51
|
Mabrouk N, Ghione S, Laurens V, Plenchette S, Bettaieb A, Paul C. Senescence and Cancer: Role of Nitric Oxide (NO) in SASP. Cancers (Basel) 2020; 12:cancers12051145. [PMID: 32370259 PMCID: PMC7281185 DOI: 10.3390/cancers12051145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a cell state involved in both physiological and pathological processes such as age-related diseases and cancer. While the mechanism of senescence is now well known, its role in tumorigenesis still remains very controversial. The positive and negative effects of senescence on tumorigenesis depend largely on the diversity of the senescent phenotypes and, more precisely, on the senescence-associated secretory phenotype (SASP). In this review, we discuss the modulatory effect of nitric oxide (NO) in SASP and the possible benefits of the use of NO donors or iNOS inducers in combination with senotherapy in cancer treatment.
Collapse
Affiliation(s)
- Nesrine Mabrouk
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Silvia Ghione
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Véronique Laurens
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Stéphanie Plenchette
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Ali Bettaieb
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
| | - Catherine Paul
- Laboratory of Immunology and Immunotherapy of Cancers, EPHE, PSL Research University, 75000 Paris, France; (N.M.); (S.G.); (V.L.); (S.P.); (A.B.)
- Laboratory of Immunology and Immunotherapy of Cancers (LIIC), EA7269, University of Burgundy Franche-Comté, 21000 Dijon, France
- Correspondence: or ; Tel.: +33-3-80-39-33-51
| |
Collapse
|
52
|
Raj K, Horvath S. Current perspectives on the cellular and molecular features of epigenetic ageing. Exp Biol Med (Maywood) 2020; 245:1532-1542. [PMID: 32276545 DOI: 10.1177/1535370220918329] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IMPACT STATEMENT The field of epigenetic ageing is relatively new, and the speed of its expansion presents a challenge in keeping abreast with new discoveries and their implications. Several reviews have already addressed the great number of pathologies, health conditions, life-style, and external stressors that are associated with changes to the rate of epigenetic ageing. While these associations highlight and affirm the ability of epigenetic clock to capture biologically meaningful changes associated with age, they do not inform us about the underlying mechanisms. In this very early period since the development of the clock, there have been rather limited experimental research that are aimed at uncovering the mechanism. Hence, the perspective that we proffer is derived from available but nevertheless limited lines of evidence that together provide a seemingly coherent narrative that can be tested. This, we believe would be helpful towards uncovering the workings of the epigenetic clock.
Collapse
Affiliation(s)
- Kenneth Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire OX11 0RQ, UK
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, CA 90095, USA and Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, CA 90095, USA
| |
Collapse
|
53
|
Li J, Song S, Li X, Zhu J, Li W, Du B, Guo Y, Xi X, Han R. Down-Regulation of Fibroblast Growth Factor 2 (FGF2) Contributes to the Premature Senescence of Mouse Embryonic Fibroblast. Med Sci Monit 2020; 26:e920520. [PMID: 32188838 PMCID: PMC7104787 DOI: 10.12659/msm.920520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Freshly isolated mouse embryonic fibroblasts (MEFs) have great proliferation capacity but quickly enter senescent state after several rounds of cell cycle, a process called premature senescence. Cellular senescence can be induced by various stresses such as telomere erosion, DNA damage, and oncogenic signaling. But the contribution of other molecules, such as growth factors, to cellular senescence is incompletely understood. This study aimed to compare the gene expression difference between non-senescent and senescent MEFs to identify the key molecule(s) involved in the spontaneous senescence of MEFs. Material/Methods Primary MEFs were isolated from E12.5 pregnant C57/BL6 mice. The cells were continuously cultured in Dulbecco’s Modified Eagle Medium for 9 passages. SA-β-Gal staining was used as an indicator of cell senescence. The supernatant from primary MEFs (P1 medium) or Passage 6 MEFs (P6 medium) were used to culture freshly isolated MEFs to observe the effects on cell senescence state. Gene expression profiles of primary and senescent MEFs were investigated by RNA-Seq to find the key genes involved in cell senescence. Adipocyte differentiation assay was used to evaluate the stemness of MEFs cultured in FGF2-stimulated medium. Results The senescence of MEFs cultured in the P1 medium was alleviated when compared to the P6 medium. Downregulation of FGF2 expression was revealed by RNA-Seq and further confirmed by real-time quantitative polymerase chain reaction and western blot. FGF2-stimulated medium also had anti-senescence function and could maintain the differentiation ability of MEFs. Conclusions The premature senescence of MEFs was at least partially caused by FGF2 deficiency. Exogenous FGF2 could alleviate the senescent phenotype.
