51
|
PAF and EZH2 induce Wnt/β-catenin signaling hyperactivation. Mol Cell 2013; 52:193-205. [PMID: 24055345 DOI: 10.1016/j.molcel.2013.08.028] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 04/26/2013] [Accepted: 08/09/2013] [Indexed: 11/20/2022]
Abstract
Fine control of Wnt signaling is essential for various cellular and developmental decision-making processes. However, deregulation of Wnt signaling leads to pathological consequences, one of which is cancer. Here, we identify a function of PAF, a component of translesion DNA synthesis, in modulating Wnt signaling. PAF is specifically overexpressed in colon cancer cells and intestinal stem cells and is required for colon cancer cell proliferation. In Xenopus laevis, ventrovegetal expression of PAF hyperactivates Wnt signaling, developing a secondary axis with β-catenin target gene upregulation. Upon Wnt signaling activation, PAF dissociates from PCNA and binds directly to β-catenin. Then, PAF recruits EZH2 to the β-catenin transcriptional complex and specifically enhances Wnt target gene transactivation, independently of EZH2's methyltransferase activity. In mice, conditional expression of PAF induces intestinal neoplasia via Wnt signaling hyperactivation. Our studies reveal an unexpected role of PAF in regulating Wnt signaling and propose a regulatory mechanism of Wnt signaling during tumorigenesis.
Collapse
|
52
|
Benazet JD, Zeller R. Dual requirement of ectodermal Smad4 during AER formation and termination of feedback signaling in mouse limb buds. Genesis 2013; 51:660-6. [PMID: 23818325 DOI: 10.1002/dvg.22412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/20/2013] [Indexed: 12/29/2022]
Abstract
BMP signaling is pivotal for normal limb bud development in vertebrate embryos and genetic analysis of receptors and ligands in the mouse revealed their requirement in both mesenchymal and ectodermal limb bud compartments. In this study, we genetically assessed the potential essential functions of SMAD4, a mediator of canonical BMP/TGFß signal transduction, in the mouse limb bud ectoderm. Msx2-Cre was used to conditionally inactivate Smad4 in the ectoderm of fore- and hindlimb buds. In hindlimb buds, the Smad4 inactivation disrupts the establishment and signaling by the apical ectodermal ridge (AER) from early limb bud stages onwards, which results in severe hypoplasia and/or aplasia of zeugo- and autopodal skeletal elements. In contrast, the developmentally later inactivation of Smad4 in forelimb buds does not alter AER formation and signaling, but prolongs epithelial-mesenchymal feedback signaling in advanced limb buds. The late termination of SHH and AER-FGF signaling delays distal progression of digit ray formation and inhibits interdigit apoptosis. In summary, our genetic analysis reveals the temporally and functionally distinct dual requirement of ectodermal Smad4 during initiation and termination of AER signaling.
Collapse
Affiliation(s)
- Jean-Denis Benazet
- Department Biomedicine, Developmental Genetics, University of Basel, Mattenstrasse 28, CH 4058, Basel, Switzerland
| | | |
Collapse
|
53
|
Pathfinding of corticothalamic axons relies on a rendezvous with thalamic projections. Neuron 2013; 77:472-84. [PMID: 23395374 DOI: 10.1016/j.neuron.2012.11.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2012] [Indexed: 12/11/2022]
Abstract
Major outputs of the neocortex are conveyed by corticothalamic axons (CTAs), which form reciprocal connections with thalamocortical axons, and corticosubcerebral axons (CSAs) headed to more caudal parts of the nervous system. Previous findings establish that transcriptional programs define cortical neuron identity and suggest that CTAs and thalamic axons may guide each other, but the mechanisms governing CTA versus CSA pathfinding remain elusive. Here, we show that thalamocortical axons are required to guide pioneer CTAs away from a default CSA-like trajectory. This process relies on a hold in the progression of cortical axons, or waiting period, during which thalamic projections navigate toward cortical axons. At the molecular level, Sema3E/PlexinD1 signaling in pioneer cortical neurons mediates a "waiting signal" required to orchestrate the mandatory meeting with reciprocal thalamic axons. Our study reveals that temporal control of axonal progression contributes to spatial pathfinding of cortical projections and opens perspectives on brain wiring.
Collapse
|
54
|
Vieux-Rochas M, Bouhali K, Mantero S, Garaffo G, Provero P, Astigiano S, Barbieri O, Caratozzolo MF, Tullo A, Guerrini L, Lallemand Y, Robert B, Levi G, Merlo GR. BMP-mediated functional cooperation between Dlx5;Dlx6 and Msx1;Msx2 during mammalian limb development. PLoS One 2013; 8:e51700. [PMID: 23382810 PMCID: PMC3558506 DOI: 10.1371/journal.pone.0051700] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 11/05/2012] [Indexed: 11/18/2022] Open
Abstract
The Dlx and Msx homeodomain transcription factors play important roles in the control of limb development. The combined disruption of Msx1 and Msx2, as well as that of Dlx5 and Dlx6, lead to limb patterning defects with anomalies in digit number and shape. Msx1;Msx2 double mutants are characterized by the loss of derivatives of the anterior limb mesoderm which is not observed in either of the simple mutants. Dlx5;Dlx6 double mutants exhibit hindlimb ectrodactyly. While the morphogenetic action of Msx genes seems to involve the BMP molecules, the mode of action of Dlx genes still remains elusive. Here, examining the limb phenotypes of combined Dlx and Msx mutants we reveal a new Dlx-Msx regulatory loop directly involving BMPs. In Msx1;Dlx5;Dlx6 triple mutant mice (TKO), beside the expected ectrodactyly, we also observe the hallmark morphological anomalies of Msx1;Msx2 double mutants suggesting an epistatic role of Dlx5 and Dlx6 over Msx2. In Msx2;Dlx5;Dlx6 TKO mice we only observe an aggravation of the ectrodactyly defect without changes in the number of the individual components of the limb. Using a combination of qPCR, ChIP and bioinformatic analyses, we identify two Dlx/Msx regulatory pathways: 1) in the anterior limb mesoderm a non-cell autonomous Msx-Dlx regulatory loop involves BMP molecules through the AER and 2) in AER cells and, at later stages, in the limb mesoderm the regulation of Msx2 by Dlx5 and Dlx6 occurs also cell autonomously. These data bring new elements to decipher the complex AER-mesoderm dialogue that takes place during limb development and provide clues to understanding the etiology of congenital limb malformations.
Collapse
Affiliation(s)
- Maxence Vieux-Rochas
- Evolution des Régulations Endocriniennes, Centre national de la recherche scientifique, UMR-7221, Muséum National d’Histoire Naturelle, Paris, France
| | - Kamal Bouhali
- Evolution des Régulations Endocriniennes, Centre national de la recherche scientifique, UMR-7221, Muséum National d’Histoire Naturelle, Paris, France
| | - Stefano Mantero
- Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Giulia Garaffo
- Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Paolo Provero
- Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Simonetta Astigiano
- Istituto Di Ricovero e Cura a Carattere Scientifico Azienda Ospedale Università San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Ottavia Barbieri
- Istituto Di Ricovero e Cura a Carattere Scientifico Azienda Ospedale Università San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | - Apollonia Tullo
- Institute for Biomedical Technologies, National Research Council, Bari, Italy
| | - Luisa Guerrini
- Department of Biosciences, University of Milano, Milano, Italy
| | - Yvan Lallemand
- Institut Pasteur, Department of Developmental Biology, Centre national de la recherche scientifique URA-2578, Paris, France
| | - Benoît Robert
- Institut Pasteur, Department of Developmental Biology, Centre national de la recherche scientifique URA-2578, Paris, France
| | - Giovanni Levi
- Evolution des Régulations Endocriniennes, Centre national de la recherche scientifique, UMR-7221, Muséum National d’Histoire Naturelle, Paris, France
| | - Giorgio R. Merlo
- Molecular Biotechnology Center, University of Torino, Torino, Italy
- Dulbecco Telethon Institute, University of Torino, Torino, Italy
- * E-mail:
| |
Collapse
|
55
|
Bond AM, Bhalala OG, Kessler JA. The dynamic role of bone morphogenetic proteins in neural stem cell fate and maturation. Dev Neurobiol 2012; 72:1068-84. [PMID: 22489086 DOI: 10.1002/dneu.22022] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The bone morphogenetic proteins (BMPs) are a group of powerful morphogens that are critical for development of the nervous system. The effects of BMP signaling on neural stem cells are myriad and dynamic, changing with each stage of development. During early development inhibition of BMP signaling differentiates neuroectoderm from ectoderm, and BMP signaling helps to specify neural crest. Thus modulation of BMP signaling underlies formation of both the central and peripheral nervous systems. BMPs secreted from dorsal structures then form a gradient which helps pattern the dorsal-ventral axis of the developing spinal cord and brain. During forebrain development BMPs sequentially induce neurogenesis and then astrogliogenesis and participate in neurite outgrowth from immature neurons. BMP signaling also plays a critical role in maintaining adult neural stem cell niches in the subventricular zone (SVZ) and subgranular zone (SGZ). BMPs are able to exert such diverse effects through closely regulated temporospatial expression and interaction with other signaling pathways.
