodegenerative conditions.
Collapse
|
75
|
Raviv S, Bharti K, Rencus-Lazar S, Cohen-Tayar Y, Schyr R, Evantal N, Meshorer E, Zilberberg A, Idelson M, Reubinoff B, Grebe R, Rosin-Arbesfeld R, Lauderdale J, Lutty G, Arnheiter H, Ashery-Padan R. PAX6 regulates melanogenesis in the retinal pigmented epithelium through feed-forward regulatory interactions with MITF. PLoS Genet 2014; 10:e1004360. [PMID: 24875170 PMCID: PMC4038462 DOI: 10.1371/journal.pgen.1004360] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 03/24/2014] [Indexed: 12/19/2022] Open
Abstract
During organogenesis, PAX6 is required for establishment of various progenitor subtypes within the central nervous system, eye and pancreas. PAX6 expression is maintained in a variety of cell types within each organ, although its role in each lineage and how it acquires cell-specific activity remain elusive. Herein, we aimed to determine the roles and the hierarchical organization of the PAX6-dependent gene regulatory network during the differentiation of the retinal pigmented epithelium (RPE). Somatic mutagenesis of Pax6 in the differentiating RPE revealed that PAX6 functions in a feed-forward regulatory loop with MITF during onset of melanogenesis. PAX6 both controls the expression of an RPE isoform of Mitf and synergizes with MITF to activate expression of genes involved in pigment biogenesis. This study exemplifies how one kernel gene pivotal in organ formation accomplishes a lineage-specific role during terminal differentiation of a single lineage. It is currently poorly understood how a single developmental transcription regulator controls early specification as well as a broad range of highly specialized differentiation schemes. PAX6 is one of the most extensively investigated factors in central nervous system development, yet its role in execution of lineage-specific programs remains mostly elusive. Here, we directly investigated the involvement of PAX6 in the differentiation of one lineage, the retinal pigmented epithelium (RPE), a neuroectodermal-derived tissue that is essential for retinal development and function. We revealed that PAX6 accomplishes its role through a unique regulatory interaction with the transcription factor MITF, a master regulator of the pigmentation program. During the differentiation of the RPE, PAX6 regulates the expression of an RPE-specific isoform of Mitf and importantly, at the same time, PAX6 functions together with MITF to directly activate the expression of downstream genes required for pigment biogenesis. These findings provide comprehensive insight into the gene hierarchy that controls RPE development: from a kernel gene (a term referring to the upper-most gene in the gene regulatory network) that is broadly expressed during CNS development through a lineage-specific transcription factor that together with the kernel gene creates cis-regulatory input that contributes to transcriptionally activate a battery of terminal differentiation genes.
Collapse
Affiliation(s)
- Shaul Raviv
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kapil Bharti
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sigal Rencus-Lazar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yamit Cohen-Tayar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rachel Schyr
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naveh Evantal
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alona Zilberberg
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maria Idelson
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy & Department of Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Benjamin Reubinoff
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy & Department of Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Rhonda Grebe
- Wilmer Ophthalmological Institute, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - James Lauderdale
- Department of Cellular Biology, The University of Georgia, Athens, Georgia, United States of America
| | - Gerard Lutty
- Wilmer Ophthalmological Institute, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Heinz Arnheiter
- Mammalian Development Section, National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, Maryland, United States of America
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
76
|
Tang K, Tsai SY, Tsai MJ. COUP-TFs and eye development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:201-9. [PMID: 24878540 DOI: 10.1016/j.bbagrm.2014.05.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 12/13/2022]
Abstract
Recent studies reveal that COUP-TF genes are essential for neural development, cardiovascular development, energy metabolism and adipogenesis, as well as for organogenesis of multiple systems. In this review, we mainly describe the COUP-TF genes, molecular mechanisms of COUP-TF action, and their crucial functions in the morphogenesis of the murine eye. Mutations of COUP-TF genes lead to the congenital coloboma and/or optic atrophy in both mouse and human, indicating that the study on COUP-TFs and the eye will benefit our understanding of the etiology of human ocular diseases. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
Affiliation(s)
- Ke Tang
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Sophia Y Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
77
|
Masuda T, Wahlin K, Wan J, Hu J, Maruotti J, Yang X, Iacovelli J, Wolkow N, Kist R, Dunaief JL, Qian J, Zack DJ, Esumi N. Transcription factor SOX9 plays a key role in the regulation of visual cycle gene expression in the retinal pigment epithelium. J Biol Chem 2014; 289:12908-21. [PMID: 24634209 DOI: 10.1074/jbc.m114.556738] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The retinal pigment epithelium (RPE) performs specialized functions to support retinal photoreceptors, including regeneration of the visual chromophore. Enzymes and carrier proteins in the visual cycle function sequentially to regenerate and continuously supply 11-cis-retinal to retinal photoreceptor cells. However, it is unknown how the expression of the visual cycle genes is coordinated at the transcriptional level. Here, we show that the proximal upstream regions of six visual cycle genes contain chromatin-accessible sex-determining region Y box (SOX) binding sites, that SOX9 and LIM homeobox 2 (LHX2) are coexpressed in the nuclei of mature RPE cells, and that SOX9 acts synergistically with orthodenticle homeobox 2 (OTX2) to activate the RPE65 and retinaldehyde binding protein 1 (RLBP1) promoters and acts synergistically with LHX2 to activate the retinal G protein-coupled receptor (RGR) promoter. ChIP reveals that SOX9 and OTX2 bind to the promoter regions of RPE65, RLBP1, and RGR and that LHX2 binds to those of RPE65 and RGR in bovine RPE. ChIP with human fetal RPE cells shows that SOX9 and OTX2 also bind to the human RPE65, RLBP1, and RGR promoters. Conditional inactivation of Sox9 in mouse RPE results in reduced expression of several visual cycle genes, most dramatically Rpe65 and Rgr. Furthermore, bioinformatic analysis predicts that multiple common microRNAs (miRNAs) regulate visual cycle genes, and cotransfection of miRNA mimics with luciferase reporter constructs validated some of the predicted miRNAs. These results implicate SOX9 as a key regulator of visual cycle genes, reveal for the first time the functional role of LHX2 in the RPE, and suggest the possible regulation of visual cycle genes by common miRNAs.
