51
|
Casser E, Israel S, Schlatt S, Nordhoff V, Boiani M. Retrospective analysis: reproducibility of interblastomere differences of mRNA expression in 2-cell stage mouse embryos is remarkably poor due to combinatorial mechanisms of blastomere diversification. Mol Hum Reprod 2019; 24:388-400. [PMID: 29746690 DOI: 10.1093/molehr/gay021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/05/2018] [Indexed: 01/13/2023] Open
Abstract
STUDY QUESTION What is the prevalence, reproducibility and biological significance of transcriptomic differences between sister blastomeres of the mouse 2-cell embryo? SUMMARY ANSWER Sister 2-cell stage blastomeres are distinguishable from each other by mRNA analysis, attesting to the fact that differentiation starts mostly early in the mouse embryo; however, the interblastomere differences are poorly reproducible and invoke the combinatorial effects of known and new mechanisms of blastomere diversification. WHAT IS KNOWN ALREADY Transcriptomic datasets for single blastomeres in mice have been available for years but have never been systematically analysed together, although such an analysis may shed light onto some unclarified topics of early mammalian development. Two unknowns that remain are at which stage embryonic blastomeres start to diversify from each other and what is the molecular origin of that difference. At the earliest postzygotic stage, the 2-cell stage, opinions differ regarding the answer to these questions; one group claims that the first zygotic division yields two equal blastomeres capable of forming a full organism (totipotency) and another group claims evidence for interblastomere differences reminiscent of the prepatterning found in embryos of lower taxa. Regarding the molecular origin of interblastomere differences, there are four prevalent models which invoke (1) oocyte anisotropy, (2) sperm entry point, (3) partition errors of the transcript pool and (4) asynchronous embryonic genome activation in the two blastomeres. STUDY DESIGN, SIZE, DURATION Seven transcriptomic studies published between 2011 and 2017 were eligible for retrospective analysis, since both blastomeres of the mouse 2-cell embryo had been analysed individually regarding the original pair associations and since the datasets were made available in public repositories. Five of these studies, encompassing a total of 43 pairs of sister blastomeres, were selected for further analyses based on high interblastomere correlations of mRNA levels. A double cut-off was used to select mRNAs that had robust interblastomere differences both within and between embryos (hits). The hits of each study were compared and contrasted with the hits of the other studies using Venn diagrams. The hits shared by at least four of five studies were analysed further by bioinformatics. PARTICIPANTS/MATERIALS, SETTING, METHODS PubMed was systematically examined for mRNA expression profiles of single 2-cell stage blastomeres in addition to publicly available microarray datasets (GEO, ArrayExpress). Based on the original normalizations, data from seven studies were screened for pairwise sample correlation at the gene level (Spearman), and the top five datasets with the highest correlation were subjected to hierarchical cluster analysis. Interblastomere differences of gene expression were expressed as a ratio of the higher to the lower mRNA level for each pair of blastomeres. A double cut-off was used to make the call of interblastomere difference, accepting genes with mRNA ratios above 2 when observed in at least 50% of the pairs, and discarding the other genes. The proportion of interblastomere differences common to at least four of the five datasets was calculated. Finally, the corresponding gene, pathway and enrichment analyses were performed utilizing PANTHER and GORILLA platforms. MAIN RESULTS AND THE ROLE OF CHANCE An average of 17% of genes within the datasets are differently expressed between sister blastomeres, a proportion which falls to 1% when considering the differences that are common to at least four of the five studies. Housekeeping mRNAs were not included in the 17% and 1% gene lists, suggesting that the interblastomere differences do not occur simply by chance. The 1% of shared interblastomere differences comprise 100 genes, of which 35 are consistent with at least one of the four prevalent models of sister blastomere diversification. Bioinformatics analysis of the remaining 65 genes that are not consistent with the four models suggests that at least one more mechanism is at play, potentially related