Collapse
Affiliation(s)
- Allison M Bond
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | |
Collapse
|
56
|
Bénazet JD, Pignatti E, Nugent A, Unal E, Laurent F, Zeller R. Smad4 is required to induce digit ray primordia and to initiate the aggregation and differentiation of chondrogenic progenitors in mouse limb buds. Development 2012; 139:4250-60. [PMID: 23034633 DOI: 10.1242/dev.084822] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SMAD4 is an essential mediator of canonical TGFβ/BMP signal transduction and we inactivated Smad4 in mouse limb buds from early stages onward to study its functions in the mesenchyme. While this Smad4 inactivation did not alter the early Sox9 distribution, prefiguring the chondrogenic primordia of the stylopod and zeugopod, it disrupted formation of all Sox9-positive digit ray primordia. Specific inactivation of Smad4 during handplate development pointed to its differential requirement for posterior and anterior digit ray primordia. At the cellular level, Smad4 deficiency blocked the aggregation of Sox9-positive progenitors, thereby preventing chondrogenic differentiation as revealed by absence of collagen type II. The progressive loss of SOX9 due to disrupting digit ray primordia and chondrogenesis was paralleled by alterations in genes marking other lineages. This pointed to a general loss of tissue organization and diversion of mutant cells toward non-specific connective tissue. Conditional inactivation of Bmp2 and Bmp4 indicated that the loss of digit ray primordia and increase in connective tissue were predominantly a consequence of disrupting SMAD4-mediated BMP signal transduction. In summary, our analysis reveals that SMAD4 is required to initiate: (1) formation of the Sox9-positive digit ray primordia; and (2) aggregation and chondrogenic differentiation of all limb skeletal elements.
Collapse
Affiliation(s)
- Jean-Denis Bénazet
- Developmental Genetics, Department of Biomedicine, University of Basel, Mattenstrasse 28, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
57
|
Su CY, Bay SN, Mariani LE, Hillman MJ, Caspary T. Temporal deletion of Arl13b reveals that a mispatterned neural tube corrects cell fate over time. Development 2012; 139:4062-71. [PMID: 23014696 DOI: 10.1242/dev.082321] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cilia are necessary for sonic hedgehog (Shh) signaling, which is required to pattern the neural tube. We know that ventral neural cell fates are defined by a specific cohort of transcription factors that are induced by distinct thresholds of Shh activity mediated by opposing gradients of Gli activator (GliA) and Gli repressor (GliR). Despite this understanding, the role of Shh as an instructive morphogen is viewed as increasingly complex, with current models integrating positive inputs in terms of ligand concentration and time, along with negative feedback via the downstream gene regulatory network. To investigate the relative contributions of the positive and negative inputs from Shh signaling in neural patterning, we took advantage of a protein that uncouples the regulation of GliA and GliR: the cilia protein ADP-ribosylation factor-like 13b (Arl13b). By deleting Arl13b in mouse, we induced low-level constitutive GliA function at specific developmental stages and defined a crucial period prior to E10.5 when shifts in the level of GliA cause cells to change their fate. Strikingly, we found that improperly patterned cells in these mice converted to the wild-type pattern by E12.5. We further showed that the recovery of patterning did not occur when we also deleted Gli3, the primary GliR in the neural tube, revealing a crucial role of Gli3 in the maintenance of neural patterning.
Collapse
Affiliation(s)
- Chen-Ying Su
- Graduate Program in Genetics and Molecular Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
58
|
Anderson C, Williams VC, Moyon B, Daubas P, Tajbakhsh S, Buckingham ME, Shiroishi T, Hughes SM, Borycki AG. Sonic hedgehog acts cell-autonomously on muscle precursor cells to generate limb muscle diversity. Genes Dev 2012; 26:2103-17. [PMID: 22987640 PMCID: PMC3444735 DOI: 10.1101/gad.187807.112] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 07/24/2012] [Indexed: 11/24/2022]
Abstract
How muscle diversity is generated in the vertebrate body is poorly understood. In the limb, dorsal and ventral muscle masses constitute the first myogenic diversification, as each gives rise to distinct muscles. Myogenesis initiates after muscle precursor cells (MPCs) have migrated from the somites to the limb bud and populated the prospective muscle masses. Here, we show that Sonic hedgehog (Shh) from the zone of polarizing activity (ZPA) drives myogenesis specifically within the ventral muscle mass. Shh directly induces ventral MPCs to initiate Myf5 transcription and myogenesis through essential Gli-binding sites located in the Myf5 limb enhancer. In the absence of Shh signaling, myogenesis is delayed, MPCs fail to migrate distally, and ventral paw muscles fail to form. Thus, Shh production in the limb ZPA is essential for the spatiotemporal control of myogenesis and coordinates muscle and skeletal development by acting directly to regulate the formation of specific ventral muscles.
Collapse
Affiliation(s)
- Claire Anderson
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Victoria C. Williams
- Randall Division for Cell and Molecular Biophysics, King's College, London SE1 1UL, United Kingdom
| | - Benjamin Moyon
- MRC Transgenic Facility, Imperial College, Hammersmith Hospital, London W12 0NN, United Kingdom
| | - Philippe Daubas
- Department of Developmental Biology, Institut Pasteur, CNRS URA 2578, 75015 Paris, France
| | - Shahragim Tajbakhsh
- Department of Developmental Biology, Institut Pasteur, CNRS URA 2578, 75015 Paris, France
| | - Margaret E. Buckingham
- Department of Developmental Biology, Institut Pasteur, CNRS URA 2578, 75015 Paris, France
| | - Toshihiko Shiroishi
- Mammalian Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Simon M. Hughes
- Randall Division for Cell and Molecular Biophysics, King's College, London SE1 1UL, United Kingdom
| | - Anne-Gaëlle Borycki
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
59
|
Jumlongras D, Lachke SA, O’Connell DJ, Aboukhalil A, Li X, Choe SE, Ho JWK, Turbe-Doan A, Robertson EA, Olsen BR, Bulyk ML, Amendt BA, Maas RL. An evolutionarily conserved enhancer regulates Bmp4 expression in developing incisor and limb bud. PLoS One 2012; 7:e38568. [PMID: 22701669 PMCID: PMC3373496 DOI: 10.1371/journal.pone.0038568] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/07/2012] [Indexed: 12/02/2022] Open
Abstract
To elucidate the transcriptional regulation of Bmp4 expression during organogenesis, we used phylogenetic footprinting and transgenic reporter analyses to identify Bmp4 cis-regulatory modules (CRMs). These analyses identified a regulatory region located ∼46 kb upstream of the mouse Bmp4 transcription start site that had previously been shown to direct expression in lateral plate mesoderm. We refined this regulatory region to a 396-bp minimal enhancer, and show that it recapitulates features of endogenous Bmp4 expression in developing mandibular arch ectoderm and incisor epithelium during the initiation-stage of tooth development. In addition, this enhancer directs expression in the apical ectodermal ridge (AER) of the developing limb and in anterior and posterior limb mesenchyme. Transcript profiling of E11.5 mouse incisor dental lamina, together with protein binding microarray (PBM) analyses, allowed identification of a conserved DNA binding motif in the Bmp4 enhancer for Pitx homeoproteins, which are also expressed in the developing mandibular and incisor epithelium. In vitro electrophoretic mobility shift assays (EMSA) and in vivo transgenic reporter mutational analyses revealed that this site supports Pitx binding and that the site is necessary to recapitulate aspects of endogenous Bmp4 expression in developing craniofacial and limb tissues. Finally, Pitx2 chromatin immunoprecipitation (ChIP) demonstrated direct binding of Pitx2 to this Bmp4 enhancer site in a dental epithelial cell line. These results establish a direct molecular regulatory link between Pitx family members and Bmp4 gene expression in developing incisor epithelium.
Collapse
Affiliation(s)
- Dolrudee Jumlongras
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Salil A. Lachke
- Department of Biological Sciences, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States of America
| | - Daniel J. O’Connell
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
| | - Anton Aboukhalil
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, United States of America
| | - Xiao Li
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Sung E. Choe
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
| | - Joshua W. K. Ho
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
- Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Annick Turbe-Doan
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
| | - Erin A. Robertson
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
| | - Bjorn R. Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brad A. Amendt
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Richard L. Maas
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston Massachusetts, United States of America
| |
Collapse
|
60
|
Rabinowitz AH, Vokes SA. Integration of the transcriptional networks regulating limb morphogenesis. Dev Biol 2012; 368:165-80. [PMID: 22683377 DOI: 10.1016/j.ydbio.2012.05.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/29/2012] [Accepted: 05/29/2012] [Indexed: 12/29/2022]
Abstract
The developing limb is one of the best described vertebrate systems for understanding how coordinated gene expression during embryogenesis leads to the structures present in the mature organism. This knowledge, derived from decades of research, is largely based upon gain- and loss-of-function experiments. These studies have provided limited information about how the key signaling pathways interact with each other and the downstream effectors of these pathways. We summarize our current understanding of known genetic interactions in the context of three temporally defined gene regulatory networks. These networks crystallize our current knowledge, depicting a dynamic process involving multiple feedback loops between the ectoderm and mesoderm. At the same time, they highlight the fact that many essential processes are still largely undescribed. Much of the dynamic transcriptional activity occurring during development is regulated by distal cis-regulatory elements. Modern genomic tools have provided new approaches for studying the function of cis-regulatory elements and we discuss the results of these studies in regard to understanding limb development. Ultimately, these genomic techniques will allow scientists to understand how multiple signaling pathways are integrated in space and time to drive gene expression and regulate the formation of the limb.
