51
|
Nuclear bodies: new insights into assembly/dynamics and disease relevance. Curr Opin Cell Biol 2014; 28:76-83. [DOI: 10.1016/j.ceb.2014.03.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 01/15/2023]
|
52
|
Maicher A, Lockhart A, Luke B. Breaking new ground: digging into TERRA function. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:387-94. [PMID: 24698720 DOI: 10.1016/j.bbagrm.2014.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 11/30/2022]
Abstract
Despite the fact that telomeres carry chromatin marks typically associated with silent heterochromatin, they are actively transcribed into TElomeric Repeat containing RNA (TERRA). TERRA transcription is conserved from yeast to man, initiates in the subtelomeric region and proceeds through the telomeric tract of presumably each individual telomere. TERRA levels are increased in yeast survivors and in cancer cells employing ALT as a telomere maintenance mechanism (TMM). Thus, TERRA may be a promising biomarker and potential target in anti-cancer therapy. Interestingly, several recent publications implicate TERRA in regulatory processes including telomere end protection and the establishment of the heterochromatic state at telomeres. A picture is emerging whereby TERRA acts as a regulator of telomere length and hence the associated onset of replicative senescence in a cell. In this review we will summarize the latest results regarding TERRA transcription, localization and related function. A special focus will be set on the potential role of TERRA in the regulation of telomere length and replicative senescence. Possible implications of increased TERRA levels in yeast survivors and in ALT cancer cells will be discussed.
Collapse
Affiliation(s)
- André Maicher
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Arianna Lockhart
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, Heidelberg, Germany
| | - Brian Luke
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
53
|
Chatterjee D, Bhattacharjee P, Sau TJ, Das JK, Sarma N, Bandyopadhyay AK, Roy SS, Giri AK. Arsenic exposure through drinking water leads to senescence and alteration of telomere length in humans: A case-control study in West Bengal, India. Mol Carcinog 2014; 54:800-9. [PMID: 24665044 DOI: 10.1002/mc.22150] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/14/2014] [Accepted: 02/25/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Debmita Chatterjee
- Molecular and Human Genetics Division; CSIR-Indian Institute of Chemical Biology; Kolkata India
| | | | - Tanmoy J. Sau
- Sir Nil Ratan Sircar Medical College and Hospital; Kolkata India
| | - Jayanta K. Das
- Department of Dermatology; West Bank Hospital; Howrah, West Bengal India
| | - Nilendu Sarma
- Sir Nil Ratan Sircar Medical College and Hospital; Kolkata India
| | - Apurba K. Bandyopadhyay
- Molecular and Human Genetics Division; CSIR-Indian Institute of Chemical Biology; Kolkata India
| | - Sib Sankar Roy
- Cell Biology and Physiology Division; CSIR-Indian Institute of Chemical Biology; Kolkata India
| | - Ashok K. Giri
- Molecular and Human Genetics Division; CSIR-Indian Institute of Chemical Biology; Kolkata India
| |
Collapse
|
54
|
Suppression of telomere-binding protein TPP1 resulted in telomere dysfunction and enhanced radiation sensitivity in telomerase-negative osteosarcoma cell line. Biochem Biophys Res Commun 2014; 445:363-8. [PMID: 24513288 DOI: 10.1016/j.bbrc.2014.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 02/01/2014] [Indexed: 02/04/2023]
Abstract
Mammalian telomeres are protected by the shelterin complex that contains the six core proteins POT1, TPP1, TIN2, TRF1, TRF2 and RAP1. TPP1, formerly known as TINT1, PTOP, and PIP1, is a key factor that regulates telomerase recruitment and activity. In addition to this, TPP1 is required to mediate the shelterin assembly and stabilize telomere. Previous work has found that TPP1 expression was elevated in radioresistant cells and that overexpression of TPP1 led to radioresistance and telomere lengthening in telomerase-positive cells. However, the exact effects and mechanism of TPP1 on radiosensitivity are yet to be precisely defined in the ALT cells. Here we report on the phenotypes of the conditional deletion of TPP1 from the human osteosarcoma U2OS cells using ALT pathway to extend the telomeres.TPP1 deletion resulted in telomere shortening, increased apoptosis and radiation sensitivity enhancement. Together, our findings show that TPP1 plays a vital role in telomere maintenance and protection and establish an intimate relationship between TPP1, telomere and cellular response to ionizing radiation, but likely has the specific mechanism yet to be defined.