to the endomembrane system. Although there are many dimensions to the issue of reproducibility (biological, experimental, analytical), we consider that the sister blastomeres are poised to escape high interblastomere correlations of mRNA levels, because at least five sources of diversity superimpose on each other, accounting for at least 25 = 32 different states. As a result, interblastomere mRNA differences of a given 2-cell embryo are necessarily difficult to reproduce in another 2-cell embryo. LARGE SCALE DATA Data were as provided by the original studies (GSE21688, GSE22182, GSE27396, GSE45719, GSE57249, E-MTAB-3321, GSE94050). LIMITATIONS, REASONS FOR CAUTION The original studies present similarities (e.g. fertilization in vivo after ovarian stimulation) as well as differences (e.g. mouse strains, method and timing of blastomere separation). We identified robust mRNA differences between the sister blastomeres, but these differences are underestimated because our double cut-off method works with thresholds and affords more protection against false positives than false negatives. Regarding the false negatives, transcriptome analysis may have captured only part of the interblastomere differences due to: (1) the 2-fold cut-off not being sensitive enough to detect the remaining part of the interblastomere differences, (2) the detection limit of the transcriptomic methods not being sufficient, or (3) interblastomere differences being oblivious to transcriptomic identification because transcriptional changes are oscillatory or because differences are mediated non-transcriptionally or post-transcriptionally. Regarding the false positives, it seems unlikely that a difference was found just by chance for the same group of transcripts due to the same technical error, given that different laboratories produced the data. WIDER IMPLICATIONS OF THE FINDINGS It is clear that the sister blastomeres are distinguishable from each other by mRNA analysis even at the 2-cell stage; however, efforts to identify large stable patterns may be in vain. This elicits thoughts about the wisdom of adding new transcriptomic datasets to the ones that already exist; if all transcriptomic datasets produced so far show a reproducibility of 1%, then any future study would probably face the same issue again. Possibly, a solid identification of the 'large stable pattern that should be there but was not found' requires an even larger dataset than the sum of the seven datasets considered here. Conversely, small stable patterns may be easier to identify, but their biological relevance is less obvious. Alternatively, interblastomere differences may not be mediated by nucleic acids but by other cellular components. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Deutsche Forschungsgemeinschaft (grant DFG BO 2540-4-3 to M.B. and grant NO 413/3-3 to V.N.). The authors declare that they have no competing financial interests.
Collapse
Affiliation(s)
- E Casser
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, Muenster, Germany
| | - S Israel
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, Muenster, Germany
| | - S Schlatt
- University Hospital Muenster, Centre of Reproductive Medicine and Andrology (CeRA), Albert Schweitzer-Campus 1, Building D11, Muenster, Germany
| | - V Nordhoff
- University Hospital Muenster, Centre of Reproductive Medicine and Andrology (CeRA), Albert Schweitzer-Campus 1, Building D11, Muenster, Germany
| | - M Boiani
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, Muenster, Germany
| |
Collapse
|
52
|
Vastenhouw NL, Cao WX, Lipshitz HD. The maternal-to-zygotic transition revisited. Development 2019; 146:146/11/dev161471. [PMID: 31189646 DOI: 10.1242/dev.161471] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of animal embryos is initially directed by maternal gene products. Then, during the maternal-to-zygotic transition (MZT), developmental control is handed to the zygotic genome. Extensive research in both vertebrate and invertebrate model organisms has revealed that the MZT can be subdivided into two phases, during which very different modes of gene regulation are implemented: initially, regulation is exclusively post-transcriptional and post-translational, following which gradual activation of the zygotic genome leads to predominance of transcriptional regulation. These changes in the gene expression program of embryos are precisely controlled and highly interconnected. Here, we review current understanding of the mechanisms that underlie handover of developmental control during the MZT.