Collapse
Affiliation(s)
- Adam H Rabinowitz
- Section of Molecular Cell & Developmental Biology, Institute for Cellular and Molecular Biology, One University Station A4800, Austin, TX 78712, USA
| | | |
Collapse
|
61
|
Christen B, Rodrigues AMC, Monasterio MB, Roig CF, Izpisua Belmonte JC. Transient downregulation of Bmp signalling induces extra limbs in vertebrates. Development 2012; 139:2557-65. [PMID: 22675213 DOI: 10.1242/dev.078774] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bone morphogenetic protein (Bmp) signalling has been implicated in setting up dorsoventral patterning of the vertebrate limb and in its outgrowth. Here, we present evidence that Bmp signalling or, more precisely, its inhibition also plays a role in limb and fin bud initiation. Temporary inhibition of Bmp signalling either by overexpression of noggin or using a synthetic Bmp inhibitor is sufficient to induce extra limbs in the Xenopus tadpole or exogenous fins in the Danio rerio embryo, respectively. We further show that Bmp signalling acts in parallel with retinoic acid signalling, possibly by inhibiting the known limb-inducing gene wnt2ba.
Collapse
Affiliation(s)
- Bea Christen
- Center of Regenerative Medicine in Barcelona, Barcelona 08003, Spain
| | | | | | | | | |
Collapse
|
62
|
Choi KS, Lee C, Maatouk DM, Harfe BD. Bmp2, Bmp4 and Bmp7 are co-required in the mouse AER for normal digit patterning but not limb outgrowth. PLoS One 2012; 7:e37826. [PMID: 22662233 PMCID: PMC3360612 DOI: 10.1371/journal.pone.0037826] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 04/25/2012] [Indexed: 01/12/2023] Open
Abstract
Outgrowth and patterning of the vertebrate limb requires a functional apical ectodermal ridge (AER). The AER is a thickening of ectodermal tissue located at the distal end of the limb bud. Loss of this structure, either through genetic or physical manipulations results in truncation of the limb. A number of genes, including Bmps, are expressed in the AER. Previously, it was shown that removal of the BMP receptor Bmpr1a specifically from the AER resulted in complete loss of hindlimbs suggesting that Bmp signaling in the AER is required for limb outgrowth. In this report, we genetically removed the three known AER-expressed Bmp ligands, Bmp2, Bmp4 and Bmp7 from the AER of the limb bud using floxed conditional alleles and the Msx2-cre allele. Surprisingly, only defects in digit patterning and not limb outgrowth were observed. In triple mutants, the anterior and posterior AER was present but loss of the central region of the AER was observed. These data suggest that Bmp ligands expressed in the AER are not required for limb outgrowth but instead play an essential role in maintaining the AER and patterning vertebrate digits.
Collapse
Affiliation(s)
- Kyung-Suk Choi
- Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Chanmi Lee
- Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Danielle M. Maatouk
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Brian D. Harfe
- Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
63
|
Schneider MR. Genetic mouse models for skin research: strategies and resources. Genesis 2012; 50:652-64. [PMID: 22467532 DOI: 10.1002/dvg.22029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/20/2012] [Accepted: 03/24/2012] [Indexed: 12/16/2022]
Abstract
A number of features contributed to establishing the mouse as the favorite model organism for skin research: the genetic and pathophysiological similarities to humans, the small size and relatively short reproductive period, meaning low maintenance costs, and the availability of sophisticated tools for manipulating the genome, gametes, and embryos. While initial studies depended on strains displaying skin abnormalities due to spontaneous genetic mutations, the availability of the transgenic and knockout technologies and their astonishing perfection during the last decades allowed the development of mouse lines permitting any imaginable genetic modification including gene inactivation, substitution, modification, or overexpression. While these technologies have already contributed to the functional analysis of several genes and processes related to skin research, continued progress requires understanding, awareness, and access to these mouse resources. This review will identify the strategies currently employed for the genetic manipulation of mice in skin research, and outline current resources and their limitations.
Collapse
Affiliation(s)
- Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany.
| |
Collapse
|
64
|
Familial dorsalization of the skin of the proximal palm and the instep of the sole of the foot. Gene 2012; 500:216-9. [PMID: 22484600 DOI: 10.1016/j.gene.2012.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/21/2012] [Accepted: 03/04/2012] [Indexed: 11/24/2022]
|
65
|
Progesterone receptor activates Msx2 expression by downregulating TNAP/Akp2 and activating the Bmp pathway in EpH4 mouse mammary epithelial cells. PLoS One 2012; 7:e34058. [PMID: 22457812 PMCID: PMC3310875 DOI: 10.1371/journal.pone.0034058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 02/27/2012] [Indexed: 11/19/2022] Open
Abstract
Previously we demonstrated that EpH4 mouse mammary epithelial cells induced the homeobox transcription factor Msx2 either when transfected with the progesterone receptor (PR) or when treated with Bmp2/4. Msx2 upregulation was unaffected by Wnt inhibitors s-FRP or Dkk1, but was inhibited by the Bmp antagonist Noggin. We therefore hypothesized that PR signaling to Msx2 acts through the Bmp receptor pathway. Herein, we confirm that transcripts for Alk2/ActR1A, a non-canonical BmpR Type I, are upregulated in mammary epithelial cells overexpressing PR (EpH4-PR). Increased phosphorylation of Smads 1,5, 8, known substrates for Alk2 and other BmpR Type I proteins, was observed as was their translocation to the nucleus in EpH4-PR cells. Analysis also showed that Tissue Non-Specific Alkaline Phosphatase (TNAP/Akp2) was also found to be downregulated in EpH4-PR cells. When an Akp2 promoter-reporter construct containing a ½PRE site was transfected into EpH4-PR cells, its expression was downregulated. Moreover, siRNA mediated knockdown of Akp2 increased both Alk2 and Msx2 expression. Collectively these data suggest that PR inhibition of Akp2 results in increased Alk2 activity, increased phosphorylation of Smads 1,5,8, and ultimately upregulation of Msx2. These studies imply that re-activation of the Akp2 gene could be helpful in downregulating aberrant Msx2 expression in PR+ breast cancers.
Collapse
|
66
|
Zhu J, Nguyen MT, Nakamura E, Yang J, Mackem S. Cre-mediated recombination can induce apoptosis in vivo by activating the p53 DNA damage-induced pathway. Genesis 2012; 50:102-11. [PMID: 21913308 PMCID: PMC3273649 DOI: 10.1002/dvg.20799] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 08/30/2011] [Accepted: 09/01/2011] [Indexed: 01/06/2023]
Abstract
Cre-mediated apoptosis has been observed in many contexts in mice expressing Cre-recombinase and can confound the analysis of genetically engineered conditional mutant or transgenic alleles. Several mechanisms have been proposed to explain this phenomenon. We find that the degree of apoptosis induced correlates roughly with the copy number of loxP sites present in the genome and that some level of increased apoptosis accompanies the presence of even only a few loxP sites, as occurs in conditional floxed alleles. Cre-induced apoptosis in this context is completely p53-dependent, suggesting that the apoptosis is stimulated by p53 activation in response to DNA damage incurred during the process of Cre-mediated recombination.
Collapse
Affiliation(s)
| | | | | | - Junming Yang
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI-Frederick, Frederick, MD
| | - Susan Mackem
- author for correspondence: Susan Mackem, Center for Cancer Research, NCI-Frederick, Cancer & Developmental Biology Laboratory, 1050 Boyles St., Bldg 539, Rm 121A, Frederick, MD 21702
| |
Collapse
|
67
|
Wong YL, Behringer RR, Kwan KM. Smad1/Smad5 signaling in limb ectoderm functions redundantly and is required for interdigital programmed cell death. Dev Biol 2012; 363:247-57. [PMID: 22240098 DOI: 10.1016/j.ydbio.2011.12.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 12/17/2011] [Accepted: 12/22/2011] [Indexed: 11/30/2022]
Abstract
Bone morphogenetic proteins (BMPs) are secreted signals that regulate apical ectodermal ridge (AER) functions and interdigital programmed cell death (PCD) of developing limb. However the identities of the intracellular mediators of these signals are unknown. To investigate the role of Smad proteins in BMP-regulated AER functions in limb development, we inactivated Smad1 and Smad5 selectively in AER and ventral ectoderm of developing limb, using Smad1 or/and Smad5 floxed alleles and an En1(Cre/+) knock-in allele. Single inactivation of either Smad1 or Smad5 did not result in limb abnormalities. However, the Smad1/Smad5 double mutants exhibited syndactyly due to a reduction in interdigital PCD and an increase in interdigital cell proliferation. Cell tracing experiments in the Smad1/Smad5 double mutants showed that ventral ectoderm became thicker and the descendents of ventral En1(Cre/+) expressing ectodermal cells were located at dorsal interdigital regions. At the molecular level, Fgf8 expression was prolonged in the interdigital ectoderm of embryonic day (E) 13 Smad1/Smad5 double mutants, suggesting that the ectopic Fgf8 expression may serve as a survival signal for interdigital epithelial and mesenchymal cells. Our result suggests that Smad1 and Smad5 are required and function redundantly as intracellular mediators for BMP signaling in the AER and ventral ectoderm. Smad1/Smad5 signaling in the AER and ventral ectoderm regulates interdigital tissue regression of developing limb. Our mutants with defects in interdigital PCD could also serve as a valuable model for investigation of PCD regulation machinery.