Collapse
Affiliation(s)
- Tomohiro Masuda
- From the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Samuel A, Housset M, Fant B, Lamonerie T. Otx2 ChIP-seq reveals unique and redundant functions in the mature mouse retina. PLoS One 2014; 9:e89110. [PMID: 24558479 PMCID: PMC3928427 DOI: 10.1371/journal.pone.0089110] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/17/2014] [Indexed: 11/18/2022] Open
Abstract
During mouse retinal development and into adulthood, the transcription factor Otx2 is expressed in pigment epithelium, photoreceptors and bipolar cells. In the mature retina, Otx2 ablation causes photoreceptor degeneration through a non-cell-autonomous mechanism involving Otx2 function in the supporting RPE. Surprisingly, photoreceptor survival does not require Otx2 expression in the neural retina, where the related Crx homeobox gene, a major regulator of photoreceptor development, is also expressed. To get a deeper view of mouse Otx2 activities in the neural retina, we performed chromatin-immunoprecipitation followed by massively parallel sequencing (ChIP-seq) on Otx2. Using two independent ChIP-seq assays, we identified consistent sets of Otx2-bound cis-regulatory elements. Comparison with our previous RPE-specific Otx2 ChIP-seq data shows that Otx2 occupies different functional domains of the genome in RPE cells and in neural retina cells and regulates mostly different sets of genes. To assess the potential redundancy of Otx2 and Crx, we compared our data with Crx ChIP-seq data. While Crx genome occupancy markedly differs from Otx2 genome occupancy in the RPE, it largely overlaps that of Otx2 in the neural retina. Thus, in accordance with its essential role in the RPE and its non-essential role in the neural retina, Otx2 regulates different gene sets in the RPE and the neural retina, and shares an important part of its repertoire with Crx in the neural retina. Overall, this study provides a better understanding of gene-regulatory networks controlling photoreceptor homeostasis and disease.
Collapse
Affiliation(s)
- Alexander Samuel
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, CNRS UMR7277, Inserm U1091, Nice, France
| | - Michael Housset
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, CNRS UMR7277, Inserm U1091, Nice, France
| | - Bruno Fant
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, CNRS UMR7277, Inserm U1091, Nice, France
| | - Thomas Lamonerie
- Institut de Biologie Valrose, University of Nice Sophia Antipolis, CNRS UMR7277, Inserm U1091, Nice, France
- * E-mail:
| |
Collapse
|
79
|
Simoniello P, Trinchella F, Filosa S, Scudiero R, Magnani D, Theil T, Motta CM. Cadmium contaminated soil affects retinogenesis in lizard embryos. ACTA ACUST UNITED AC 2014; 321:207-19. [DOI: 10.1002/jez.1852] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 12/07/2013] [Accepted: 01/06/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Palma Simoniello
- Department of Biology; University Federico II; Napoli Italy
- Department of Biophysics; GSI Helmholtz Center for Heavy Ion Research; Darmstadt Germany
| | | | - Silvana Filosa
- Department of Biology; University Federico II; Napoli Italy
| | | | - Dario Magnani
- Centre for Integrative Physiology; The University of Edinburgh; Edinburgh United Kingdom
| | - Thomas Theil
- Centre for Integrative Physiology; The University of Edinburgh; Edinburgh United Kingdom
| | | |
Collapse
|
80
|
Hägglund AC, Berghard A, Carlsson L. Canonical Wnt/β-catenin signalling is essential for optic cup formation. PLoS One 2013; 8:e81158. [PMID: 24324671 PMCID: PMC3852023 DOI: 10.1371/journal.pone.0081158] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/09/2013] [Indexed: 12/17/2022] Open
Abstract
A multitude of signalling pathways are involved in the process of forming an eye. Here we demonstrate that β-catenin is essential for eye development as inactivation of β-catenin prior to cellular specification in the optic vesicle caused anophthalmia in mice. By achieving this early and tissue-specific β-catenin inactivation we find that retinal pigment epithelium (RPE) commitment was blocked and eye development was arrested prior to optic cup formation due to a loss of canonical Wnt signalling in the dorsal optic vesicle. Thus, these results show that Wnt/β-catenin signalling is required earlier and play a more central role in eye development than previous studies have indicated. In our genetic model system a few RPE cells could escape β-catenin inactivation leading to the formation of a small optic rudiment. The optic rudiment contained several neural retinal cell classes surrounded by an RPE. Unlike the RPE cells, the neural retinal cells could be β-catenin-negative revealing that differentiation of the neural retinal cell classes is β-catenin-independent. Moreover, although dorsoventral patterning is initiated in the mutant optic vesicle, the neural retinal cells in the optic rudiment displayed almost exclusively ventral identity. Thus, β-catenin is required for optic cup formation, commitment to RPE cells and maintenance of dorsal identity of the retina.