Collapse
Affiliation(s)
- Nadine L Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Wen Xi Cao
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
53
|
Liu YH, Liu XM, Wang PC, Yu XX, Miao JK, Liu S, Wang YK, Du ZQ, Yang CX. Heat shock protein 90α couples with the MAPK-signaling pathway to determine meiotic maturation of porcine oocytes. J Anim Sci 2018; 96:3358-3369. [PMID: 29800308 DOI: 10.1093/jas/sky213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022] Open
Abstract
Heat shock protein 90 (Hsp90) functions as a molecular chaperone in its interaction with clients to influence multiple cellular and physiological processes. However, our current understanding on Hsp90's relationship with mammalian oocyte maturation is still very limited. Here, we aimed to investigate Hsp90's effect on pig oocyte meiotic maturation. Endogenous Hsp90α was constantly expressed at both mRNA and protein levels in porcine maturing oocytes. Addition of 2 µM 17-allylamino-17-demethoxygeldanamycin (17-AAG), the Hsp90 inhibitor, to in vitro mature cumulus-oocyte complexes (COC) significantly decreased Hsp90α protein level (P < 0.05), delayed germinal vesicle breakdown (GVBD) (P < 0.05), and impeded the first polar body (PB1) extrusion (P < 0.01) of porcine oocytes. 2 µM 17-AAG treatment during in vitro maturation also decreased the subsequent development competence as indicated by the lower cleavage (P < 0.001) and higher fragmentation (P < 0.001) rates of parthenotes, whereas no effects on the percentage and average cell number of blastocysts were found. Immunodepletion of Hsp90α by antibody microinjection into porcine oocytes at germinal vesicle and metaphase II stages induced similar defects of meiotic maturation and parthenote development, to that resulted from 2 µM inhibitor 17-AAG. For oocytes treated by 2 µM 17-AAG, the cytoplasm and membrane actin levels were weakened (P < 0.01), and the spindle assembly was disturbed (P < 0.05), due to decreased p-ERK1/2 level (P < 0.05). However, the mitochondrial function and early apoptosis were not affected, as demonstrated by rhodamine 123 staining and Annexin V assays. Our findings indicate that Hsp90α can couple with mitogen-activated protein kinase to regulate cytoskeletal structure and orchestrate meiotic maturation of porcine oocytes.
Collapse
Affiliation(s)
- Yun-Hua Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiao-Man Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Pei-Chao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiao-Xia Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia-Kun Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuai Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yan-Kui Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhi-Qiang Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Cai-Xia Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
54
|
Sha QQ, Yu JL, Guo JX, Dai XX, Jiang JC, Zhang YL, Yu C, Ji SY, Jiang Y, Zhang SY, Shen L, Ou XH, Fan HY. CNOT6L couples the selective degradation of maternal transcripts to meiotic cell cycle progression in mouse oocyte. EMBO J 2018; 37:embj.201899333. [PMID: 30478191 DOI: 10.15252/embj.201899333] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 09/09/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
Meiotic resumption-coupled degradation of maternal transcripts occurs during oocyte maturation in the absence of mRNA transcription. The CCR4-NOT complex has been identified as the main eukaryotic mRNA deadenylase. In vivo functional and mechanistic information regarding its multiple subunits remains insufficient. Cnot6l, one of four genes encoding CCR4-NOT catalytic subunits, is preferentially expressed in mouse oocytes. Genetic deletion of Cnot6l impaired deadenylation and degradation of a subset of maternal mRNAs during oocyte maturation. Overtranslation of these undegraded mRNAs caused microtubule-chromosome organization defects, which led to activation of spindle assembly checkpoint and meiotic cell cycle arrest at prometaphase. Consequently, Cnot6l -/- female mice were severely subfertile. The function of CNOT6L in maturing oocytes is mediated by RNA-binding protein ZFP36L2, not maternal-to-zygotic transition licensing factor BTG4, which interacts with catalytic subunits CNOT7 and CNOT8 of CCR4-NOT Thus, recruitment of different adaptors by different catalytic subunits ensures stage-specific degradation of maternal mRNAs by CCR4-NOT This study provides the first direct genetic evidence that CCR4-NOT-dependent and particularly CNOT6L-dependent decay of selective maternal mRNAs is a prerequisite for meiotic maturation of oocytes.