Collapse
Affiliation(s)
- Yuk Lau Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, PR China
| | | | | |
Collapse
|
68
|
Romereim SM, Dudley AT. Cell polarity: The missing link in skeletal morphogenesis? Organogenesis 2011; 7:217-28. [PMID: 22064549 DOI: 10.4161/org.7.3.18583] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Despite extensive genetic analysis of the dynamic multi-phase process that transforms a small population of lateral plate mesoderm into the mature limb skeleton, the mechanisms by which signaling pathways regulate cellular behaviors to generate morphogenetic forces are not known. Recently, a series of papers have offered the intriguing possibility that regulated cell polarity fine-tunes the morphogenetic process via orienting cell axes, division planes and cell movements. Wnt5a-mediated non-canonical signaling, which may include planar cell polarity, has emerged as a common thread in the otherwise distinct signaling networks that regulate morphogenesis in each phase of limb development. These findings position the limb as a key model to elucidate how global tissue patterning pathways direct local differences in cell behavior that, in turn, generate growth and form.
Collapse
Affiliation(s)
- Sarah M Romereim
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | | |
Collapse
|
69
|
Dorsal dimelia of a thumb. J Plast Reconstr Aesthet Surg 2011; 64:e177-80. [DOI: 10.1016/j.bjps.2011.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 01/08/2011] [Accepted: 02/09/2011] [Indexed: 11/21/2022]
|
70
|
Abstract
OLs (oligodendrocytes) are the myelinating cells of the CNS (central nervous system), wrapping axons in conductive sheathes to ensure effective transmission of neural signals. The regulation of OL development, from precursor to mature myelinating cell, is controlled by a variety of inhibitory and inductive signalling factors. The dorsal spinal cord contains signals that inhibit OL development, possibly to prevent premature and ectopic precursor differentiation. The Wnt and BMP (bone morphogenic protein) signalling pathways have been identified as dorsal spinal cord signals with overlapping temporal activity, and both have similar inhibitory effects on OL differentiation. Both these pathways feature prominently in many developmental processes and demyelinating events after injury, and they are known to interact in complex inductive, inhibitive and synergistic manners in many developing systems. The interaction between BMP and Wnt signalling in OL development, however, has not been extensively explored. In the present study, we examine the relationship between the canonical Wnt and BMP pathways. We use pharmacological and genetic paradigms to show that both Wnt3a and BMP4 will inhibit OL differentiation in vitro. We also show that when the canonical BMP signalling pathway is blocked, neither Wnt3a nor BMP4 have inhibitory effects on OL differentiation. In contrast, abrogating the Wnt signalling pathway does not alter the actions of BMP4 treatment. Our results indicate that the BMP signalling pathway is necessary for the canonical Wnt signalling pathway to exert its effects on OL development, but not vice versa, suggesting that Wnt signals upstream of BMP.
Collapse
|
71
|
Tomás AR, Certal AC, Rodríguez-León J. FLRT3 as a key player on chick limb development. Dev Biol 2011; 355:324-33. [PMID: 21575622 DOI: 10.1016/j.ydbio.2011.04.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 04/26/2011] [Accepted: 04/28/2011] [Indexed: 12/26/2022]
Abstract
Limb outgrowth is maintained by a specialized group of cells, the apical ectodermal ridge (AER), a thickening of the limb epithelium at its distal tip. It has been shown that fibroblast growth factor (FGF) activity and activation of the Erk pathway are crucial for AER function. Recently, FLRT3, a transmembrane protein able to interact with FGF receptors, has been implicated in the activation of ERK by FGFs. In this study, we show that flrt3 expression is restricted to the AER, co-localizing its expression with fgf8 and pERK activity. Loss-of-function studies have shown that silencing of flrt3 affects the integrity of the AER and, subsequently, its proper function during limb bud outgrowth. Our data also indicate that flrt3 expression is not regulated by FGF activity in the AER, whereas ectopic WNT3A is able to induce flrt3 expression. Overall, our findings show that flrt3 is a key player during chicken limb development, being necessary but not sufficient for proper AER formation and maintenance under the control of BMP and WNT signalling.
Collapse
Affiliation(s)
- Ana Raquel Tomás
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| | | | | |
Collapse
|
72
|
Bensoussan-Trigano V, Lallemand Y, Saint Cloment C, Robert B. Msx1 and Msx2 in limb mesenchyme modulate digit number and identity. Dev Dyn 2011; 240:1190-202. [PMID: 21465616 DOI: 10.1002/dvdy.22619] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2011] [Indexed: 11/08/2022] Open
Abstract
Msx1 and Msx2 encode homeodomain transcription factors that play a crucial role in limb development. However, the limb phenotype of the double Msx1(null/null) Msx2(null/null) mutant is difficult to analyze, particularly along the anteroposterior axis, because of the complex effects of the double mutation on both ectoderm- and mesoderm-derived structures. Namely, in the mutant, formation of the apical ectodermal ridge (AER) is impaired anteriorly and, consequently, the subjacent mesenchyme does not form. Using the Cre/loxP system, we investigated the respective roles of Msx genes in ectoderm and mesoderm by generating conditional mutant embryos with no Msx activity solely in the mesoderm. In these mutants, the integrity of the ectoderm-derived AER was maintained, allowing formation of the anterior mesenchyme. With this strategy, we demonstrate that mesenchymal expression of Msx1 and Msx2 is required for proper Shh and Bmp4 signaling to specify digit number and identity.
Collapse
|
73
|
Hernández-Martínez R, Covarrubias L. Interdigital cell death function and regulation: New insights on an old programmed cell death model. Dev Growth Differ 2011; 53:245-58. [DOI: 10.1111/j.1440-169x.2010.01246.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
74
|
Barnes RM, Firulli BA, Conway SJ, Vincentz JW, Firulli AB. Analysis of the Hand1 cell lineage reveals novel contributions to cardiovascular, neural crest, extra-embryonic, and lateral mesoderm derivatives. Dev Dyn 2011; 239:3086-97. [PMID: 20882677 DOI: 10.1002/dvdy.22428] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The basic Helix-Loop-Helix (bHLH) transcription factors Hand1 and Hand2 play critical roles in the development of multiple organ systems during embryogenesis. The dynamic expression patterns of these two factors within developing tissues obfuscate their respective unique and redundant organogenic functions. To define cell lineages potentially dependent upon Hand gene expression, we generated a mutant allele in which the coding region of Hand1 is replaced by Cre recombinase. Subsequent Cre-mediated activation of β-galactosidase or eYFP reporter alleles enabled lineage trace analyses that clearly define the fate of Hand1-expressing cells. Hand1-driven Cre marks specific lineages within the extra embryonic tissues, placenta, sympathetic nervous system, limbs, jaw, and several cell types within the cardiovascular system. Comparisons between Hand1 expression and Hand1-lineage greatly refine our understanding of its dynamic spatial-temporal expression domains and raise the possibility of novel Hand1 functions in structures not thought to be Hand1-dependent.
Collapse
Affiliation(s)
- Ralston M Barnes
- Riley Heart Research Center, Wells Center for Pediatric Research, Division of Pediatric Cardiology, Department of Anatomy, Indiana Medical School, Indianapolis, Indiana 46202-5225, USA
| | | | | | | | | |
Collapse
|
75
|
Chalazonitis A, D'Autréaux F, Pham TD, Kessler JA, Gershon MD. Bone morphogenetic proteins regulate enteric gliogenesis by modulating ErbB3 signaling. Dev Biol 2011; 350:64-79. [PMID: 21094638 PMCID: PMC3034360 DOI: 10.1016/j.ydbio.2010.11.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 10/20/2010] [Accepted: 11/11/2010] [Indexed: 12/19/2022]
Abstract
The neural crest-derived cell population that colonizes the bowel (ENCDC) contains proliferating neural/glial progenitors. We tested the hypothesis that bone morphogenetic proteins (BMPs 2 and 4), which are known to promote enteric neuronal differentiation at the expense of proliferation, function similarly in gliogenesis. Enteric gliogenesis was analyzed in mice that overexpress the BMP antagonist, noggin, or BMP4 in the primordial ENS. Noggin-induced loss-of-function decreased, while BMP4-induced gain-of-function increased the glial density and glia/neuron ratio. When added to immunoisolated ENCDC, BMPs provoked nuclear translocation of phosphorylated SMAD proteins and enhanced both glial differentiation and expression of the neuregulin receptor ErbB3. ErbB3 transcripts were detected in E12 rat gut, before glial markers are expressed; moreover, expression of the ErbB3 ligand, glial growth factor 2 (GGF2) escalated rapidly after its first detection at E14. ErbB3-immunoreactive cells were located in the ENS of fetal and adult mice. GGF2 stimulated gliogenesis and proliferation and inhibited glial cell derived neurotrophic factor (GDNF)-promoted neurogenesis. Enhanced glial apoptosis occurred following GGF2 withdrawal; BMPs intensified this GGF2-dependence and reduced GGF2-stimulated proliferation. These observations support the hypotheses that BMPs are required for enteric gliogenesis and act by promoting responsiveness of ENCDC to ErbB3 ligands such as GGF2.
Collapse
Affiliation(s)
- Alcmène Chalazonitis
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|
76
|
Al-Qattan MM, Almazyad M, Shamseldin H, Alkuraya FS. Dorsal dimelia: report of two cases with an emphasis on the variation of phenotypic expression and a search for candidate causative genes. J Hand Surg Eur Vol 2010; 35:715-20. [PMID: 20659967 DOI: 10.1177/1753193410378954] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dorsal dimelia is a form of duplication along the dorsoventral axis of the developing limb. Previous authors reporting on this rare entity have stated that the essential feature of the deformity is the presence of double or circumferential nail at the tip of the finger and that the aetiology is probably related to a mutation of Engrailed-1 (En-1). In this paper we report on two cases to demonstrate that the deformity in humans may be fully or partially expressed, with or without the double nail deformity, respectively. We also reviewed reported cases in humans and experimental animals and searched our two cases for candidate causative genes within the En-1 pathway.