Collapse
Affiliation(s)
| | - Anna Berghard
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Leif Carlsson
- Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
81
|
Yip HK. Retinal stem cells and regeneration of vision system. Anat Rec (Hoboken) 2013; 297:137-60. [PMID: 24293400 DOI: 10.1002/ar.22800] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/14/2022]
Abstract
The vertebrate retina is a well-characterized model for studying neurogenesis. Retinal neurons and glia are generated in a conserved order from a pool of mutlipotent progenitor cells. During retinal development, retinal stem/progenitor cells (RPC) change their competency over time under the influence of intrinsic (such as transcriptional factors) and extrinsic factors (such as growth factors). In this review, we summarize the roles of these factors, together with the understanding of the signaling pathways that regulate eye development. The information about the interactions between intrinsic and extrinsic factors for retinal cell fate specification is useful to regenerate specific retinal neurons from RPCs. Recent studies have identified RPCs in the retina, which may have important implications in health and disease. Despite the recent advances in stem cell biology, our understanding of many aspects of RPCs in the eye remains limited. PRCs are present in the developing eye of all vertebrates and remain active in lower vertebrates throughout life. In mammals, however, PRCs are quiescent and exhibit very little activity and thus have low capacity for retinal regeneration. A number of different cellular sources of RPCs have been identified in the vertebrate retina. These include PRCs at the retinal margin, pigmented cells in the ciliary body, iris, and retinal pigment epithelium, and Müller cells within the retina. Because PRCs can be isolated and expanded from immature and mature eyes, it is possible now to study these cells in culture and after transplantation in the degenerated retinal tissue. We also examine current knowledge of intrinsic RPCs, and human embryonic stems and induced pluripotent stem cells as potential sources for cell transplant therapy to regenerate the diseased retina.
Collapse
Affiliation(s)
- Henry K Yip
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Adminstrative Region, People's Republic of China; Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Adminstrative Region, People's Republic of China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Adminstrative Region, People's Republic of China
| |
Collapse
|
82
|
Bernard C, Kim HT, Torero Ibad R, Lee EJ, Simonutti M, Picaud S, Acampora D, Simeone A, Di Nardo AA, Prochiantz A, Moya KL, Kim JW. Graded Otx2 activities demonstrate dose-sensitive eye and retina phenotypes. Hum Mol Genet 2013; 23:1742-53. [PMID: 24234651 DOI: 10.1093/hmg/ddt562] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the human, mutations of OTX2 (Orthodenticle homeobox 2 transcription factor) translate into eye malformations of variable expressivity (even between the two eyes of the same individual) and incomplete penetrance, suggesting the existence of subtle thresholds in OTX2 activity. We have addressed this issue by analyzing retinal structure and function in six mutant mice with graded Otx2 activity: Otx2(+/+), Otx2(+/AA), Otx2(+/GFP), Otx2(AA/AA), Otx2(AA/GFP) and Otx2(GFP/GFP). Null mice (Otx2(GFP/GFP)) fail to develop the head and are embryonic lethal, and compound heterozygous Otx2(AA/GFP) mice show a truncated head and die at birth. All other genotypes develop until adulthood. We analyzed eye structure and visual physiology in the genotypes that develop until adulthood and report that phenotype severity parallels Otx2 activity. Otx2(+/AA) are only mildly affected whereas Otx2(+/GFP) are more affected than Otx2(+/AA) but less than Otx2(AA/AA) mice. Otx2(AA/AA) mice later manifest the most severe defects, with variable expressivity. Electrophysiological and histological analyses of the mouse retina revealed progressive death of bipolar cells and cone photoreceptors that is both Otx2 activity- and age-dependent with the same ranking of phenotypic severity. This study demonstrates the importance of gene dosage in the development of age-dependent pathologies and underscores the fact that small gene dosage differences can cause significant pathological states.
Collapse
Affiliation(s)
- Clémence Bernard
- Collège de France, Center for Interdisciplinary Research in Biology, UMR CNRS 7241/INSERM U1050, 11 place Marcelin Berthelot, Paris 75005, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Changes in Otx2 and parvalbumin immunoreactivity in the superior colliculus in the platelet-derived growth factor receptor-β knockout mice. BIOMED RESEARCH INTERNATIONAL 2013; 2013:848265. [PMID: 24319691 PMCID: PMC3844215 DOI: 10.1155/2013/848265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/30/2013] [Indexed: 12/11/2022]
Abstract
The superior colliculus (SC), a relay nucleus in the subcortical visual pathways, is implicated in socioemotional behaviors. Homeoprotein Otx2 and β subunit of receptors of platelet-derived growth factor (PDGFR-β) have been suggested to play an important role in development of the visual system and development and maturation of GABAergic neurons. Although PDGFR-β-knockout (KO) mice displayed socio-emotional deficits associated with parvalbumin (PV-)immunoreactive (IR) neurons, their anatomical bases in the SC were unknown. In the present study, Otx2 and PV-immunolabeling in the adult mouse SC were investigated in the PDGFR-β KO mice. Although there were no differences in distribution patterns of Otx2 and PV-IR cells between the wild type and PDGFR-β KO mice, the mean numbers of both of the Otx2- and PV-IR cells were significantly reduced in the PDGFR-β KO mice. Furthermore, average diameters of Otx2- and PV-IR cells were significantly reduced in the PDGFR-β KO mice. These findings suggest that PDGFR-β plays a critical role in the functional development of the SC through its effects on Otx2- and PV-IR cells, provided specific roles of Otx2 protein and PV-IR cells in the development of SC neurons and visual information processing, respectively.