Collapse
Affiliation(s)
- Jie Li
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China (mainland)
| | - Shuo Song
- Department of Science and Education, Shenzhen Samii Medical Center, Shenzhen, Guangdong, China (mainland)
| | - Xingchao Li
- Department of Pediatric Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China (mainland)
| | - Jing Zhu
- Department of Biology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China (mainland).,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China (mainland)
| | - Wenjuan Li
- Department of Pharmacology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China (mainland)
| | - Boyu Du
- Department of Biology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China (mainland)
| | - Yang Guo
- Department of Immunology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China (mainland)
| | - Xueyan Xi
- Department of Immunology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China (mainland)
| | - Rongfei Han
- Department of Immunology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China (mainland).,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China (mainland).,Department of Laboratory Medicine, Suizhou Central Hospital, Suizhou, Hubei, China (mainland)
| |
Collapse
|
54
|
Transcriptome analysis of axolotl oropharyngeal explants during taste bud differentiation stages. Mech Dev 2020; 161:103597. [PMID: 32044293 DOI: 10.1016/j.mod.2020.103597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/17/2019] [Accepted: 01/27/2020] [Indexed: 01/07/2023]
Abstract
The Mexican salamander, Ambystoma mexicanum (Axolotl), is an excellent vertebrate model system to understand development and regeneration. Studies in axolotl embryos have provided important insights into taste bud development. Taste bud specification and determination occur in the oropharyngeal endoderm of axolotl embryos during gastrulation and neurulation, respectively, whereas taste bud innervation and taste cell differentiation occur later in development. Axolotl embryos are amenable to microsurgery, and tissue explants develop readily in vitro. We performed RNA-seq analysis to investigate the differential expression of genes in oropharyngeal explants at several stages of taste cell differentiation. Since the axolotl genome has only recently been sequenced, we used a Trinity pipeline to perform de novo assembly of sequencing reads. Linear models for RNA-seq data were used to identify differentially expressed genes. We found 1234 unique genes differentially expressed during taste cell differentiation stages. We validated four of these genes using RTqPCR and performed GO functional analysis. The differential expression of these genes suggests that they may play a role in taste cell differentiation in axolotls.
Collapse
|
55
|
Da Silva-Álvarez S, Picallos-Rabina P, Antelo-Iglesias L, Triana-Martínez F, Barreiro-Iglesias A, Sánchez L, Collado M. The development of cell senescence. Exp Gerontol 2019; 128:110742. [DOI: 10.1016/j.exger.2019.110742] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 02/01/2023]
|
56
|
Salotti J, Johnson PF. Regulation of senescence and the SASP by the transcription factor C/EBPβ. Exp Gerontol 2019; 128:110752. [PMID: 31648009 DOI: 10.1016/j.exger.2019.110752] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022]
Abstract
Oncogene-induced senescence (OIS) serves as an important barrier to tumor progression in cells that have acquired activating mutations in RAS and other oncogenes. Senescent cells also produce a secretome known as the senescence-associated secretory phenotype (SASP) that includes pro-inflammatory cytokines and chemokines. SASP factors reinforce and propagate the senescence program and identify senescent cells to the immune system for clearance. The OIS program is executed by several transcriptional effectors that include p53, RB, NF-κB and C/EBPβ. In this review, we summarize the critical role of C/EBPβ in regulating OIS and the SASP. Post-translational modifications induced by oncogenic RAS signaling control C/EBPβ activity and dimerization, and these alterations switch C/EBPβ to a pro-senescence form during OIS. In addition, C/EBPβ is regulated by a unique 3'UTR-mediated mechanism that restrains its activity in tumor cells to facilitate senescence bypass and suppression of the SASP.
Collapse
Affiliation(s)
- Jacqueline Salotti
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Peter F Johnson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
57
|
Rhinn M, Ritschka B, Keyes WM. Cellular senescence in development, regeneration and disease. Development 2019; 146:146/20/dev151837. [DOI: 10.1242/dev.151837] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT
Cellular senescence is a state comprising an essentially irreversible proliferative arrest combined with phenotypic changes and pronounced secretory activity. Although senescence has long been linked with aging, recent studies have uncovered functional roles for senescence in embryonic development, regeneration and reprogramming, and have helped to advance our understanding of this process as a highly coordinated and programmed cellular state. In this Primer article, we summarize some of the key findings in the field and attempt to explain them in a simple model that reconciles the normal and pathological roles for senescence. We discuss how a primary role of cellular senescence is to contribute to normal development, cell plasticity and tissue repair, as a dynamic and tightly regulated cellular program. However, when this process is perturbed, the beneficial effects turn detrimental and can contribute to disease and aging.