Collapse
Affiliation(s)
- M M Al-Qattan
- Department of Surgery and College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | |
Collapse
|
77
|
Wang B, Sinha T, Jiao K, Serra R, Wang J. Disruption of PCP signaling causes limb morphogenesis and skeletal defects and may underlie Robinow syndrome and brachydactyly type B. Hum Mol Genet 2010; 20:271-85. [PMID: 20962035 DOI: 10.1093/hmg/ddq462] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Brachydactyly type B (BDB1) and Robinow syndrome (RRS) are two skeletal disorders caused by mutations in ROR2, a co-receptor of Wnt5a. Wnt5a/Ror2 can activate multiple branches of non-canonical Wnt signaling, but it is unclear which branch(es) mediates Wnt5a/Ror2 function in limb skeletal development. Here, we provide evidence implicating the planar cell polarity (PCP) pathway as the downstream component of Wnt5a in the limb. We show that a mutation in the mouse PCP gene Vangl2 causes digit defects resembling the clinical phenotypes in BDB1, including loss of phalanges. Halving the dosage of Wnt5a in Vangl2 mutants enhances the severity and penetrance of the digit defects and causes long bone defects reminiscent of RRS, suggesting that Wnt5a and Vangl2 function in the same pathway and disruption of PCP signaling may underlie both BDB1 and RRS. Consistent with a role for PCP signaling in tissue morphogenesis, mutation of Vangl2 alters the shape and dimensions of early limb buds: the width and thickness are increased, whereas the length is decreased. The digit pre-chondrogenic condensates also become wider, thicker and shorter. Interestingly, altered limb bud dimensions in Vangl2 mutants also affect limb growth by perturbing the signaling network that regulates the balance between Fgf and Bmp signaling. Halving the dosage of Bmp4 partially suppresses the loss of phalanges in Vangl2 mutants, supporting the hypothesis that an aberrant increase in Bmp signaling is the cause of the brachydactyly defect. These findings provide novel insight into the signaling mechanisms of Wnt5a/Ror2 and the pathogenesis in BDB1 and RRS.
Collapse
Affiliation(s)
- Bing Wang
- Department of Cell Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
78
|
Chiu HS, Szucsik JC, Georgas KM, Jones JL, Rumballe BA, Tang D, Grimmond SM, Lewis AG, Aronow BJ, Lessard JL, Little MH. Comparative gene expression analysis of genital tubercle development reveals a putative appendicular Wnt7 network for the epidermal differentiation. Dev Biol 2010; 344:1071-87. [PMID: 20510229 PMCID: PMC3154616 DOI: 10.1016/j.ydbio.2010.05.495] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 04/23/2010] [Accepted: 05/15/2010] [Indexed: 02/08/2023]
Abstract
Here we describe the first detailed catalog of gene expression in the developing lower urinary tract (LUT), including epithelial and mesenchymal portions of the developing bladder, urogenital sinus, urethra, and genital tubercle (GT) at E13 and E14. Top compartment-specific genes implicated by the microarray data were validated using whole-mount in situ hybridization (ISH) over the entire LUT. To demonstrate the potential of this resource to implicate developmentally critical features, we focused on gene expression patterns and pathways in the sexually indeterminate, androgen-independent GT. GT expression patterns reinforced the proposed similarities between development of GT, limb, and craniofacial prominences. Comparison of spatial expression patterns predicted a network of Wnt7a-associated GT-enriched epithelial genes, including Gjb2, Dsc3, Krt5, and Sostdc1. Known from other contexts, these genes are associated with normal epidermal differentiation, with disruptions in Dsc3 and Gjb2 showing palmo-plantar keratoderma in the limb. We propose that this gene network contributes to normal foreskin, scrotum, and labial development. As several of these genes are known to be regulated by, or contain cis elements responsive to retinoic acid, estrogen, or androgen, this implicates this pathway in the later androgen-dependent development of the GT.
Collapse
Affiliation(s)
- Han Sheng Chiu
- Institute for Molecular Bioscience, The University of Queensland,
St. Lucia, 4072, Australia
| | - John C. Szucsik
- Division of Developmental Biology, Cincinnati Children’s
Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | - Kylie M. Georgas
- Institute for Molecular Bioscience, The University of Queensland,
St. Lucia, 4072, Australia
| | - Julia L. Jones
- Division of Biomedical Informatics, Cincinnati Children’s
Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | - Bree A. Rumballe
- Institute for Molecular Bioscience, The University of Queensland,
St. Lucia, 4072, Australia
| | - Dave Tang
- Institute for Molecular Bioscience, The University of Queensland,
St. Lucia, 4072, Australia
| | - Sean M. Grimmond
- Institute for Molecular Bioscience, The University of Queensland,
St. Lucia, 4072, Australia
| | - Alfor G. Lewis
- Division of Developmental Biology, Cincinnati Children’s
Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | - Bruce J. Aronow
- Division of Developmental Biology, Cincinnati Children’s
Hospital Research Foundation, Cincinnati, Ohio 45229, USA
- Division of Biomedical Informatics, Cincinnati Children’s
Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | - James L. Lessard
- Division of Developmental Biology, Cincinnati Children’s
Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | - Melissa H. Little
- Institute for Molecular Bioscience, The University of Queensland,
St. Lucia, 4072, Australia
| |
Collapse
|
79
|
Lee GS, Liao X, Shimizu H, Collins MD. Genetic and pathologic aspects of retinoic acid-induced limb malformations in the mouse. ACTA ACUST UNITED AC 2010; 88:863-82. [DOI: 10.1002/bdra.20712] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
80
|
Thein DC, Thalhammer JM, Hartwig AC, Crenshaw EB, Lefebvre V, Wegner M, Sock E. The closely related transcription factors Sox4 and Sox11 function as survival factors during spinal cord development. J Neurochem 2010; 115:131-41. [PMID: 20646169 DOI: 10.1111/j.1471-4159.2010.06910.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Development of the mouse CNS was reported to be normal in the absence of either Sox4 or its close relative Sox11 despite strong and widespread expression of both transcription factors. In this study, we show that combined absence of both Sox proteins in the mouse leads to severe hypoplasia of the developing spinal cord. Proliferation of neuroepithelial precursor cells in the ventricular zone was unaffected. These cells also acquired their correct positional identity. Both glial and neuronal progenitors were generated and neurons appeared in a similar spatiotemporal pattern as in the wild-type. Rates of cell death were however dramatically increased throughout embryogenesis in the double deficient spinal cord arguing that Sox4 and Sox11 are jointly and redundantly required for cell survival. The absence of pronounced proliferation, patterning, specification, and maturation defects furthermore indicates that the decreased cell survival is not a secondary effect of one of these events. We therefore conclude that the two Sox proteins directly function as pro-survival factors during spinal cord development in neural cell types.
Collapse
Affiliation(s)
- Daniela C Thein
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
81
|
Suzuki Y, Ohga N, Morishita Y, Hida K, Miyazono K, Watabe T. BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo. J Cell Sci 2010; 123:1684-92. [DOI: 10.1242/jcs.061556] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Members of the bone morphogenetic protein (BMP) family have been implicated in the development and maintenance of vascular systems. Whereas members of the BMP-2/4 and osteogenic protein-1 groups signal via activin receptor-like kinase (ALK)-2, ALK-3 and ALK-6, BMP-9 and BMP-10 have been reported to bind to ALK-1 in endothelial cells. However, the roles of BMP-9–ALK-1 signaling in the regulation of endothelial cells have not yet been fully elucidated. Here, using various systems, we examined the effects of BMP-9 on the proliferation of endothelial cells. Vascular-tube formation from ex vivo allantoic explants of mouse embryos was promoted by BMP-9. BMP-9, as well as BMP-4 and BMP-6, also induced the proliferation of in-vitro-cultured mouse embryonic-stem-cell-derived endothelial cells (MESECs) by inducing the expression of vascular endothelial growth factor receptor 2 and Tie2, a receptor for angiopoietin-1. A decrease in ALK-1 expression or expression of constitutively active ALK-1 in MESECs abrogated and mimicked the effects of BMP-9 on the proliferation of MESECs, respectively, suggesting that BMP-9 promotes the proliferation of these cells via ALK-1. Furthermore, in vivo angiogenesis was promoted by BMP-9 in a Matrigel plug assay and in a BxPC3 xenograft model of human pancreatic cancer. Consistent with these in vivo findings, BMP-9 enhanced the proliferation of in-vitro-cultured normal endothelial cells from dermal tissues of adult mice and of tumor-associated endothelial cells isolated from tumor xenografts in host mice. These findings suggest that BMP-9 signaling activates the endothelium tested in the present study via ALK-1.