Collapse
|
84
|
Dixit R, Tachibana N, Touahri Y, Zinyk D, Logan C, Schuurmans C. Gene expression is dynamically regulated in retinal progenitor cells prior to and during overt cellular differentiation. Gene Expr Patterns 2013; 14:42-54. [PMID: 24148613 DOI: 10.1016/j.gep.2013.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 12/27/2022]
Abstract
The retina is comprised of one glial and six neuronal populations that are generated from a multipotent pool of retinal progenitor cells (RPCs) during development. To give rise to these different cell types, RPCs undergo temporal identity transitions, displaying distinct gene expression profiles at different stages of differentiation. Little, however, is known about temporal differences in RPC identities prior to the onset of overt cellular differentiation, during the period when a retinal identity is gradually acquired. Here we examined the sequential onset of expression of regional markers (i.e., homeodomain transcription factors) and cell fate determinants (i.e., basic-helix-loop-helix transcription factors and neurogenic genes) in RPCs from the earliest appearance of a morphologically-distinct retina. By performing a comparative analysis of the expression of a panel of 27 homeodomain, basic-helix-loop-helix and Notch pathway genes between embryonic day (E) 8.75 and postnatal day (P) 9, we identified six distinct RPC molecular profiles. At E8.75, the earliest stage assayed, murine RPCs expressed five homeodomain genes and a single neurogenic gene (Pax6, Six3, Six6, Rx, Otx2, Hes1). This early gene expression profile was remarkably similar to that of 'early' RPCs in the amphibian ciliary marginal zone (CMZ), where RPCs are compartmentalised according to developmental stage, and homologs of Pax6, Six3 and Rx are expressed in the 'early' stem cell zone. As development proceeds, expression of additional homeodomain, bHLH and neurogenic genes was gradually initiated in murine RPCs, allowing distinct genetic profiles to also be defined at E9.5, E10.5, E12.5, E15.5 and P0. In addition, RPCs in the postnatal ciliary margin, where retinal stem cells are retained throughout life, displayed a unique molecular signature, expressing all of the early-onset genes as well as several late-onset markers, indicative of a 'mixed' temporal identity. Taken together, the identification of temporal differences in gene expression in mammalian RPCs during pre-neurogenic developmental stages leads to new insights into how regional identities are progressively acquired during development, while comparisons at later stages highlight the dynamic nature of gene expression in temporally distinct RPC pools.
Collapse
Affiliation(s)
- Rajiv Dixit
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Nobuhiko Tachibana
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Yacine Touahri
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Dawn Zinyk
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Cairine Logan
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carol Schuurmans
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
85
|
Fuhrmann S, Zou C, Levine EM. Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp Eye Res 2013; 123:141-50. [PMID: 24060344 DOI: 10.1016/j.exer.2013.09.003] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/05/2013] [Accepted: 09/07/2013] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium (RPE) is a simple epithelium interposed between the neural retina and the choroid. Although only 1 cell-layer in thickness, the RPE is a virtual workhorse, acting in several capacities that are essential for visual function and preserving the structural and physiological integrities of neighboring tissues. Defects in RPE function, whether through chronic dysfunction or age-related decline, are associated with retinal degenerative diseases including age-related macular degeneration. As such, investigations are focused on developing techniques to replace RPE through stem cell-based methods, motivated primarily because of the seemingly limited regeneration or self-repair properties of mature RPE. Despite this, RPE cells have an unusual capacity to transdifferentiate into various cell types, with the particular fate choices being highly context-dependent. In this review, we describe recent findings elucidating the mechanisms and steps of RPE development and propose a developmental framework for understanding the apparent contradiction in the capacity for low self-repair versus high transdifferentiation.
Collapse
Affiliation(s)
- Sabine Fuhrmann
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - ChangJiang Zou
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| | - Edward M Levine
- Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
86
|
Inoue J, Ueda Y, Bando T, Mito T, Noji S, Ohuchi H. The expression of LIM-homeobox genes,Lhx1andLhx5,in the forebrain is essential for neural retina differentiation. Dev Growth Differ 2013; 55:668-75. [DOI: 10.1111/dgd.12074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 07/22/2013] [Accepted: 07/22/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Junji Inoue
- Department of Cytology and Histology; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; 2-5-1 Shikata-cho; Okayama; 700-8558; Japan
| | - Yuuki Ueda
- Department of Life Systems; Institute of Technology and Science; The University of Tokushima Graduate School; 2-1 Minami-Josanjima-cho; Tokushima; 770-8506; Japan
| | - Tetsuya Bando
- Department of Cytology and Histology; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; 2-5-1 Shikata-cho; Okayama; 700-8558; Japan
| | - Taro Mito
- Department of Life Systems; Institute of Technology and Science; The University of Tokushima Graduate School; 2-1 Minami-Josanjima-cho; Tokushima; 770-8506; Japan
| | - Sumihare Noji
- Department of Life Systems; Institute of Technology and Science; The University of Tokushima Graduate School; 2-1 Minami-Josanjima-cho; Tokushima; 770-8506; Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; 2-5-1 Shikata-cho; Okayama; 700-8558; Japan
| |
Collapse
|
87
|
Eriksson BJ, Samadi L, Schmid A. The expression pattern of the genes engrailed, pax6, otd and six3 with special respect to head and eye development in Euperipatoides kanangrensis Reid 1996 (Onychophora: Peripatopsidae). Dev Genes Evol 2013; 223:237-46. [PMID: 23625086 PMCID: PMC3781328 DOI: 10.1007/s00427-013-0442-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/15/2013] [Indexed: 11/29/2022]
Abstract
The genes otd/otx, six3, pax6 and engrailed are involved in eye patterning in many animals. Here, we describe the expression pattern of the homologs to otd/otx, six3, pax6 and engrailed in the developing Euperipatoides kanangrensis embryos. Special reference is given to the expression in the protocerebral/ocular region. E. kanangrensis otd is expressed in the posterior part of the protocerebral/ocular segment before, during and after eye invagination. E. kanangrensis otd is also expressed segmentally in the developing ventral nerve cord. The E. kanangrensis six3 is located at the extreme anterior part of the protocerebral/ocular segment and not at the location of the developing eyes. Pax6 is expressed in a broad zone at the posterior part of the protocerebral/ocular segment but only weak expression can be seen at the early onset of eye invagination. In late stages of development, the expression in the eye is upregulated. Pax6 is also expressed in the invaginating hypocerebral organs, thus supporting earlier suggestions that the hypocerebral organs in onychophorans are glands. Pax6 transcripts are also present in the developing ventral nerve cord. The segment polarity gene engrailed is expressed at the dorsal side of the developing eye including only a subset of the cells of the invaginating eye vesicle. We show that engrailed is not expressed in the neuroectoderm of the protocerebral/ocular segment as in the other segments. In addition, we discuss other aspect of otd, six3 and pax6 expression that are relevant to our understanding of evolutionary changes in morphology and function in arthropods.