Collapse
Affiliation(s)
- Muriel Rhinn
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67404, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), Illkirch, France UMR7104
- Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch, France U1258
- Université de Strasbourg, Illkirch, France
| | - Birgit Ritschka
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67404, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), Illkirch, France UMR7104
- Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch, France U1258
- Université de Strasbourg, Illkirch, France
| | - William M. Keyes
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 Rue Laurent Fries, 67404, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), Illkirch, France UMR7104
- Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch, France U1258
- Université de Strasbourg, Illkirch, France
| |
Collapse
|
58
|
Castillo X, Castro-Obregón S, Gutiérrez-Becker B, Gutiérrez-Ospina G, Karalis N, Khalil AA, Lopez-Noguerola JS, Rodríguez LL, Martínez-Martínez E, Perez-Cruz C, Pérez-Velázquez J, Piña AL, Rubio K, García HPS, Syeda T, Vanoye-Carlo A, Villringer A, Winek K, Zille M. Re-thinking the Etiological Framework of Neurodegeneration. Front Neurosci 2019; 13:728. [PMID: 31396030 PMCID: PMC6667555 DOI: 10.3389/fnins.2019.00728] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are among the leading causes of disability and death worldwide. The disease-related socioeconomic burden is expected to increase with the steadily increasing life expectancy. In spite of decades of clinical and basic research, most strategies designed to manage degenerative brain diseases are palliative. This is not surprising as neurodegeneration progresses "silently" for decades before symptoms are noticed. Importantly, conceptual models with heuristic value used to study neurodegeneration have been constructed retrospectively, based on signs and symptoms already present in affected patients; a circumstance that may confound causes and consequences. Hence, innovative, paradigm-shifting views of the etiology of these diseases are necessary to enable their timely prevention and treatment. Here, we outline four alternative views, not mutually exclusive, on different etiological paths toward neurodegeneration. First, we propose neurodegeneration as being a secondary outcome of a primary cardiovascular cause with vascular pathology disrupting the vital homeostatic interactions between the vasculature and the brain, resulting in cognitive impairment, dementia, and cerebrovascular events such as stroke. Second, we suggest that the persistence of senescent cells in neuronal circuits may favor, together with systemic metabolic diseases, neurodegeneration to occur. Third, we argue that neurodegeneration may start in response to altered body and brain trophic interactions established via the hardwire that connects peripheral targets with central neuronal structures or by means of extracellular vesicle (EV)-mediated communication. Lastly, we elaborate on how lifespan body dysbiosis may be linked to the origin of neurodegeneration. We highlight the existence of bacterial products that modulate the gut-brain axis causing neuroinflammation and neuronal dysfunction. As a concluding section, we end by recommending research avenues to investigate these etiological paths in the future. We think that this requires an integrated, interdisciplinary conceptual research approach based on the investigation of the multimodal aspects of physiology and pathophysiology. It involves utilizing proper conceptual models, experimental animal units, and identifying currently unused opportunities derived from human data. Overall, the proposed etiological paths and experimental recommendations will be important guidelines for future cross-discipline research to overcome the translational roadblock and to develop causative treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ximena Castillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Institute of Neurobiology, University of Puerto Rico, San Juan, PR, United States
| | - Susana Castro-Obregón
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Benjamin Gutiérrez-Becker
- Artificial Intelligence in Medical Imaging KJP, Ludwig Maximilian University of Munich, Munich, Germany
| | - Gabriel Gutiérrez-Ospina
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas y Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Nikolaos Karalis
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ahmed A. Khalil
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Liliana Lozano Rodríguez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eduardo Martínez-Martínez
- Cell Communication & Extracellular Vesicles Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Claudia Perez-Cruz
- National Polytechnic Institute, Center of Research in Advanced Studies, Mexico City, Mexico
| | - Judith Pérez-Velázquez
- Departamento de Matemáticas y Mecánica, Instituto de Investigaciones en Matemáticas Aplicadas y Sistemas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Mathematische Modellierung Biologischer Systeme, Fakultät für Mathematik, Technische Universität München, Munich, Germany
| | - Ana Luisa Piña
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karla Rubio
- Lung Cancer Epigenetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Tauqeerunnisa Syeda
- National Polytechnic Institute, Center of Research in Advanced Studies, Mexico City, Mexico
| | - America Vanoye-Carlo
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Arno Villringer
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Katarzyna Winek
- The Shimon Peres Postdoctoral Fellow at the Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marietta Zille
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
- Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Lübeck, Germany
| |
Collapse
|
59
|
de Mera-Rodríguez JA, Álvarez-Hernán G, Gañán Y, Martín-Partido G, Rodríguez-León J, Francisco-Morcillo J. Senescence-associated β-galactosidase activity in the developing avian retina. Dev Dyn 2019; 248:850-865. [PMID: 31226225 DOI: 10.1002/dvdy.74] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/22/2019] [Accepted: 06/15/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Senescence-associated β-galactosidase (SA-β-GAL) histochemistry is the most commonly used biomarker of cellular senescence. These SA-β-GAL-positive cells are senescent embryonic cells that are usually removed by apoptosis from the embryo, followed by macrophage-mediated clearance. RESULTS Some authors have proposed that SA-β-GAL activity in differentiated neurons from young and adult mammals cannot be uniquely attributed to cell senescence, whether in vivo or in vitro. Using the developing visual system of the chicken as a model, the present study found that SA-β-GAL detected in the developing retina corresponded to lysosomal β-galactosidase activity, and that SA-β-GAL activity did not correlate with the chronotopographical distribution of apoptotic cells. However, SA-β-GAL staining in the undifferentiated retina coincided with the appearance of early differentiating neurons. In the laminated retina, SA-β-GAL staining was concentrated in the ganglion, amacrine, and horizontal cell layers. The photoreceptors and pigment epithelial cells also exhibited SA-β-GAL activity throughout retinal development. We have also found that SA-β-GAL staining strongly correlated p21 immunoreactivity. CONCLUSION In conclusion, the results clearly show that SA-β-GAL activity cannot be regarded as a specific marker of senescence during retinal development, and that it is mainly expressed in subpopulations of postmitotic neurons, which are nonproliferative cells, even at early stages of cell differentiation.