Collapse
Affiliation(s)
- Yuka Suzuki
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Noritaka Ohga
- Department of Oral Pathology and Biology, Division of Oral Pathological Science, Division of Vascular Biology, Graduate School of Dental Medicine, University of Hokkaido, Hokkaido 060-0808, Japan
| | - Yasuyuki Morishita
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Kyoko Hida
- Department of Oral Pathology and Biology, Division of Oral Pathological Science, Division of Vascular Biology, Graduate School of Dental Medicine, University of Hokkaido, Hokkaido 060-0808, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Tetsuro Watabe
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
- PRESTO, Japan Science Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
82
|
Bhattaram P, Penzo-Méndez A, Sock E, Colmenares C, Kaneko KJ, Vassilev A, DePamphilis ML, Wegner M, Lefebvre V. Organogenesis relies on SoxC transcription factors for the survival of neural and mesenchymal progenitors. Nat Commun 2010; 1:9. [PMID: 20596238 PMCID: PMC2892298 DOI: 10.1038/ncomms1008] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 03/05/2010] [Indexed: 12/19/2022] Open
Abstract
During organogenesis, neural and mesenchymal progenitor cells give rise to many cell lineages, but their molecular requirements for self-renewal and lineage decisions are incompletely understood. In this study, we show that their survival critically relies on the redundantly acting SoxC transcription factors Sox4, Sox11 and Sox12. The more SoxC alleles that are deleted in mouse embryos, the more severe and widespread organ hypoplasia is. SoxC triple-null embryos die at midgestation unturned and tiny, with normal patterning and lineage specification, but with massively dying neural and mesenchymal progenitor cells. Specific inactivation of SoxC genes in neural and mesenchymal cells leads to selective apoptosis of these cells, suggesting SoxC cell-autonomous roles. Tead2 functionally interacts with SoxC genes in embryonic development, and is a direct target of SoxC proteins. SoxC genes therefore ensure neural and mesenchymal progenitor cell survival, and function in part by activating this transcriptional mediator of the Hippo signalling pathway.
Collapse
Affiliation(s)
- Pallavi Bhattaram
- Department of Cell Biology, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195, USA
| | - Alfredo Penzo-Méndez
- Department of Cell Biology, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195, USA
| | - Elisabeth Sock
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Clemencia Colmenares
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195, USA
| | - Kotaro J. Kaneko
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alex Vassilev
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Melvin L. DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Véronique Lefebvre
- Department of Cell Biology, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195, USA
| |
Collapse
|
83
|
Yu L, Han M, Yan M, Lee EC, Lee J, Muneoka K. BMP signaling induces digit regeneration in neonatal mice. Development 2010; 137:551-9. [PMID: 20110320 DOI: 10.1242/dev.042424] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The regenerating digit tip of mice is a novel epimorphic response in mammals that is similar to fingertip regeneration in humans. Both display restricted regenerative capabilities that are amputation-level dependent. Using this endogenous regeneration model in neonatal mice, we have found that noggin treatment inhibits regeneration, thus suggesting a bone morphogenetic protein (BMP) requirement. Using non-regenerating amputation wounds, we show that BMP7 or BMP2 can induce a regenerative response. BMP-induced regeneration involves the formation of a mammalian digit blastema. Unlike the endogenous regeneration response that involves redifferentiation by direct ossification (evolved regeneration), the BMP-induced response involves endochondral ossification (redevelopment). Our evidence suggests that BMP treatment triggers a reprogramming event that re-initiates digit tip development at the amputation wound. These studies demonstrate for the first time that the postnatal mammalian digit has latent regenerative capabilities that can be induced by growth factor treatment.
Collapse
Affiliation(s)
- Ling Yu
- Division of Developmental Biology, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | | | | | | | | | | |
Collapse
|
84
|
Silencing neurotransmission with membrane-tethered toxins. Nat Methods 2010; 7:229-36. [DOI: 10.1038/nmeth.1425] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 12/21/2009] [Indexed: 12/16/2022]
|
85
|
Antagonistic crosstalk of Wnt/beta-catenin/Bmp signaling within the Apical Ectodermal Ridge (AER) regulates interdigit formation. Biochem Biophys Res Commun 2009; 391:1653-7. [PMID: 20043884 DOI: 10.1016/j.bbrc.2009.12.109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 12/17/2009] [Indexed: 12/14/2022]
Abstract
Digit and interdigit (D/ID) development is one of the important research fields in molecular developmental biology. Interdigital cell death (ICD) is a morphogenetic event which has been considered as an essential process for D/ID formation. Although some growth factors including Bmp and Fgf signaling can modulate ICD, growth factor crosstalk regulating ICD is poorly understood. Wnt canonical pathway and Bmp signal crosstalk has been considered as the essential growth factor crosstalk in organogenesis. To elucidate the crosstalk to regulate the D/ID formation, we analyzed conditional mutant mice with limb bud ectoderm expressing constitutively activated beta-catenin signaling. We showed that modulation of Wnt/beta-catenin signal in the limb ectoderm including the AER regulates ID apoptosis. We also demonstrated that Wnt/beta-catenin signaling in the ectoderm can positively regulate Fgf8 possibly antagonizing the epithelial derived Bmp signaling. Human birth defects for digit abnormalities have been known to be affected by multiple parameters. Elucidation of the potential mechanisms underlying such D/ID development is an urgent medical issue to be solved. This work would be one of the first studies showing essential growth factor cascades in the D/ID formation.
Collapse
|
86
|
Miyagawa S, Moon A, Haraguchi R, Inoue C, Harada M, Nakahara C, Suzuki K, Matsumaru D, Kaneko T, Matsuo I, Yang L, Taketo MM, Iguchi T, Evans SM, Yamada G. Dosage-dependent hedgehog signals integrated with Wnt/beta-catenin signaling regulate external genitalia formation as an appendicular program. Development 2009; 136:3969-78. [PMID: 19906864 PMCID: PMC2778744 DOI: 10.1242/dev.039438] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2009] [Indexed: 12/22/2022]
Abstract
Embryonic appendicular structures, such as the limb buds and the developing external genitalia, are suitable models with which to analyze the reciprocal interactions of growth factors in the regulation of outgrowth. Although several studies have evaluated the individual functions of different growth factors in appendicular growth, the coordinated function and integration of input from multiple signaling cascades is poorly understood. We demonstrate that a novel signaling cascade governs formation of the embryonic external genitalia [genital tubercle (GT)]. We show that the dosage of Shh signal is tightly associated with subsequent levels of Wnt/beta-catenin activity and the extent of external genitalia outgrowth. In Shh-null mouse embryos, both expression of Wnt ligands and Wnt/beta-catenin signaling activity are downregulated. beta-catenin gain-of-function mutation rescues defective GT outgrowth and Fgf8 expression in Shh-null embryos. These data indicate that Wnt/beta-catenin signaling in the distal urethral epithelium acts downstream of Shh signaling during GT outgrowth. The current data also suggest that Wnt/beta-catenin regulates Fgf8 expression via Lef/Tcf binding sites in a 3' conserved enhancer. Fgf8 induces phosphorylation of Erk1/2 and cell proliferation in the GT mesenchyme in vitro, yet Fgf4/8 compound-mutant phenotypes indicate dispensable functions of Fgf4/8 and the possibility of redundancy among multiple Fgfs in GT development. Our results provide new insights into the integration of growth factor signaling in the appendicular developmental programs that regulate external genitalia development.
Collapse
Affiliation(s)
- Shinichi Miyagawa
- Institute of Molecular Embryology and Genetics, Global COE ‘Cell Fate Regulation Research and Education Unit’, Kumamoto University, Kumamoto 860-0811, Japan
- Center for Animal Resources and Development, Kumamoto University, Kumamoto 860-0811, Japan
| | - Anne Moon
- Departments of Pediatrics, Neurobiology and Anatomy, and Human Genetics, University of Utah, UT 84112, USA
| | - Ryuma Haraguchi
- Center for Animal Resources and Development, Kumamoto University, Kumamoto 860-0811, Japan
| | - Chie Inoue
- Graduate School of Molecular and Genomic Pharmacy, Kumamoto University, Kumamoto 860-0811, Japan
| | - Masayo Harada
- Institute of Molecular Embryology and Genetics, Global COE ‘Cell Fate Regulation Research and Education Unit’, Kumamoto University, Kumamoto 860-0811, Japan
| | - Chiaki Nakahara
- Graduate School of Molecular and Genomic Pharmacy, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kentaro Suzuki
- Institute of Molecular Embryology and Genetics, Global COE ‘Cell Fate Regulation Research and Education Unit’, Kumamoto University, Kumamoto 860-0811, Japan
| | - Daisuke Matsumaru
- Graduate School of Molecular and Genomic Pharmacy, Kumamoto University, Kumamoto 860-0811, Japan
| | - Takehito Kaneko
- Center for Animal Resources and Development, Kumamoto University, Kumamoto 860-0811, Japan
| | - Isao Matsuo
- Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka 594-1101, Japan
| | - Lei Yang
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Makoto M. Taketo
- Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Taisen Iguchi
- National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Sylvia M. Evans
- Skaggs School of Pharmacy, University of California, San Diego, CA 92093, USA
| | - Gen Yamada
- Institute of Molecular Embryology and Genetics, Global COE ‘Cell Fate Regulation Research and Education Unit’, Kumamoto University, Kumamoto 860-0811, Japan
- Graduate School of Molecular and Genomic Pharmacy, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
87
|
Talamillo A, Delgado I, Nakamura T, de-Vega S, Yoshitomi Y, Unda F, Birchmeier W, Yamada Y, Ros MA. Role of Epiprofin, a zinc-finger transcription factor, in limb development. Dev Biol 2009; 337:363-74. [PMID: 19913006 DOI: 10.1016/j.ydbio.2009.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 11/29/2022]
Abstract
The formation and maintenance of the apical ectodermal ridge (AER) is critical for the outgrowth and patterning of the vertebrate limb. In the present work, we have investigated the role of Epiprofin (Epfn/Sp6), a member of the SP/KLF transcription factor family that is expressed in the limb ectoderm and the AER, during limb development. Epfn mutant mice have a defective autopod that shows mesoaxial syndactyly in the forelimb and synostosis (bony fusion) in the hindlimb and partial bidorsal digital tips. Epfn mutants also show a defect in the maturation of the AER that appears flat and broad, with a double ridge phenotype. By genetic analysis, we also show that Epfn is controlled by WNT/b-CATENIN signaling in the limb ectoderm. Since the less severe phenotypes of the conditional removal of b-catenin in the limb ectoderm strongly resemble the limb phenotype of Epfn mutants, we propose that EPFN very likely functions as a modulator of WNT signaling in the limb ectoderm.