Collapse
Affiliation(s)
- Bo Joakim Eriksson
- Department of Neurobiology, University of Vienna, Althanstrasse 14, 1090, Wien, Austria.
| | | | | |
Collapse
|
88
|
Sen S, Reichert H, VijayRaghavan K. Conserved roles of ems/Emx and otd/Otx genes in olfactory and visual system development in Drosophila and mouse. Open Biol 2013; 3:120177. [PMID: 23635521 PMCID: PMC3866872 DOI: 10.1098/rsob.120177] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The regional specialization of brain function has been well documented in the mouse and fruitfly. The expression of regulatory factors in specific regions of the brain during development suggests that they function to establish or maintain this specialization. Here, we focus on two such factors—the Drosophila cephalic gap genes empty spiracles (ems) and orthodenticle (otd), and their vertebrate homologues Emx1/2 and Otx1/2—and review novel insight into their multiple crucial roles in the formation of complex sensory systems. While the early requirement of these genes in specification of the neuroectoderm has been discussed previously, here we consider more recent studies that elucidate the later functions of these genes in sensory system formation in vertebrates and invertebrates. These new studies show that the ems and Emx genes in both flies and mice are essential for the development of the peripheral and central neurons of their respective olfactory systems. Moreover, they demonstrate that the otd and Otx genes in both flies and mice are essential for the development of the peripheral and central neurons of their respective visual systems. Based on these recent experimental findings, we discuss the possibility that the olfactory and visual systems of flies and mice share a common evolutionary origin, in that the conserved visual and olfactory circuit elements derive from conserved domains of otd/Otx and ems/Emx action in the urbilaterian ancestor.
Collapse
Affiliation(s)
- Sonia Sen
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bellary Road, Bangalore 560065, India
| | | | | |
Collapse
|
89
|
Fotaki V, Smith R, Pratt T, Price DJ. Foxg1 is required to limit the formation of ciliary margin tissue and Wnt/β-catenin signalling in the developing nasal retina of the mouse. Dev Biol 2013; 380:299-313. [PMID: 23624311 PMCID: PMC3722486 DOI: 10.1016/j.ydbio.2013.04.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/23/2022]
Abstract
The ciliary margin (CM) develops in the peripheral retina and gives rise to the iris and the ciliary body. The Wnt/β-catenin signalling pathway has been implicated in ciliary margin development. Here, we tested the hypothesis that in the developing mouse retina Foxg1 is responsible for suppressing the Wnt/β-catenin pathway and restricting CM development. We showed that there is excess CM tissue in Foxg1−/− null embryos and this expansion is more pronounced in the nasal retina where Foxg1 normally shows its highest expression levels. Results on expression of a reporter allele for Wnt/β-catenin signalling and of Lef1, a target of Wnt/β-catenin signalling, displayed significant upregulation of this pathway in Foxg1−/− nulls at embryonic days 12.5 and 14.5. Interestingly, this upregulation was observed specifically in the nasal retina, where normally very few Wnt-responsive cells are observed. These results indicate a suppressive role of Foxg1 on this signalling pathway. Our results reveal a new role of Foxg1 in limiting CM development in the nasal peripheral retina and add a new molecular player in the developmental network involved in CM specification. Foxg1 is expressed in a nasal-high to temporal-low gradient in developing retina. Ciliary margin expansion is observed nasally in the Foxg1−/− mutant retina. Wnt/β-catenin signalling is upregulated in the Foxg1−/− peripheral retina nasally. A new role of Foxg1 in controlling ciliary margin development is proposed.
Collapse
Affiliation(s)
- Vassiliki Fotaki
- University of Edinburgh, Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| | | | | | | |
Collapse
|
90
|
Grigoryan EN, Markitantova YV, Avdonin PP, Radugina EA. Study of regeneration in amphibians in age of molecular-genetic approaches and methods. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413010043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
91
|
Nishihara D, Yajima I, Tabata H, Nakai M, Tsukiji N, Katahira T, Takeda K, Shibahara S, Nakamura H, Yamamoto H. Otx2 is involved in the regional specification of the developing retinal pigment epithelium by preventing the expression of sox2 and fgf8, factors that induce neural retina differentiation. PLoS One 2012; 7:e48879. [PMID: 23145006 PMCID: PMC3493611 DOI: 10.1371/journal.pone.0048879] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/02/2012] [Indexed: 01/26/2023] Open
Abstract
The retinal pigment epithelium (RPE) shares its developmental origin with the neural retina (NR). When RPE development is disrupted, cells in the presumptive RPE region abnormally differentiate into NR-like cells. Therefore, the prevention of NR differentiation in the presumptive RPE area seems to be essential for regionalizing the RPE during eye development. However, its molecular mechanisms are not fully understood. In this study, we conducted a functional inhibition of a transcription factor Otx2, which is required for RPE development, using early chick embryos. The functional inhibition of Otx2 in chick eyes, using a recombinant gene encoding a dominant negative form of Otx2, caused the outer layer of the optic cup (the region forming the RPE, when embryos normally develop) to abnormally form an ectopic NR. In that ectopic NR, the characteristics of the RPE did not appear and NR markers were ectopically expressed. Intriguingly, the repression of Otx2 function also caused the ectopic expression of Fgf8 and Sox2 in the outer layer of the optic cup (the presumptive RPE region of normally developing eyes). These two factors are known to be capable of inducing NR cell differentiation in the presumptive RPE region, and are not expressed in the normally developing RPE region. Here, we suggest that Otx2 prevents the presumptive RPE region from forming the NR by repressing the expression of both Fgf8 and Sox2 which induce the NR cell fate.