Collapse
Affiliation(s)
- José Antonio de Mera-Rodríguez
- Área de Anatomía Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Guadalupe Álvarez-Hernán
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Yolanda Gañán
- Área de Anatomía Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Gervasio Martín-Partido
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
60
|
Lee YH, Chen YY, Yeh YL, Wang YJ, Chen RJ. Stilbene Compounds Inhibit Tumor Growth by the Induction of Cellular Senescence and the Inhibition of Telomerase Activity. Int J Mol Sci 2019; 20:ijms20112716. [PMID: 31159515 PMCID: PMC6600253 DOI: 10.3390/ijms20112716] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Cellular senescence is a state of cell cycle arrest characterized by a distinct morphology, gene expression pattern, and secretory phenotype. It can be triggered by multiple mechanisms, including those involved in telomere shortening, the accumulation of DNA damage, epigenetic pathways, and the senescence-associated secretory phenotype (SASP), and so on. In current cancer therapy, cellular senescence has emerged as a potent tumor suppression mechanism that restrains proliferation in cells at risk for malignant transformation. Therefore, compounds that stimulate the growth inhibition effects of senescence while limiting its detrimental effects are believed to have great clinical potential. In this review article, we first review the current knowledge of the pro- and antitumorigeneic functions of senescence and summarize the key roles of telomerase in the regulation of senescence in tumors. Second, we review the current literature regarding the anticancer effects of stilbene compounds that are mediated by the targeting of telomerase and cell senescence. Finally, we provide future perspectives on the clinical utilization of stilbene compounds, especially resveratrol and pterostilbene, as novel cancer therapeutic remedies. We conclude and propose that stilbene compounds may induce senescence and may potentially be used as the therapeutic or adjuvant agents for cancers with high telomerase activity.
Collapse
Affiliation(s)
- Yu-Hsuan Lee
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Yu-Ying Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Ya-Ling Yeh
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| |
Collapse
|
61
|
Boichuck M, Zorea J, Elkabets M, Wolfson M, Fraifeld VE. c-Met as a new marker of cellular senescence. Aging (Albany NY) 2019; 11:2889-2897. [PMID: 31085799 PMCID: PMC6535066 DOI: 10.18632/aging.101961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/04/2019] [Indexed: 05/09/2023]
Abstract
Here, we reported for the first time an increased expression of c-Met protein in primary cultures of human dermal and pulmonary fibroblasts of late passages. This suggests that c-Met could serve as an early marker of cellular senescence (CS). The levels of c-Met-related signaling proteins phospho-Akt and Stat3 were also increased in (pre)senescent fibroblasts. Considering the anti-apoptotic activity of Akt and the involvement of Stat3 in mediating the effects of proinflammatory cytokines, the findings of this study indicate that c-Met could contribute through its downstream targets or partners to at least two major phenotypical features of CS - resistance to apoptosis and senescence-associated secretory phenotype.
Collapse
Affiliation(s)
- Maria Boichuck
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Jonathan Zorea
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Marina Wolfson
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Vadim E. Fraifeld
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
62
|
Docherty MH, O'Sullivan ED, Bonventre JV, Ferenbach DA. Cellular Senescence in the Kidney. J Am Soc Nephrol 2019; 30:726-736. [PMID: 31000567 DOI: 10.1681/asn.2018121251] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Senescent cells have undergone permanent growth arrest, adopt an altered secretory phenotype, and accumulate in the kidney and other organs with ageing and injury. Senescence has diverse physiologic roles and experimental studies support its importance in nephrogenesis, successful tissue repair, and in opposing malignant transformation. However, recent murine studies have shown that depletion of chronically senescent cells extends healthy lifespan and delays age-associated disease-implicating senescence and the senescence-associated secretory phenotype as drivers of organ dysfunction. Great interest is therefore focused on the manipulation of senescence as a novel therapeutic target in kidney disease. In this review, we examine current knowledge and areas of ongoing uncertainty regarding senescence in the human kidney and experimental models. We summarize evidence supporting the role of senescence in normal kidney development and homeostasis but also senescence-induced maladaptive repair, renal fibrosis, and transplant failure. Recent studies using senescent cell manipulation and depletion as novel therapies to treat renal disease are discussed, and we explore unanswered questions for future research.