Collapse
Affiliation(s)
- Qian-Qian Sha
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jia-Li Yu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jing-Xin Guo
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xing-Xing Dai
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jun-Chao Jiang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yin-Li Zhang
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Yu
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shu-Yan Ji
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yu Jiang
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Song-Ying Zhang
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Shen
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiang-Hong Ou
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China .,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
55
|
The effects of kinase modulation on in vitro maturation according to different cumulus-oocyte complex morphologies. PLoS One 2018; 13:e0205495. [PMID: 30308003 PMCID: PMC6181369 DOI: 10.1371/journal.pone.0205495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/26/2018] [Indexed: 01/21/2023] Open
Abstract
Successful production of transgenic pigs requires oocytes with a high developmental competence. However, cumulus-oocyte complexes (COCs) obtained from antral follicles have a heterogeneous morphology. COCs can be classified into one of two classes: class I, with five or more layers of cumulus cells; and class II, with one or two layers of cumulus cells. Activator [e.g., epidermal growth factor (EGF)] or inhibitors (e.g., wortmannin and U0126) are added to modulate kinases in oocytes during meiosis. In the present study, we investigated the effects of kinase modulation on nuclear and cytoplasmic maturation in COCs. Class I COCs showed a significantly higher developmental competence than class II COCs. Moreover, the expression of two kinases, AKT and ERK, differed between class I and class II COCs during in vitro maturation (IVM). Initially, inhibition of the PI3K/AKT signaling pathway in class I COCs during early IVM (0-22 h) decreased developmental parameters, such as blastocyst formation rate, blastomere number, and cell survival. Conversely, EGF-mediated AKT activation in class II COCs enhanced developmental capacity. Regarding the MAPK signaling pathway, inhibition of ERK by U0126 in class II COCs during early IVM impaired developmental competence. However, transient treatment with U0126 in class II COCs increased oocyte maturation and AKT activity, improving embryonic development. Additionally, western blotting showed that inhibition of ERK activity negatively regulated the AKT signaling pathway, indicative of a relationship between AKT and MAPK signaling in the process underlying meiotic progression in pigs. These findings may help increase the developmental competence and utilization rate of pig COCs with regard to the production of transgenic pigs and improve our understanding of kinase-associated meiosis events.
Collapse
|
56
|
Sun J, Yan L, Shen W, Meng A. Maternal Ybx1 safeguards zebrafish oocyte maturation and maternal-to-zygotic transition by repressing global translation. Development 2018; 145:dev.166587. [PMID: 30135188 DOI: 10.1242/dev.166587] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/23/2018] [Indexed: 12/22/2022]
Abstract
Maternal mRNAs and proteins dictate early embryonic development before zygotic genome activation. In the absence of transcription, elaborate control of maternal mRNA translation is of particular importance for oocyte maturation and early embryogenesis. By analyzing zebrafish ybx1 mutants with a null allele, we demonstrate an essential role of maternal ybx1 in repressing global translation in oocytes and embryos. Loss of maternal Ybx1 leads to impaired oocyte maturation and egg activation. Maternal ybx1 (Mybx1) mutant embryos fail to undergo normal cleavage and the maternal-to-zygotic transition (MZT). Morpholino knockdown of ybx1 also results in MZT loss and epiboly failure, suggesting the postfertilization requirement of Ybx1. In addition, elevated global translation level and the unfolded protein response were found in Ybx1-depleted embryos. Supplementing translational repression by eIF4E inhibition markedly rescues the Mybx1 phenotype. Mechanistically, Ybx1 in embryos may associate with processing body components and repress translation when tethered to target mRNAs. Collectively, our results identify maternal Ybx1 as a global translational repressor required for oocyte maturation and early embryogenesis.
Collapse
Affiliation(s)
- Jiawei Sun
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lu Yan
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weimin Shen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
57
|
Wang YK, Yu XX, Liu YH, Li X, Liu XM, Wang PC, Liu S, Miao JK, Du ZQ, Yang CX. Reduced nucleic acid methylation impairs meiotic maturation and developmental potency of pig oocytes. Theriogenology 2018; 121:160-167. [PMID: 30165304 DOI: 10.1016/j.theriogenology.2018.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/26/2018] [Accepted: 08/07/2018] [Indexed: 12/26/2022]
Abstract
Oocyte meiosis is a complex process coordinated by multiple endocrinal and molecular circuits. Recently, N6-methyladenosine (m6A) epigenetic modification on RNA is revealed to be important for meiotic maturation. However, the molecular mechanism of how m6A modification exerts its effect on oocyte maturation is largely unknown. Here, we showed that endogenous m6A writers (Mettl3 and Wtap) and eraser (Fto) elevated their transcript levels during meiotic maturation of pig oocytes. From germinal vesicle (GV) to metaphase II (MII) stages, global m6A level significantly increased, and existed mostly in ooplasm. Methyl donor (betaine, 16 mM) treatment of porcine cumulus-oocyte complexes (COCs) during in vitro maturation (IVM) significantly boosted nucleic acid m6A level within oocytes, but unchanged meiotic process and oocyte subsequent development. By contrast, methylation inhibitor (cycloleucine, 20 mM) reduced nucleic acid m6A level, and significantly decreased the germinal vesicle breakdown (GVBD) rate, the extrusion rate of the first polar body, and the cleavage and blastocyst rates of parthenotes. In addition, in cycloleucine-treated oocytes Wtap increased but Lin28 decreased their abundances significantly, along with the higher incidence of spindle defects and chromosome misalignment. Furthermore, pT161-CDK1 protein level in pig oocytes was confirmed to be decreased after cycloleucine treatment for 24 h. Taken together, chemical induced reduction of nucleic acid m6A methylation during pig oocyte meiosis could impair meiotic maturation and subsequent development potency, possibly through down-regulating pluripotency marker Lin28 mRNA abundance and disturbing MPF-regulated chromosome/spindle organization.