Collapse
Affiliation(s)
- Ana Talamillo
- Departamento de Anatomía y Biología Celular. Facultad de Medicina. Universidad de Cantabria, 39011 Santander, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Ahn KJ, Passero F, Crenshaw EB. Otic mesenchyme expression of Cre recombinase directed by the inner ear enhancer of the Brn4/Pou3f4 gene. Genesis 2009; 47:137-41. [PMID: 19217071 DOI: 10.1002/dvg.20454] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Brn4/Pou3f4 is a POU-domain transcription factor expressed in the otic mesenchyme that is required for the normal development of the inner ear. In this report, we describe the isolation of an otic mesenchyme enhancer in the Brn4 gene. Subsequently, this enhancer was used to drive the expression of Cre recombinase in the otic mesenchyme of transgenic mice. When intercrossed with the ROSA reporter strain, R26R, ss-galactosidase expression is detected in several inner ear structures derived from otic mesenchyme, including the temporal bone, spiral ligament, spiral limbus, and mesenchyme underlying sensory epithelium of the utricle, saccule and semicircular canals. Thus, this Cre pedigree can induce conditional rearrangement of genes in the otic mesenchyme, and will serve as a powerful genetic tool to characterize the function of genes in the mesenchymal tissues of the inner ear.
Collapse
Affiliation(s)
- Kyung J Ahn
- Mammalian Neurogenetics Group, Center for Childhood Communication, Division of Pediatric Otolaryngology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
89
|
|
90
|
Danesh SM, Villasenor A, Chong D, Soukup C, Cleaver O. BMP and BMP receptor expression during murine organogenesis. Gene Expr Patterns 2009; 9:255-65. [PMID: 19393343 PMCID: PMC2709213 DOI: 10.1016/j.gep.2009.04.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 04/04/2009] [Accepted: 04/15/2009] [Indexed: 10/20/2022]
Abstract
Cell-cell communication is critical for regulating embryonic organ growth and differentiation. The Bone Morphogenetic Protein (BMP) family of transforming growth factor beta (TGFbeta) molecules represents one class of such cell-cell signaling molecules that regulate the morphogenesis of several organs. Due to high redundancy between the myriad BMP ligands and receptors in certain tissues, it has been challenging to address the role of BMP signaling using targeting of single Bmp genes in mouse models. Here, we present a detailed study of the developmental expression profiles of three BMP ligands (Bmp2, Bmp4, Bmp7) and three BMP receptors (Bmpr1a, Bmpr1b, and BmprII), as well as their molecular antagonist (noggin), in the early embryo during the initial steps of murine organogenesis. In particular, we focus on the expression of Bmp family members in the first organs and tissues that take shape during embryogenesis, such as the heart, vascular system, lungs, liver, stomach, nervous system, somites and limbs. Using in situ hybridization, we identify domains where ligand(s) and receptor(s) are either singly or co-expressed in specific tissues. In addition, we identify a previously unnoticed asymmetric expression of Bmp4 in the gut mesogastrium, which initiates just prior to gut turning and the establishment of organ asymmetry in the gastrointestinal tract. Our studies will aid in the future design and/or interpretation of targeted deletion of individual Bmp or Bmpr genes, since this study identifies organs and tissues where redundant BMP signaling pathways are likely to occur.
Collapse
Affiliation(s)
- Shahab M. Danesh
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, USA 75390
| | - Alethia Villasenor
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, USA 75390
| | - Diana Chong
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, USA 75390
| | - Carrie Soukup
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, USA 75390
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, USA 75390
| |
Collapse
|
91
|
Abstract
Growth and patterning of the embryonic vertebrate limb is regulated by feedback loops signaling between the epithelium and mesenchyme of the limb bud. Fibroblast growth factor (FGF) signaling from the epithelium regulates Sonic hedgehog (Shh) expression in the mesenchyme. In turn, SHH activity maintains the expression of Gremlin1, which encodes a bone morphogenetic protein (BMP) antagonist; the interaction between BMP and Gremlin1 regulates Fgf gene expression. A computational model using data from complex genetic analysis and quantitative measurements of gene induction kinetics demonstrates that limb development is robust and thus buffered against certain mutational alterations and epigenetic changes because of these feedback loops.
Collapse
Affiliation(s)
- Susan Mackem
- Cancer and Developmental Biology Laboratory, National Cancer Institute, NCI-Frederick, Frederick, MD 21702, USA.
| | | |
Collapse
|
92
|
Zhou F, Leder P, Zuniga A, Dettenhofer M. Formin1 disruption confers oligodactylism and alters Bmp signaling. Hum Mol Genet 2009; 18:2472-82. [PMID: 19383632 DOI: 10.1093/hmg/ddp185] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Proper limb development requires concerted communication between cells within the developing limb bud. Several molecules have been identified which contribute to the formation of a circuitry loop consisting in large part of secreted proteins. The intracellular actin nucleator, Formin 1 (Fmn1), has previously been implicated in limb development, but questions remain after the identification of a Gremlin transcriptional enhancer within the 3' end of the Fmn 1 locus. To resolve this issue, a knockout mouse devoid of Fmn1 protein was created and characterized. The mice exhibit a reduction of digit number to four, a deformed posterior metatarsal, phalangeal soft tissue fusion as well as the absence of a fibula to 100% penetrance in the FVB genetic background. Importantly, this mutant allele does not genetically disrupt the characterized Gremlin enhancer, and indeed Gremlin RNA expression is upregulated at the 35 somite stage of development. Our data reveal increased Bone Morphogenetic Protein (Bmp) activity in mice which carry a disruption in Fmn1, as evidenced by upregulation of Msx1 and a decrease in Fgf4 within the apical ectodermal ridge. Additionally, these studies show enhanced activity downstream of the Bmp receptor in cells where Fmn1 is perturbed, suggesting a role for Fmn1 in repression of Bmp signaling.
Collapse
Affiliation(s)
- Fen Zhou
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
93
|
Luria V, Krawchuk D, Jessell TM, Laufer E, Kania A. Specification of motor axon trajectory by ephrin-B:EphB signaling: symmetrical control of axonal patterning in the developing limb. Neuron 2009; 60:1039-53. [PMID: 19109910 DOI: 10.1016/j.neuron.2008.11.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 08/07/2008] [Accepted: 11/11/2008] [Indexed: 11/17/2022]
Abstract
Studies of the innervation of limb muscles by spinal motor neurons have helped to define mechanisms by which axons establish trajectories to their targets. Related motor axons select dorsal or ventral pathways at the base of the limb, raising the question of how these alternate trajectories are specified. EphA signaling has been proposed to control the dorsal trajectory of motor axons in conjunction with other signaling systems, although the respective contributions of each system to motor axon guidance are unclear. We show that the expression of EphB receptors by motor axons, and ephrin-B ligands by limb mesenchymal cells, directs the ventral trajectory of motor axons. Our findings reveal symmetry in the molecular strategies that establish this aspect of nerve-muscle connectivity. The involvement of ephrin:Eph signaling in guiding both sets of motor axons raises the possibility that other signaling systems function primarily to refine or modulate a core Eph signaling program.
Collapse
Affiliation(s)
- Victor Luria
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
94
|
Bénazet JD, Bischofberger M, Tiecke E, Gonçalves A, Martin JF, Zuniga A, Naef F, Zeller R. A self-regulatory system of interlinked signaling feedback loops controls mouse limb patterning. Science 2009; 323:1050-3. [PMID: 19229034 DOI: 10.1126/science.1168755] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Embryogenesis depends on self-regulatory interactions between spatially separated signaling centers, but few of these are well understood. Limb development is regulated by epithelial-mesenchymal (e-m) feedback loops between sonic hedgehog (SHH) and fibroblast growth factor (FGF) signaling involving the bone morphogenetic protein (BMP) antagonist Gremlin1 (GREM1). By combining mouse molecular genetics with mathematical modeling, we showed that BMP4 first initiates and SHH then propagates e-m feedback signaling through differential transcriptional regulation of Grem1 to control digit specification. This switch occurs by linking a fast BMP4/GREM1 module to the slower SHH/GREM1/FGF e-m feedback loop. This self-regulatory signaling network results in robust regulation of distal limb development that is able to compensate for variations by interconnectivity among the three signaling pathways.