Collapse
Affiliation(s)
- Daisuke Nishihara
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Ichiro Yajima
- Unit of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Hiromasa Tabata
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Masato Nakai
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Nagaharu Tsukiji
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Tatsuya Katahira
- Laboratory of Developmental Neurobiology, Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Kazuhisa Takeda
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Shigeki Shibahara
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Harukazu Nakamura
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- Department of Molecular Neurobiology, Graduate School of Life Sciences and Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Hiroaki Yamamoto
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
- * E-mail:
| |
Collapse
|
92
|
Gregory-Evans CY, Wallace VA, Gregory-Evans K. Gene networks: dissecting pathways in retinal development and disease. Prog Retin Eye Res 2012; 33:40-66. [PMID: 23128416 DOI: 10.1016/j.preteyeres.2012.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 01/21/2023]
Abstract
During retinal neurogenesis, diverse cellular subtypes originate from multipotent neural progenitors in a spatiotemporal order leading to a highly specialized laminar structure combined with a distinct mosaic architecture. This is driven by the combinatorial action of transcription factors and signaling molecules which specify cell fate and differentiation. The emerging approach of gene network analysis has allowed a better understanding of the functional relationships between genes expressed in the developing retina. For instance, these gene networks have identified transcriptional hubs that have revealed potential targets and pathways for the development of therapeutic options for retinal diseases. Much of the current knowledge has been informed by targeted gene deletion experiments and gain-of-functional analysis. In this review we will provide an update on retinal development gene networks and address the wider implications for future disease therapeutics.
Collapse
Affiliation(s)
- Cheryl Y Gregory-Evans
- Department of Ophthalmology, University of British Columbia, Vancouver, BC V5Z 3N9, Canada.
| | | | | |
Collapse
|
93
|
Concurrent deletion of BMP4 and OTX2 genes, two master genes in ophthalmogenesis. Eur J Med Genet 2012; 56:50-3. [PMID: 23103883 DOI: 10.1016/j.ejmg.2012.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/12/2012] [Indexed: 11/24/2022]
Abstract
BMP4 and OTX2 are master genes in ophthalmogenesis. Mutations of BMP4 and OTX2 often lead to eye defects, including anophthalmia-microphthalmia. A significant degree of variable expressivity has been reported in heterozygous individuals with BMP4 or OTX2 mutation. Interestingly, both BMP4 and OTX2 reside on 14q22, being only 2.8 Mb apart. Previous studies reported that among three patients with 14q22 deletion involving BMP4 and OTX2, all had severe eye defects. The minimal degree of variable expressivity among these individuals who were doubly deleted for BMP4 and OTX2 could be attributed to the combinatorial relationship of the two genes observed in animal models. We herein report a patient with a concurrent deletion of BMP4 and OTX2 who exhibited bilateral microphthalmia, more specifically, anterior segment dysgenesis with microcornea. Evolutionarily conserved physical linkage of Bmp4 and Otx2 loci may suggest an advantage of the proximal alignment of the two genes. Another striking feature in the propositus was the progressive white matter loss observed by serial neuroimaging. A review of twelve previously reported patients with 14q22 microdeletion revealed decreased white matter volume in half of the patients. It remains to be elucidated whether the white matter lesion is age-dependent and progressive. In conclusion, anterior segment defects of the eyes, especially when accompanied by decreased white matter volume on neuroimaging, should raise the clinical suspicion of 14q22 microdeletion.
Collapse
|
94
|
Kawaue T, Okamoto M, Matsuyo A, Inoue J, Ueda Y, Tomonari S, Noji S, Ohuchi H. Lhx1 in the proximal region of the optic vesicle permits neural retina development in the chicken. Biol Open 2012; 1:1083-93. [PMID: 23213388 PMCID: PMC3507191 DOI: 10.1242/bio.20121396] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/17/2012] [Indexed: 11/25/2022] Open
Abstract
How the eye forms has been one of the fundamental issues in developmental biology. The retinal anlage first appears as the optic vesicle (OV) evaginating from the forebrain. Subsequently, its distal portion invaginates to form the two-walled optic cup, which develops into the outer pigmented and inner neurosensory layers of the retina. Recent work has shown that this optic-cup morphogenesis proceeds as a self-organizing activity without any extrinsic molecules. However, intrinsic factors that regulate this process have not been elucidated. Here we show that a LIM-homeobox gene, Lhx1, normally expressed in the proximal region of the nascent OV, induces a second neurosensory retina formation from the outer pigmented retina when overexpressed in the chicken OV. Lhx2, another LIM-homeobox gene supposed to be involved in early OV formation, could not substitute this function of Lhx1, while Lhx5, closely related to Lhx1, could replace it. Conversely, knockdown of Lhx1 expression by RNA interference resulted in the formation of a small or pigmented vesicle. These results suggest that the proximal region demarcated by Lhx1 expression permits OV development, eventually dividing the two retinal domains.