Collapse
Affiliation(s)
| | - Eoin D O'Sullivan
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.,Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK; and
| | - Joseph V Bonventre
- Renal Division and Division of Engineering in Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - David A Ferenbach
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK; .,Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK; and
| |
Collapse
|
63
|
Liu X, Wan M. A tale of the good and bad: Cell senescence in bone homeostasis and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:97-128. [PMID: 31122396 DOI: 10.1016/bs.ircmb.2019.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Historically, cellular senescence has been viewed as an irreversible cell-cycle arrest process with distinctive phenotypic alterations that were implicated primarily in aging and tumor suppression. Recent discoveries suggest that cellular senescence represents a series of diverse, dynamic, and heterogeneous cellular states with the senescence-associated secretory phenotype (SASP). Although senescent cells typically contribute to aging and age-related diseases, accumulating evidence has shown that they also have important physiological functions during embryonic development, late pubertal bone growth cessation, and adulthood tissue remodeling. Here, we review the recent research on cellular senescence and SASP, highlighting the key pathways that mediate senescence cell-cycle arrest and initiate SASP. We also summarize recent literature on the role of cellular senescence in maintaining bone homeostasis and mediating age-associated osteoporosis, discussing both the beneficial and adverse roles of cellular senescence in bone during different physiological stages, including bone development, childhood bone growth, adulthood bone remodeling, and bone aging.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mei Wan
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
64
|
Gibaja A, Aburto MR, Pulido S, Collado M, Hurle JM, Varela-Nieto I, Magariños M. TGFβ2-induced senescence during early inner ear development. Sci Rep 2019; 9:5912. [PMID: 30976015 PMCID: PMC6459823 DOI: 10.1038/s41598-019-42040-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/21/2019] [Indexed: 01/16/2023] Open
Abstract
Embryonic development requires the coordinated regulation of apoptosis, survival, autophagy, proliferation and differentiation programs. Senescence has recently joined the cellular processes required to master development, in addition to its well-described roles in cancer and ageing. Here, we show that senescent cells are present in a highly regulated temporal pattern in the developing vertebrate inner ear, first, surrounding the otic pore and, later, in the otocyst at the endolymphatic duct. Cellular senescence is associated with areas of increased apoptosis and reduced proliferation consistent with the induction of the process when the endolymphatic duct is being formed. Modulation of senescence disrupts otic vesicle morphology. Transforming growth factor beta (TGFβ) signaling interacts with signaling pathways elicited by insulin-like growth factor type 1 (IGF-1) to jointly coordinate cellular dynamics required for morphogenesis and differentiation. Taken together, these results show that senescence is a natural occurring process essential for early inner ear development.
Collapse
Affiliation(s)
- Alejandro Gibaja
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - María R Aburto
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Sara Pulido
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain.,CIBERER, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Collado
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan M Hurle
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Isabel Varela-Nieto
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain.,CIBERER, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Marta Magariños
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain. .,CIBERER, Instituto de Salud Carlos III, Madrid, Spain. .,Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
65
|
Affiliation(s)
- Eoin D O'Sullivan
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, Scotland
| | - Katie J Mylonas
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, Scotland
| | - David A Ferenbach
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
66
|
Tokmakov AA, Sato KI. Activity and intracellular localization of senescence-associated β-galactosidase in aging Xenopus oocytes and eggs. Exp Gerontol 2019; 119:157-167. [PMID: 30769028 DOI: 10.1016/j.exger.2019.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/22/2019] [Accepted: 02/02/2019] [Indexed: 12/14/2022]
Abstract
Senescence-associated β-galactosidase (SA-β-gal) serves as a marker of senescence in aging somatic cells. However, little is known about SA-β-gal dynamics in aging gamete cells. To address this issue, here we investigated activity and intracellular localization of SA-β-gal in freshly obtained and aging oocytes and eggs of the African clawed frog Xenopus laevis. Data base mining revealed the presence of several homologous β-galactosidase sequences in the annotated Xenopus genome. Some of them were predicted to contain an N-terminal signal peptide sequence, suggesting enzyme translocation to cellular organelles. Biochemical and microscopic analyses confirmed SA-β-gal localization in the particulate and cytosolic fractions of oocytes and eggs. SA-β-gal activity was found to reside predominantly within a fraction of dense cytoplasmic granules that were extensively stained with the lysosome-specific dye LysoTracker Green DND-26 and had an average size of 8.9 ± 5.6 μm. These features identify the SA-β-gal-containing granules as a subpopulation of yolk platelets, specialized late endosomes or lysosomes that accumulate and store processed protein in frog oocytes. Further analysis revealed an increase of SA-β-gal activity in Xenopus eggs, but not in oocytes, aged in vitro over 48 h. Our data suggest that endosomal acidification during egg aging may be responsible for this increase.
Collapse
Affiliation(s)
- Alexander A Tokmakov
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan.
| | - Ken-Ichi Sato
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan.
| |
Collapse
|
67
|
Cosolo A, Jaiswal J, Csordás G, Grass I, Uhlirova M, Classen AK. JNK-dependent cell cycle stalling in G2 promotes survival and senescence-like phenotypes in tissue stress. eLife 2019; 8:41036. [PMID: 30735120 PMCID: PMC6389326 DOI: 10.7554/elife.41036] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/06/2019] [Indexed: 01/10/2023] Open
Abstract
The restoration of homeostasis after tissue damage relies on proper spatial-temporal control of damage-induced apoptosis and compensatory proliferation. In Drosophila imaginal discs these processes are coordinated by the stress response pathway JNK. We demonstrate that JNK signaling induces a dose-dependent extension of G2 in tissue damage and tumors, resulting in either transient stalling or a prolonged but reversible cell cycle arrest. G2-stalling is mediated by downregulation of the G2/M-specific phosphatase String(Stg)/Cdc25. Ectopic expression of stg is sufficient to suppress G2-stalling and reveals roles for stalling in survival, proliferation and paracrine signaling. G2-stalling protects cells from JNK-induced apoptosis, but under chronic conditions, reduces proliferative potential of JNK-signaling cells while promoting non-autonomous proliferation. Thus, transient cell cycle stalling in G2 has key roles in wound healing but becomes detrimental upon chronic JNK overstimulation, with important implications for chronic wound healing pathologies or tumorigenic transformation.