Collapse
Affiliation(s)
- Yan-Kui Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Xiao-Xia Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yun-Hua Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Xuan Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Xiao-Man Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Pei-Chao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Shuai Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Jia-Kun Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Zhi-Qiang Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Cai-Xia Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
58
|
Liu C, Ma Y, Shang Y, Huo R, Li W. Post-translational regulation of the maternal-to-zygotic transition. Cell Mol Life Sci 2018; 75:1707-1722. [PMID: 29427077 PMCID: PMC11105290 DOI: 10.1007/s00018-018-2750-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/24/2017] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
Abstract
The maternal-to-zygotic transition (MZT) is essential for the developmental control handed from maternal products to newly synthesized zygotic genome in the earliest stages of embryogenesis, including maternal component (mRNAs and proteins) degradation and zygotic genome activation (ZGA). Various protein post-translational modifications have been identified during the MZT, such as phosphorylation, methylation and ubiquitination. Precise post-translational regulation mechanisms are essential for the timely transition of early embryonic development. In this review, we summarize recent progress regarding the molecular mechanisms underlying post-translational regulation of maternal component degradation and ZGA during the MZT and discuss some important issues in the field.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanjie Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China
- Department of Animal Science and Technology, Northeast Agricultural University, Haerbin, 150030, People's Republic of China
| | - Yongliang Shang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, People's Republic of China.
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
59
|
CNOT6 regulates a novel pattern of mRNA deadenylation during oocyte meiotic maturation. Sci Rep 2018; 8:6812. [PMID: 29717177 PMCID: PMC5931610 DOI: 10.1038/s41598-018-25187-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 04/13/2018] [Indexed: 01/16/2023] Open
Abstract
In many cell types, the length of the poly(A) tail of an mRNA is closely linked to its fate - a long tail is associated with active translation, a short tail with silencing and degradation. During mammalian oocyte development, two contrasting patterns of polyadenylation have been identified. Some mRNAs carry a long poly(A) tail during the growth stage and are actively translated, then become deadenylated and down-regulated during the subsequent stage, termed meiotic maturation. Other mRNAs carry a short tail poly(A) tail and are translationally repressed during growth, and their poly(A) tail lengthens and they become translationally activated during maturation. As well, a program of elimination of this ‘maternal’ mRNA is initiated during oocyte maturation. Here we describe a third pattern of polyadenylation: mRNAs are deadenylated in growing oocytes, become polyadenylated during early maturation and then deadenylated during late maturation. We show that the deadenylase, CNOT6, is present in cortical foci of oocytes and regulates deadenylation of these mRNAs, and that PUF-binding elements (PBEs) regulate deadenylation in mature oocytes. Unexpectedly, maintaining a long poly(A) tail neither enhances translation nor inhibits degradation of these mRNAs. Our findings implicate multiple machineries, more complex than previously thought, in regulating mRNA activity in oocytes.