Collapse
Affiliation(s)
- Takumi Kawaue
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School , 2-1 Minami-Josanjima-cho, Tokushima 770-8506 , Japan
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Prasov L, Masud T, Khaliq S, Mehdi SQ, Abid A, Oliver ER, Silva ED, Lewanda A, Brodsky MC, Borchert M, Kelberman D, Sowden JC, Dattani MT, Glaser T. ATOH7 mutations cause autosomal recessive persistent hyperplasia of the primary vitreous. Hum Mol Genet 2012; 21:3681-94. [PMID: 22645276 DOI: 10.1093/hmg/dds197] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The vertebrate basic helix-loop-helix (bHLH) transcription factor ATOH7 (Math5) is specifically expressed in the embryonic neural retina and is required for the genesis of retinal ganglion cells (RGCs) and optic nerves. In Atoh7 mutant mice, the absence of trophic factors secreted by RGCs prevents the development of the intrinsic retinal vasculature and the regression of fetal blood vessels, causing persistent hyperplasia of the primary vitreous (PHPV). We therefore screened patients with hereditary PHPV, as well as bilateral optic nerve aplasia (ONA) or hypoplasia (ONH), for mutations in ATOH7. We identified a homozygous ATOH7 mutation (N46H) in a large family with an autosomal recessive PHPV disease trait linked to 10q21, and a heterozygous variant (R65G, p.Arg65Gly) in one of five sporadic ONA patients. High-density single-nucleotide polymorphism analysis also revealed a CNTN4 duplication and an OTX2 deletion in the ONA cohort. Functional analysis of ATOH7 bHLH domain substitutions, by electrophoretic mobility shift and luciferase cotransfection assays, revealed that the N46H variant cannot bind DNA or activate transcription, consistent with structural modeling. The N46H variant also failed to rescue RGC development in mouse Atoh7-/- retinal explants. The R65G variant retains all of these activities, similar to wild-type human ATOH7. Our results strongly suggest that autosomal recessive persistent hyperplastic primary vitreous is caused by N46H and is etiologically related to nonsyndromic congenital retinal nonattachment. The R65G allele, however, cannot explain the ONA phenotype. Our study firmly establishes ATOH7 as a retinal disease gene and provides a functional basis to analyze new coding variants.
Collapse
Affiliation(s)
- Lev Prasov
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Lange CAK, Luhmann UFO, Mowat FM, Georgiadis A, West EL, Abrahams S, Sayed H, Powner MB, Fruttiger M, Smith AJ, Sowden JC, Maxwell PH, Ali RR, Bainbridge JWB. Von Hippel-Lindau protein in the RPE is essential for normal ocular growth and vascular development. Development 2012; 139:2340-50. [PMID: 22627278 DOI: 10.1242/dev.070813] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Molecular oxygen is essential for the development, growth and survival of multicellular organisms. Hypoxic microenvironments and oxygen gradients are generated physiologically during embryogenesis and organogenesis. In the eye, oxygen plays a crucial role in both physiological vascular development and common blinding diseases. The retinal pigment epithelium (RPE) is a monolayer of cells essential for normal ocular development and in the mature retina provides support for overlying photoreceptors and their vascular supply. Hypoxia at the level of the RPE is closely implicated in pathogenesis of age-related macular degeneration. Adaptive tissue responses to hypoxia are orchestrated by sophisticated oxygen sensing mechanisms. In particular, the von Hippel-Lindau tumour suppressor protein (pVhl) controls hypoxia-inducible transcription factor (HIF)-mediated adaptation. However, the role of Vhl/Hif1a in the RPE in the development of the eye and its vasculature is unknown. In this study we explored the function of Vhl and Hif1a in the developing RPE using a tissue-specific conditional-knockout approach. We found that deletion of Vhl in the RPE results in RPE apoptosis, aniridia and microphthalmia. Increased levels of Hif1a, Hif2a, Epo and Vegf are associated with a highly disorganised retinal vasculature, chorioretinal anastomoses and the persistence of embryonic vascular structures into adulthood. Additional inactivation of Hif1a in the RPE rescues the RPE morphology, aniridia, microphthalmia and anterior vasoproliferation, but does not rescue retinal vasoproliferation. These data demonstrate that Vhl-dependent regulation of Hif1a in the RPE is essential for normal RPE and iris development, ocular growth and vascular development in the anterior chamber, whereas Vhl-dependent regulation of other downstream pathways is crucial for normal development and maintenance of the retinal vasculature.
Collapse
Affiliation(s)
- Clemens A K Lange
- Department of Genetics, Institute of Ophthalmology, NIHR Biomedical Research Centre for Ophthalmology, University College London, London EC1V 9EL, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Shaham O, Menuchin Y, Farhy C, Ashery-Padan R. Pax6: a multi-level regulator of ocular development. Prog Retin Eye Res 2012; 31:351-76. [PMID: 22561546 DOI: 10.1016/j.preteyeres.2012.04.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 04/19/2012] [Accepted: 04/24/2012] [Indexed: 02/08/2023]
Abstract
Eye development has been a paradigm for the study of organogenesis, from the demonstration of lens induction through epithelial tissue morphogenesis, to neuronal specification and differentiation. The transcription factor Pax6 has been shown to play a key role in each of these processes. Pax6 is required for initiation of developmental pathways, patterning of epithelial tissues, activation of tissue-specific genes and interaction with other regulatory pathways. Herein we examine the data accumulated over the last few decades from extensive analyses of biochemical modules and genetic manipulation of the Pax6 gene. Specifically, we describe the regulation of Pax6's expression pattern, the protein's DNA-binding properties, and its specific roles and mechanisms of action at all stages of lens and retinal development. Pax6 functions at multiple levels to integrate extracellular information and execute cell-intrinsic differentiation programs that culminate in the specification and differentiation of a distinct ocular lineage.