Collapse
Affiliation(s)
- Andrea Cosolo
- Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany.,Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Janhvi Jaiswal
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Gábor Csordás
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute for Genetics, University of Cologne, Cologne, Germany
| | - Isabelle Grass
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Mirka Uhlirova
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Anne-Kathrin Classen
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany.,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
68
|
Zhang B, Lam EWF, Sun Y. Senescent cells: A new Achilles' heel to exploit for cancer medicine? Aging Cell 2019; 18:e12875. [PMID: 30450821 PMCID: PMC6351840 DOI: 10.1111/acel.12875] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 01/07/2023] Open
Abstract
Cellular senescence is a typical tumor‐suppressive mechanism that restricts the proliferation of premalignant cells. However, mounting evidence suggests that senescent cells, which also persist in vivo, can promote the incidence of aging‐related disorders principally via the senescence‐associated secretory phenotype (SASP), among which cancer is particularly devastating. Despite the beneficial effects of the SASP on certain physiological events such as wound healing and tissue repair, more studies have demonstrated that senescent cells can substantially contribute to pathological conditions and accelerate disease exacerbation, particularly cancer resistance, relapse and metastasis. To limit the detrimental properties while retaining the beneficial aspects of senescent cells, research advancements that support screening, design and optimization of anti‐aging therapeutic agents are in rapid progress in the setting of prospective development of clinical strategies, which together represent a new wave of efforts to control human malignancies or mitigate degenerative complications.
Collapse
Affiliation(s)
- Boyi Zhang
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences; Shanghai China
| | - Eric W.-F. Lam
- Department of Surgery and Cancer; Imperial College London; London UK
| | - Yu Sun
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences; Shanghai China
- Department of Medicine and VAPSHCS; University of Washington; Seattle Washington
| |
Collapse
|
69
|
Varela-Nieto I, Palmero I, Magariños M. Complementary and distinct roles of autophagy, apoptosis and senescence during early inner ear development. Hear Res 2019; 376:86-96. [PMID: 30711386 DOI: 10.1016/j.heares.2019.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/13/2019] [Accepted: 01/17/2019] [Indexed: 12/25/2022]
Abstract
The development of the inner ear complex cytoarchitecture and functional geometry requires the exquisite coordination of a variety of cellular processes in a temporal manner. At early stages of inner ear development several rounds of cell proliferation in the otocyst promote the growth of the structure. The apoptotic program is initiated in exceeding cells to adjust cell type numbers. Apoptotic cells are cleared by phagocytic cells that recognize the phosphatidylserine residues exposed in the cell membrane thanks to the energy supplied by autophagy. Specific molecular programs determine hair and supporting cell fate, these populations are responsible for the functions of the adult sensory organ: detection of sound, position and acceleration. The neurons that transmit auditory and balance information to the brain are also born at the otocyst by neurogenesis facilitated by autophagy. Cellular senescence participates in tissue repair, cancer and aging, situations in which cells enter a permanent cell cycle arrest and acquire a highly secretory phenotype that modulates their microenvironment. More recently, senescence has also been proposed to take place during vertebrate development in a limited number of transitory structures and organs; among the later, the endolymphatic duct in the inner ear. Here, we review these cellular processes during the early development of the inner ear, focusing on how the most recently described cellular senescence participates and cooperates with proliferation, apoptosis and autophagy to achieve otic morphogenesis and differentiation.
Collapse
Affiliation(s)
- Isabel Varela-Nieto
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain; Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Ignacio Palmero
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain
| | - Marta Magariños
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain; Biology Department, Faculty of Sciences, Autonomous University of Madrid (UAM), Madrid, Spain.