Collapse
|
60
|
Molecular Mechanisms of Prophase I Meiotic Arrest Maintenance and Meiotic Resumption in Mammalian Oocytes. Reprod Sci 2018; 26:1519-1537. [DOI: 10.1177/1933719118765974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mechanisms of meiotic prophase I arrest maintenance (germinal vesicle [GV] stage) and meiotic resumption (germinal vesicle breakdown [GVBD] stage) in mammalian oocytes seem to be very complicated. These processes are regulated via multiple molecular cascades at transcriptional, translational, and posttranslational levels, and many of them are interrelated. There are many molecular cascades of meiosis maintaining and meiotic resumption in oocyte which are orchestrated by multiple molecules produced by pituitary gland and follicular cells. Furthermore, many of these molecular cascades are duplicated, thus ensuring the stability of the entire system. Understanding mechanisms of oocyte maturation is essential to assess the oocyte status, develop effective protocols of oocyte in vitro maturation, and design novel contraceptive drugs. Mechanisms of meiotic arrest maintenance at prophase I and meiotic resumption in mammalian oocytes are covered in the present article.
Collapse
|
61
|
Severance AL, Latham KE. Meeting the meiotic challenge: Specializations in mammalian oocyte spindle formation. Mol Reprod Dev 2018; 85:178-187. [PMID: 29411912 DOI: 10.1002/mrd.22967] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 01/02/2023]
Abstract
Oocytes uniquely accumulate cytoplasmic constituents to support early embryogenesis. This unique specialization is accompanied by acquisition of a large size and by execution of asymmetric meiotic divisions that preserve precious ooplasm through the expulsion of minimal size polar bodies. While often taken for granted, these basic features of oogenesis necessitate unique specializations of the meiotic apparatus. These include a chromatin-sourced RanGTP gradient that restricts spindle size by defining a spatial domain where meiotic spindles form, acentriolar centrosomes that rely on microtubule organizing centers to form spindle poles, and an actin-based mechanism for asymmetric spindle positioning. Additionally, localized protein synthesis to support spindle formation is achieved in the spindle forming region, whilst protein synthesis is reduced elsewhere in the ooplasm. This is achieved through enrichment of spindle-related mRNAs in the spindle forming region combined with local PLK1-mediated phosphorylation and inactivation of the translational repressor EIF4EBP1. This allows PLK1 to function as an important regulatory nexus through which endogenous and exogenous signals can impact spindle formation and function, and highlights the important role that PLK1 may have in maintaining oocyte quality and fertility.
Collapse
Affiliation(s)
- Ashley L Severance
- Genetics Graduate Program, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, East Lansing, Michigan
| | - Keith E Latham
- Reproductive and Developmental Sciences Program, East Lansing, Michigan.,Department of Animal Science, Michigan State University, East Lansing, Michigan.,Department of Obstetrics, Gynecology and Reproductive Biology, East Lansing, Michigan
| |
Collapse
|
62
|
Kalous J, Tetkova A, Kubelka M, Susor A. Importance of ERK1/2 in Regulation of Protein Translation during Oocyte Meiosis. Int J Mol Sci 2018; 19:ijms19030698. [PMID: 29494492 PMCID: PMC5877559 DOI: 10.3390/ijms19030698] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 02/07/2023] Open
Abstract
Although the involvement of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway in the regulation of cytostatic factor (CSF) activity; as well as in microtubules organization during meiotic maturation of oocytes; has already been described in detail; rather less attention has been paid to the role of ERK1/2 in the regulation of mRNA translation. However; important data on the role of ERK1/2 in translation during oocyte meiosis have been documented. This review focuses on recent findings regarding the regulation of translation and the role of ERK1/2 in this process in the meiotic cycle of mammalian oocytes. The specific role of ERK1/2 in the regulation of mammalian target of rapamycin (mTOR); eukaryotic translation initiation factor 4E (eIF4E) and cytoplasmic polyadenylation element binding protein 1 (CPEB1) activity is addressed along with additional focus on the other key players involved in protein translation.
Collapse
Affiliation(s)
- Jaroslav Kalous
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 27721 Libechov, Czech Republic.
| | - Anna Tetkova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 27721 Libechov, Czech Republic.