Collapse
Affiliation(s)
- Jean-Denis Bénazet
- Developmental Genetics, Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
95
|
In the limb AER Bmp2 and Bmp4 are required for dorsal–ventral patterning and interdigital cell death but not limb outgrowth. Dev Biol 2009; 327:516-23. [DOI: 10.1016/j.ydbio.2009.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/10/2008] [Accepted: 01/06/2009] [Indexed: 11/21/2022]
|
96
|
Fulp CT, Cho G, Marsh ED, Nasrallah IM, Labosky PA, Golden JA. Identification of Arx transcriptional targets in the developing basal forebrain. Hum Mol Genet 2008; 17:3740-60. [PMID: 18799476 PMCID: PMC2581427 DOI: 10.1093/hmg/ddn271] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mutations in the aristaless-related homeobox (ARX) gene are associated with multiple neurologic disorders in humans. Studies in mice indicate Arx plays a role in neuronal progenitor proliferation and development of the cerebral cortex, thalamus, hippocampus, striatum, and olfactory bulbs. Specific defects associated with Arx loss of function include abnormal interneuron migration and subtype differentiation. How disruptions in ARX result in human disease and how loss of Arx in mice results in these phenotypes remains poorly understood. To gain insight into the biological functions of Arx, we performed a genome-wide expression screen to identify transcriptional changes within the subpallium in the absence of Arx. We have identified 84 genes whose expression was dysregulated in the absence of Arx. This population was enriched in genes involved in cell migration, axonal guidance, neurogenesis, and regulation of transcription and includes genes implicated in autism, epilepsy, and mental retardation; all features recognized in patients with ARX mutations. Additionally, we found Arx directly repressed three of the identified transcription factors: Lmo1, Ebf3 and Shox2. To further understand how the identified genes are involved in neural development, we used gene set enrichment algorithms to compare the Arx gene regulatory network (GRN) to the Dlx1/2 GRN and interneuron transcriptome. These analyses identified a subset of genes in the Arx GRN that are shared with that of the Dlx1/2 GRN and that are enriched in the interneuron transcriptome. These data indicate Arx plays multiple roles in forebrain development, both dependent and independent of Dlx1/2, and thus provides further insights into the understanding of the mechanisms underlying the pathology of mental retardation and epilepsy phenotypes resulting from ARX mutations.
Collapse
Affiliation(s)
- Carl T Fulp
- Neuroscience Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
97
|
Grigoryan T, Wend P, Klaus A, Birchmeier W. Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev 2008; 22:2308-41. [PMID: 18765787 PMCID: PMC2749675 DOI: 10.1101/gad.1686208] [Citation(s) in RCA: 458] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wnt signaling is one of a handful of powerful signaling pathways that play crucial roles in the animal life by controlling the genetic programs of embryonic development and adult homeostasis. When disrupted, these signaling pathways cause developmental defects, or diseases, among them cancer. The gateway of the canonical Wnt pathway, which contains >100 genes, is an essential molecule called beta-catenin (Armadillo in Drosophila). Conditional loss- and gain-of-function mutations of beta-catenin in mice provided powerful tools for the functional analysis of canonical Wnt signaling in many tissues and organs. Such studies revealed roles of Wnt signaling that were previously not accessible to genetic analysis due to the early embryonic lethality of conventional beta-catenin knockout mice, as well as the redundancy of Wnt ligands, receptors, and transcription factors. Analysis of conditional beta-catenin loss- and gain-of-function mutant mice demonstrated that canonical Wnt signals control progenitor cell expansion and lineage decisions both in the early embryo and in many organs. Canonical Wnt signaling also plays important roles in the maintenance of various embryonic or adult stem cells, and as recent findings demonstrated, in cancer stem cell types. This has opened new opportunities to model numerous human diseases, which have been associated with deregulated Wnt signaling. Our review summarizes what has been learned from genetic studies of the Wnt pathway by the analysis of conditional beta-catenin loss- and gain-of-function mice.
Collapse
Affiliation(s)
- Tamara Grigoryan
- Max-Delbück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Peter Wend
- Max-Delbück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Alexandra Klaus
- Max-Delbück Center for Molecular Medicine, 13125 Berlin, Germany
| | | |
Collapse
|
98
|
Patterning mechanisms controlling digit development. J Genet Genomics 2008; 35:517-24. [DOI: 10.1016/s1673-8527(08)60071-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 06/14/2008] [Accepted: 06/15/2008] [Indexed: 11/20/2022]
|
99
|
Araya R, Kudo M, Kawano M, Ishii K, Hashikawa T, Iwasato T, Itohara S, Terasaki T, Oohira A, Mishina Y, Yamada M. BMP signaling through BMPRIA in astrocytes is essential for proper cerebral angiogenesis and formation of the blood-brain-barrier. Mol Cell Neurosci 2008; 38:417-30. [PMID: 18501628 PMCID: PMC5331344 DOI: 10.1016/j.mcn.2008.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 04/03/2008] [Accepted: 04/04/2008] [Indexed: 11/21/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling is involved in differentiation of neural precursor cells into astrocytes, but its contribution to angiogenesis is not well characterized. This study examines the role of BMP signaling through BMP type IA receptor (BMPRIA) in early neural development using a conditional knockout mouse model, in which Bmpr1a is selectively disrupted in telencephalic neural stem cells. The conditional mutant mice show a significant increase in the number of cerebral blood vessels and the level of vascular endothelial growth factor (VEGF) is significantly upregulated in the mutant astrocytes. The mutant mice also show leakage of immunoglobulin around cerebral microvessels in neonatal mice, suggesting a defect in formation of the blood-brain-barrier. In addition, astrocytic endfeet fail to encircle cortical blood vessels in the mutant mice. These results suggest that BMPRIA signaling in astrocytes regulates the expression of VEGF for proper cerebrovascular angiogenesis and has a role on in the formation of the blood-brain-barrier.
Collapse
Affiliation(s)
- Runa Araya
- Yamada Research Unit, RIKEN Brain Science Institute, Saitama, 351-0198, Japan
| | - Moeko Kudo
- Yamada Research Unit, RIKEN Brain Science Institute, Saitama, 351-0198, Japan
| | - Masako Kawano
- Lab. for Cell Culture Development, RIKEN Brain Science Institute, Saitama, 351-0198, Japan
| | - Katsuyoshi Ishii
- Lab. for Neural Architecture, RIKEN Brain Science Institute, Saitama, 351-0198, Japan
| | - Tsutomu Hashikawa
- Lab. for Neural Architecture, RIKEN Brain Science Institute, Saitama, 351-0198, Japan
| | - Takuji Iwasato
- Lab. for Behavioral Genetics, RIKEN Brain Science Institute, Saitama, 351-0198, Japan
| | - Shigeyoshi Itohara
- Lab. for Behavioral Genetics, RIKEN Brain Science Institute, Saitama, 351-0198, Japan
| | - Tetsuya Terasaki
- Dep. of Molecular Biopharmacy and Genetics, Tohoku Univ., Sendai, 980-8578, Japan
| | - Atsuhiko Oohira
- Dep. of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi 480-0392, Japan
| | - Yuji Mishina
- Lab. of Reproductive and Developmental Toxicology, NIEHS, Research Triangle Park, NC 27709, USA
| | - Masahisa Yamada
- Yamada Research Unit, RIKEN Brain Science Institute, Saitama, 351-0198, Japan
| |
Collapse
|
100
|
Pearl EJ, Barker D, Day RC, Beck CW. Identification of genes associated with regenerative success of Xenopus laevis hindlimbs. BMC DEVELOPMENTAL BIOLOGY 2008; 8:66. [PMID: 18570684 PMCID: PMC2483965 DOI: 10.1186/1471-213x-8-66] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 06/23/2008] [Indexed: 02/06/2023]
Abstract
BACKGROUND Epimorphic regeneration is the process by which complete regeneration of a complex structure such as a limb occurs through production of a proliferating blastema. This type of regeneration is rare among vertebrates but does occur in the African clawed frog Xenopus laevis, traditionally a model organism for the study of early development. Xenopus tadpoles can regenerate their tails, limb buds and the lens of the eye, although the ability of the latter two organs to regenerate diminishes with advancing developmental stage. Using a heat shock inducible transgene that remains silent unless activated, we have established a stable line of transgenic Xenopus (strain N1) in which the BMP inhibitor Noggin can be over-expressed at any time during development. Activation of this transgene blocks regeneration of the tail and limb of Xenopus tadpoles. RESULTS In the current study, we have taken advantage of the N1 transgenic line to directly compare morphology and gene expression in same stage regenerating vs. BMP signalling deficient non-regenerating hindlimb buds. The wound epithelium of N1 transgenic hindlimb buds, which forms over the cut surface of the limb bud after amputation, does not transition normally into the distal thickened apical epithelial cap. Instead, a basement membrane and dermis form, indicative of mature skin. Furthermore, the underlying mesenchyme remains rounded and does not expand to form a cone shaped blastema, a normal feature of successful regeneration. Using Affymetrix Gene Chip analysis, we have identified genes linked to regenerative success downstream of BMP signalling, including the BMP inhibitor Gremlin and the stress protein Hsp60 (no blastema in zebrafish). Gene Ontology analysis showed that genes involved in embryonic development and growth are significantly over-represented in regenerating early hindlimb buds and that successful regeneration in the Xenopus hindlimb correlates with the induction of stress response pathways. CONCLUSION N1 transgenic hindlimbs, which do not regenerate, do not form an apical epithelial cap or cone shaped blastema following amputation. Comparison of gene expression in stage matched N1 vs. wild type hindlimb buds has revealed several new targets for regeneration research.
Collapse
Affiliation(s)
- Esther J Pearl
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- Laboratory of Molecular Organogenesis, Institut de Recherches Cliniques de Montreal (IRCM), 110 avenue des Pins Ouest, Montreal, QC H2W 1R7, Canada
| | - Donna Barker
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Robert C Day
- Biochemistry Department, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Caroline W Beck
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|