| |
Collapse
|
70
|
Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular Senescence: Aging, Cancer, and Injury. Physiol Rev 2019; 99:1047-1078. [PMID: 30648461 DOI: 10.1152/physrev.00020.2018] [Citation(s) in RCA: 669] [Impact Index Per Article: 133.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a permanent state of cell cycle arrest that occurs in proliferating cells subjected to different stresses. Senescence is, therefore, a cellular defense mechanism that prevents the cells to acquire an unnecessary damage. The senescent state is accompanied by a failure to re-enter the cell cycle in response to mitogenic stimuli, an enhanced secretory phenotype and resistance to cell death. Senescence takes place in several tissues during different physiological and pathological processes such as tissue remodeling, injury, cancer, and aging. Although senescence is one of the causative processes of aging and it is responsible of aging-related disorders, senescent cells can also play a positive role. In embryogenesis and tissue remodeling, senescent cells are required for the proper development of the embryo and tissue repair. In cancer, senescence works as a potent barrier to prevent tumorigenesis. Therefore, the identification and characterization of key features of senescence, the induction of senescence in cancer cells, or the elimination of senescent cells by pharmacological interventions in aging tissues is gaining consideration in several fields of research. Here, we describe the known key features of senescence, the cell-autonomous, and noncell-autonomous regulators of senescence, and we attempt to discuss the functional role of this fundamental process in different contexts in light of the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Arianna Calcinotto
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Jaskaren Kohli
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Elena Zagato
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Laura Pellegrini
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Marco Demaria
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| |
Collapse
|
71
|
Czarkwiani A, Yun MH. Out with the old, in with the new: senescence in development. Curr Opin Cell Biol 2018; 55:74-80. [PMID: 30007129 DOI: 10.1016/j.ceb.2018.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 02/07/2023]
Abstract
Cellular senescence is a ubiquitous stress response that restricts the proliferative capacity of cells. During ageing, senescent cells accumulate in various tissues leading to a number of age-related pathologies and physiological decline. Previously thought to be a process restricted to adult organisms, cellular senescence has been recently demonstrated to occur during embryonic development of animals ranging from fish to mammals. Together, these studies suggest that developmentally programmed senescence is a transient but intrinsic biological process that contributes to the remodelling of developing structures by promoting immune-mediated cell clearance of particular cell populations or modifying the tissue microenvironment. These observations have important implications for the evolutionary origins of this essential, yet paradoxical mechanism.
Collapse
Affiliation(s)
- Anna Czarkwiani
- DFG-Center for Regenerative Therapies Technische Universität Dresden (CRTD), Cluster of Excellence, Dresden, Germany
| | - Maximina H Yun
- DFG-Center for Regenerative Therapies Technische Universität Dresden (CRTD), Cluster of Excellence, Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
72
|
Ferbeyre G. Aberrant signaling and senescence associated protein degradation. Exp Gerontol 2018; 107:50-54. [DOI: 10.1016/j.exger.2017.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 11/17/2022]
|
73
|
Passaro F, Testa G. Implications of Cellular Aging in Cardiac Reprogramming. Front Cardiovasc Med 2018; 5:43. [PMID: 29755986 PMCID: PMC5935013 DOI: 10.3389/fcvm.2018.00043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/20/2018] [Indexed: 01/02/2023] Open
Abstract
Aging is characterized by a chronic functional decline of organ systems which leads to tissue dysfunction over time, representing a risk factor for diseases development, including cardiovascular. The aging process occurring in the cardiovascular system involves heart and vessels at molecular and cellular level, with subsequent structural modifications and functional impairment. Several modifications involved in the aging process can be ascribed to cellular senescence, a biological response that limits the proliferation of damaged cells. In physiological conditions, the mechanism of cellular senescence is involved in regulation of tissue homeostasis, remodeling, and repair. However, in some conditions senescence-driven tissue repair may fail, leading to the tissue accumulation of senescent cells which in turn may contribute to tumor promotion, aging, and age-related diseases. Cellular reprogramming processes can reverse several age-associated cell features, such as telomere length, DNA methylation, histone modifications and cell-cycle arrest. As such, induced Pluripotent Stem Cells (iPSCs) can provide models of progeroid and physiologically aged cells to gain insight into the pathogenesis of such conditions, to drive the development of new therapies for premature aging and to further explore the possibility of rejuvenating aged cells. An emerging picture is that the tissue remodeling role of cellular senescence could also be crucial for the outcomes of in vivo reprogramming processes. Experimental evidence has demonstrated that, on one hand, senescence represents a cell-autonomous barrier for a cell candidate to reprogramming, but, on the other hand, it may positively sustain the reprogramming capability of surrounding cells to generate fully proficient tissues. This review fits into this conceptual framework by highlighting the most prominent concepts that characterize aging and reprogramming and discusses how the aging tissue might provide a favorable microenvironment for in vivo cardiac reprogramming.
Collapse
Affiliation(s)
- Fabiana Passaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Napoli, Italy
| | - Gianluca Testa
- Interdepartmental Center for Nanotechnology Research - NanoBem, University of Molise, Campobasso, Italy.,Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
74
|
Gonzalez-Meljem JM, Apps JR, Fraser HC, Martinez-Barbera JP. Paracrine roles of cellular senescence in promoting tumourigenesis. Br J Cancer 2018; 118:1283-1288. [PMID: 29670296 PMCID: PMC5959857 DOI: 10.1038/s41416-018-0066-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 03/02/2018] [Accepted: 03/02/2018] [Indexed: 12/26/2022] Open
Abstract
Senescent cells activate genetic programmes that irreversibly inhibit cellular proliferation, but also endow these cells with distinctive metabolic and signalling phenotypes. Although senescence has historically been considered a protective mechanism against tumourigenesis, the activities of senescent cells are increasingly being associated with age-related diseases, including cancer. An important feature of senescent cells is the secretion of a vast array of pro-inflammatory cytokines, chemokines, and growth factors collectively known as the senescence-associated secretory phenotype (SASP). Recent research has shown that SASP paracrine signalling can mediate several pro-tumourigenic effects, such as enhancing malignant phenotypes and promoting tumour initiation. In this review, we summarise the paracrine activities of senescent cells and their role in tumourigenesis through direct effects on growth and proliferation of tumour cells, tumour angiogenesis, invasion and metastasis, cellular reprogramming and emergence of tumour-initiating cells, and tumour interactions with the local immune environment. The evidence described here suggests cellular senescence acts as a double-edged sword in cancer pathogenesis, which demands further attention in order to support the use of senolytic or SASP-modulating compounds for cancer treatment.