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Albertov 6, 12843 Prague 2, Czech Republic.
| | - Michal Kubelka
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 27721 Libechov, Czech Republic.
| | - Andrej Susor
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 27721 Libechov, Czech Republic.
| |
Collapse
|
63
|
MAPK signaling couples SCF-mediated degradation of translational regulators to oocyte meiotic progression. Proc Natl Acad Sci U S A 2018; 115:E2772-E2781. [PMID: 29496961 DOI: 10.1073/pnas.1715439115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RNA-binding proteins (RBPs) are important regulators of gene expression programs, especially during gametogenesis. How the abundance of particular RBPs is restricted to defined stages of meiosis remains largely elusive. Here, we report a molecular pathway that subjects two nonrelated but broadly evolutionarily conserved translational regulators (CPB-3/CPEB and GLD-1/STAR) to proteosomal degradation in Caenorhabditis elegans germ cells at the transition from pachytene to diplotene of meiotic prophase. Both RBPs are recognized by the same ubiquitin ligase complex, containing the molecular scaffold Cullin-1 and the tumor suppressor SEL-10/FBXW7 as its substrate recognition subunit. Destabilization of either RBP through this Skp, Cullin, F-box-containing complex (SCF) ubiquitin ligase appears to loosen its negative control over established target mRNAs, and presumably depends on a prior phosphorylation of CPB-3 and GLD-1 by MAPK (MPK-1), whose activity increases in mid- to late pachytene to promote meiotic progression and oocyte differentiation. Thus, we propose that the orchestrated degradation of RBPs via MAPK-signaling cascades during germ cell development may act to synchronize meiotic with sexual differentiation gene expression changes.
Collapse
|
64
|
Wang DH, Zhou HX, Liu SJ, Zhou CJ, Kong XW, Han Z, Liang CG. Glial cell line-derived neurotrophic factor supplementation promotes bovine in vitro oocyte maturation and early embryo development. Theriogenology 2018; 113:92-101. [PMID: 29477014 DOI: 10.1016/j.theriogenology.2018.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 12/13/2022]
Abstract
Paracrine factors such as glial cell line-derived neurotrophic factor (GDNF), which was originally derived from the supernatants of a rat glioma cell line, play pivotal roles in oocyte maturation and early embryo development in mammals, such as mice, rats, pigs, sheep, and even humans. However, whether GDNF facilitates in vitro oocyte maturation or early embryo development in bovines is not yet known. We show for the first time that GDNF and its receptor, GDNF family receptor alpha-1 (GFRA1), are presented in ovarian follicles at different stages as well as during oocyte maturation and early embryo development. Immunostaining results revealed the subcellular localizations of GDNF and GFRA1 in oocytes throughout follicle development, first in germinal vesicles and during blastocyst embryo stages. The ability of exogenously applied GDNF to promote oocyte maturation and early embryo development was evaluated in culture, where we found that an optimal concentration of 50 ng/mL promotes the maturation of cumulus-oocyte complexes and the nuclei of denuded oocytes as well as the development of embryos after IVF. To further investigate the potential mechanism by which GDNF promotes oocyte maturation, bovine oocytes were treated with morpholinos targeting Gfra1. The suppression of GFRA1 presence blocked endogenous and exogenous GDNF functions, indicating that the effects of GDNF that are essential and beneficial for bovine oocyte maturation and early embryo development occur through this receptor. Furthermore, we show that supplementation with GDNF improves the efficiency of bovine IVF embryo production.
Collapse
Affiliation(s)
- Dong-Hui Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Hong-Xia Zhou
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Shu-Jun Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Cheng-Jie Zhou
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Xiang-Wei Kong
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Zhe Han
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China
| | - Cheng-Guang Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, People's Republic of China.