Collapse
Affiliation(s)
- Ohad Shaham
- Sackler Faculty of Medicine, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
98
|
SOX2 hypomorphism disrupts development of the prechordal floor and optic cup. Mech Dev 2012; 129:1-12. [PMID: 22522080 DOI: 10.1016/j.mod.2012.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/04/2012] [Indexed: 12/19/2022]
Abstract
Haploinsufficiency for the HMG-box transcription factor SOX2 results in abnormalities of the human ventral forebrain and its derivative structures. These defects include anophthalmia (absence of eye), microphthalmia (small eye) and hypothalamic hamartoma (HH), an overgrowth of the ventral hypothalamus. To determine how Sox2 deficiency affects the morphogenesis of the ventral diencephalon and eye, we generated a Sox2 allelic series (Sox2(IR), Sox2(LP), and Sox2(EGFP)), allowing for the generation of mice that express germline hypomorphic levels (<40%) of SOX2 protein and that faithfully recapitulate SOX2 haploinsufficient human phenotypes. We find that Sox2 hypomorphism significantly disrupts the development of the posterior hypothalamus, resulting in an ectopic protuberance of the prechordal floor, an upregulation of Shh signaling, and abnormal hypothalamic patterning. In the anterior diencephalon, both the optic stalks and optic cups (OC) of Sox2 hypomorphic (Sox2(HYP)) embryos are malformed. Furthermore, Sox2(HYP) eyes exhibit a loss of neural potential and coloboma, a common phenotype in SOX2 haploinsufficient humans that has not been described in a mouse model of SOX2 deficiency. These results establish for the first time that germline Sox2 hypomorphism disrupts the morphogenesis and patterning of the hypothalamus, optic stalk, and the early OC, establishing a model of the development of the abnormalities that are observed in SOX2 haploinsufficient humans.
Collapse
|
99
|
Kim HT, Kim JW. Compartmentalization of vertebrate optic neuroephithelium: external cues and transcription factors. Mol Cells 2012; 33:317-24. [PMID: 22450691 PMCID: PMC3887801 DOI: 10.1007/s10059-012-0030-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 02/21/2012] [Accepted: 02/24/2012] [Indexed: 02/02/2023] Open
Abstract
The vertebrate eye is a laterally extended structure of the forebrain. It develops through a series of events, including specification and regionalization of the anterior neural plate, evagination of the optic vesicle (OV), and development of three distinct optic structures: the neural retina (NR), optic stalk (OS), and retinal pigment epithelium (RPE). Various external signals that act on the optic neuroepithelium in a spatial- and temporal-specific manner control the fates of OV subdomains by inducing localized expression of key transcription factors. Investigating the mechanisms underlying compartmentalization of these distinct optic neuroepithelium-derived tissues is therefore not only important from the standpoint of accounting for vertebrate eye morphogenesis, it is also helpful for understanding the fundamental basis of fate determination of other neuroectoderm- derived tissues. This review focuses on the molecular signatures of OV subdomains and the external factors that direct the development of tissues originating from the OV.
Collapse
Affiliation(s)
- Hyoung-Tai Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| |
Collapse
|
100
|
Buresi A, Baratte S, Da Silva C, Bonnaud L. orthodenticle/otx ortholog expression in the anterior brain and eyes of Sepia officinalis (Mollusca, Cephalopoda). Gene Expr Patterns 2012; 12:109-16. [PMID: 22365924 DOI: 10.1016/j.gep.2012.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 01/13/2023]
Abstract
The origin of cerebral structures is a major issue in both developmental and evolutionary biology. Among Lophotrochozoans, cephalopods present both a derived nervous system and an original body plan, therefore they constitute a key model to study the evolution of nervous system and molecular processes that control the neural organization. We characterized a partial sequence of an ortholog of otx2 in Sepia officinalis embryos, a gene specific to the anterior nervous system and eye development. By in situ hybridization, we assessed the expression pattern of otx2 during S. officinalis organogenesis and we showed that otx is expressed (1) in the eyes, from early to late developmental stages as observed in other species (2) in the nervous system during late developmental stages. The otx ortholog does not appear to be required for the precocious emergence of the nervous ganglia in cephalopods and is later expressed only in the most anterior ganglia of the future brain. Finally, otx expression becomes restricted to localized part of the brain, where it could be involved in the functional specification of the central nervous system of S. officinalis. These results suggest a conserved involvement of otx in eye maturation and development of the anterior neural structures in S. officinalis.
Collapse
Affiliation(s)
- Auxane Buresi
- Muséum National d'Histoire Naturelle (MNHN), Département Milieux et Peuplements Aquatiques (DMPA), UMR Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), MNHN CNRS 7208, IRD 207, UPMC, Paris, France
| | - Sébastien Baratte
- Muséum National d'Histoire Naturelle (MNHN), Département Milieux et Peuplements Aquatiques (DMPA), UMR Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), MNHN CNRS 7208, IRD 207, UPMC, Paris, France; Université Paris Sorbonne, Paris 4, France
| | | | - Laure Bonnaud
- Muséum National d'Histoire Naturelle (MNHN), Département Milieux et Peuplements Aquatiques (DMPA), UMR Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), MNHN CNRS 7208, IRD 207, UPMC, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|