Collapse
Affiliation(s)
- Jose Mario Gonzalez-Meljem
- Developmental Biology and Cancer Research Programme, UCL Great Ormond Street Institute of Child Health, Guilford Street, London, WC1N 1EH, UK.,Basic Research Department, Instituto Nacional de Geriatría, Anillo Periférico 2767, Magdalena Contreras, 10200, Mexico City, Mexico
| | - John Richard Apps
- Developmental Biology and Cancer Research Programme, UCL Great Ormond Street Institute of Child Health, Guilford Street, London, WC1N 1EH, UK
| | - Helen Christina Fraser
- Developmental Biology and Cancer Research Programme, UCL Great Ormond Street Institute of Child Health, Guilford Street, London, WC1N 1EH, UK
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer Research Programme, UCL Great Ormond Street Institute of Child Health, Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
75
|
Mosteiro L, Pantoja C, de Martino A, Serrano M. Senescence promotes in vivo reprogramming through p16 INK4a and IL-6. Aging Cell 2018; 17:e12711. [PMID: 29280266 PMCID: PMC5847859 DOI: 10.1111/acel.12711] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2017] [Indexed: 12/19/2022] Open
Abstract
Cellular senescence is a damage response aimed to orchestrate tissue repair. We have recently reported that cellular senescence, through the paracrine release of interleukin-6 (IL6) and other soluble factors, strongly favors cellular reprogramming by Oct4, Sox2, Klf4, and c-Myc (OSKM) in nonsenescent cells. Indeed, activation of OSKM in mouse tissues triggers senescence in some cells and reprogramming in other cells, both processes occurring concomitantly and in close proximity. In this system, Ink4a/Arf-null tissues cannot undergo senescence, fail to produce IL6, and cannot reprogram efficiently; whereas p53-null tissues undergo extensive damage and senescence, produce high levels of IL6, and reprogram efficiently. Here, we have further explored the genetic determinants of in vivo reprogramming. We report that Ink4a, but not Arf, is necessary for OSKM-induced senescence and, thereby, for the paracrine stimulation of reprogramming. However, in the absence of p53, IL6 production and reprogramming become independent of Ink4a, as revealed by the analysis of Ink4a/Arf/p53 deficient mice. In the case of the cell cycle inhibitor p21, its protein levels are highly elevated upon OSKM activation in a p53-independent manner, and we show that p21-null tissues present increased levels of senescence, IL6, and reprogramming. We also report that Il6-mutant tissues are impaired in undergoing reprogramming, thus reinforcing the critical role of IL6 in reprogramming. Finally, young female mice present lower efficiency of in vivo reprogramming compared to male mice, and this gender difference disappears with aging, both observations being consistent with the known anti-inflammatory effect of estrogens. The current findings regarding the interplay between senescence and reprogramming may conceivably apply to other contexts of tissue damage.
Collapse
Affiliation(s)
- Lluc Mosteiro
- Tumor Suppression GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Cristina Pantoja
- Tumor Suppression GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
| | - Alba de Martino
- Tumor Suppression GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Manuel Serrano
- Tumor Suppression GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
| |
Collapse
|
76
|
Villiard É, Denis JF, Hashemi FS, Igelmann S, Ferbeyre G, Roy S. Senescence gives insights into the morphogenetic evolution of anamniotes. Biol Open 2017; 6:891-896. [PMID: 28500032 PMCID: PMC5483031 DOI: 10.1242/bio.025809] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Senescence represents a mechanism to avoid undesired cell proliferation that plays a role in tumor suppression, wound healing and embryonic development. In order to gain insight on the evolution of senescence, we looked at its presence in developing axolotls (urodele amphibians) and in zebrafish (teleost fish), which are both anamniotes. Our data indicate that cellular senescence is present in various developing structures in axolotls (pronephros, olfactory epithelium of nerve fascicles, lateral organs, gums) and in zebrafish (epithelium of the yolk sac and in the lower part of the gut). Senescence was particularly associated with transient structures (pronephros in axolotls and yolk sac in zebrafish) suggesting that it may play a role in the elimination of these tissues. Our data supports the notion that cellular senescence evolved early in vertebrate evolution to influence embryonic development. Summary: We report the presence of senescent cells in several transient structures in developing amphibian and teleost fish, suggesting novel mechanisms of morphogenesis that appeared early in vertebrate evolution.
Collapse
Affiliation(s)
- Éric Villiard
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Jean-François Denis
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Faranak Sadat Hashemi
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Sebastian Igelmann
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Gerardo Ferbeyre
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Stéphane Roy
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec H3T 1J4, Canada .,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|