| |
Collapse
|
65
|
Liu XM, Wang YK, Liu YH, Yu XX, Wang PC, Li X, Du ZQ, Yang CX. Single-cell transcriptome sequencing reveals that cell division cycle 5-like protein is essential for porcine oocyte maturation. J Biol Chem 2017; 293:1767-1780. [PMID: 29222335 DOI: 10.1074/jbc.m117.809608] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/03/2017] [Indexed: 02/02/2023] Open
Abstract
The brilliant cresyl blue (BCB) test is used in both basic biological research and assisted reproduction to identify oocytes likely to be developmentally competent. However, the underlying molecular mechanism targeted by the BCB test is still unclear. To explore this question, we first confirmed that BCB-positive porcine oocytes had higher rates of meiotic maturation, better rates of cleavage and development into blastocysts, and lower death rates. Subsequent single-cell transcriptome sequencing on porcine germinal vesicle (GV)-stage oocytes identified 155 genes that were significantly differentially expressed between BCB-negative and BCB-positive oocytes. These included genes such as cdc5l, ldha, spata22, rgs2, paip1, wee1b, and hsp27, which are enriched in functionally important signaling pathways including cell cycle regulation, oocyte meiosis, spliceosome formation, and nucleotide excision repair. In BCB-positive GV oocytes that additionally had a lower frequency of DNA double-strand breaks, the CDC5L protein was significantly more abundant. cdc5l/CDC5L inhibition by short interference (si)RNA or antibody microinjection significantly impaired porcine oocyte meiotic maturation and subsequent parthenote development. Taken together, our single-oocyte sequencing data point to a potential new role for CDC5L in porcine oocyte meiosis and early embryo development, and supports further analysis of this protein in the context of the BCB test.
Collapse
Affiliation(s)
- Xiao-Man Liu
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yan-Kui Wang
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yun-Hua Liu
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiao-Xia Yu
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Pei-Chao Wang
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xuan Li
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zhi-Qiang Du
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Cai-Xia Yang
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
66
|
Xu YW, Cao LR, Wang M, Xu Y, Wu X, Liu J, Tong C, Fan HY. Maternal DCAF2 is crucial for maintenance of genome stability during the first cell cycle in mice. J Cell Sci 2017; 130:3297-3307. [DOI: 10.1242/jcs.206664] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/15/2017] [Indexed: 12/31/2022] Open
Abstract
Precise regulation of DNA replication and genome integrity is crucial for gametogenesis and early embryogenesis. Cullin ring-finger ubiquitin ligase 4 (CRL4) has multiple functions in the maintenance of germ cell survival, oocyte meiotic maturation, and maternal-zygotic transition in mammals. DDB1-cullin 4-associated factor-2 (DCAF2, also known as DTL or CDT2) is an evolutionarily conserved substrate receptor of CRL4. To determine whether DCAF2 is a key CRL4 substrate adaptor in mammalian oocytes, we generated a novel mouse strain that carries a Dcaf2 allele flanked by LoxP sequences, and specifically deleted Dcaf2 in oocytes. Dcaf2 knockout in mouse oocytes leads to female infertility. Although Dcaf2 null oocytes were able to develop and mature normally, the embryos derived from them were arrested at 1- to 2-cell stages owing to prolonged DNA replication and accumulation of massive DNA damage. These results indicate that DCAF2 is a previously unrecognized maternal factor that safeguards zygotic genome stability. Maternal DCAF2 protein is crucial for prevention of DNA rereplication in the first and unique mitotic cell cycle of the zygote.
Collapse
Affiliation(s)
- Yi-Wen Xu
- Life Sciences Institute, Zhejiang University, Hangzhou 301158, China
| | - Lan-Rui Cao
- Life Sciences Institute, Zhejiang University, Hangzhou 301158, China
| | - Min Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ying Xu
- Cambridge-Suda Genomic Resource, Soochow University, Suzhou 215123, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Junping Liu
- Institute of Aging Research, Hangzhou Normal University, Hangzhou 311121, China
| | - Chao Tong
- Life Sciences Institute, Zhejiang University, Hangzhou 301158, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou 301158, China
- Institute of Aging Research, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
67
|
Abstract
Fully grown oocytes arrest meiosis at prophase I and deposit maternal RNAs. A subset of maternal transcripts is stored in a dormant state in the oocyte, and the timely driven translation of specific mRNAs guides meiotic progression, the oocyte-embryo transition, and early embryo development. In the absence of transcription, the regulation of gene expression in oocytes is controlled almost exclusively at the level of transcriptome and proteome stabilization and at the level of protein synthesis.This chapter focuses on the recent findings on RNA distribution related to the temporal and spatial translational control of the meiotic cycle progression in mammalian oocytes. We discuss the most relevant mechanisms involved in the organization of the oocyte's maternal transcriptome storage and localization, and the regulation of translation, in correlation with the regulation of oocyte meiotic progression.
Collapse
|