Collapse
|
55
|
PML-mediated signaling and its role in cancer stem cells. Oncogene 2013; 33:1475-84. [PMID: 23563177 DOI: 10.1038/onc.2013.111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/06/2013] [Accepted: 02/09/2013] [Indexed: 02/08/2023]
Abstract
The promyelocytic leukemia (PML) protein, initially discovered as a part of the PML/retinoic acid receptor alpha fusion protein, has been found to be a critical player in oncogenesis and tumor progression. Multiple cellular activities, including DNA repair, alternative lengthening of telomeres, transcriptional control, apoptosis and senescence, are regulated by PML and its featured subcellular structure, the PML nuclear body. In correspondence with its role in many important life processes, PML mediates several complex downstream signaling pathways. The determinant function of PML in tumorigenesis and cancer progression raises the interest in its involvement in cancer stem cells (CSCs), a subpopulation of cancer cells that share properties with stem cells and are critical for tumor propagation. Recently, there are exciting discoveries concerning the requirement of PML in CSC maintenance. Growing evidences strongly suggest a positive role of PML in regulating CSCs in both hematopoietic cancers and solid tumors, whereas the underlying mechanisms may be different and remain elusive. Here we summarize and discuss the PML-mediated signaling pathways in cancers and their potential roles in regulating CSCs.
Collapse
|
56
|
Foltánková V, Legartová S, Kozubek S, Hofer M, Bártová E. DNA-damage response in chromatin of ribosomal genes and the surrounding genome. Gene 2013; 522:156-67. [PMID: 23566839 DOI: 10.1016/j.gene.2013.03.108] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/20/2013] [Accepted: 03/09/2013] [Indexed: 11/24/2022]
Abstract
DNA repair events have functional significance especially for genome stability. Although the DNA damage response within the whole genome has been extensively studied, the region-specific characteristics of nuclear sub-compartments such as the nucleolus or fragile sites have not been fully elucidated. Here, we show that the heterochromatin protein HP1 and PML protein recognize spontaneously occurring 53BP1- or γ-H2AX-positive DNA lesions throughout the genome. Moreover, 53BP1 nuclear bodies, which co-localize with PML bodies, also occur within the nucleoli compartments. Irradiation of the human osteosarcoma cell line U2OS with γ-rays increases the degree of co-localization between 53BP1 and PML bodies throughout the genome; however, the 53BP1 protein is less abundant in chromatin of ribosomal genes and fragile sites (FRA3B and FRA16D) in γ-irradiated cells. Most epigenomic marks on ribosomal genes and fragile sites are relatively stable in both non-irradiated and γ-irradiated cells. However, H3K4me2, H3K9me3, H3K27me3 and H3K79me1 were significantly changed in promoter and coding regions of ribosomal genes after exposure of cells to γ-rays. In fragile sites, γ-irradiation induces a decrease in H3K4me3, changes the levels of HP1β, and modifies the levels of H3K9 acetylation, while the level of H3K9me3 was relatively stable. In these studies, we confirm a specific DNA-damage response that differs between the ribosomal genes and fragile sites, which indicates the region-specificity of DNA repair.
Collapse
Affiliation(s)
- Veronika Foltánková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-612 65, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
57
|
Teif VB, Erdel F, Beshnova DA, Vainshtein Y, Mallm JP, Rippe K. Taking into account nucleosomes for predicting gene expression. Methods 2013; 62:26-38. [PMID: 23523656 DOI: 10.1016/j.ymeth.2013.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 03/10/2013] [Indexed: 01/10/2023] Open
Abstract
The eukaryotic genome is organized in a chain of nucleosomes that consist of 145-147 bp of DNA wrapped around a histone octamer protein core. Binding of transcription factors (TF) to nucleosomal DNA is frequently impeded, which makes it a challenging task to calculate TF occupancy at a given regulatory genomic site for predicting gene expression. Here, we review methods to calculate TF binding to DNA in the presence of nucleosomes. The main theoretical problems are (i) the computation speed that is becoming a bottleneck when partial unwrapping of DNA from the nucleosome is considered, (ii) the perturbation of the binding equilibrium by the activity of ATP-dependent chromatin remodelers, which translocate nucleosomes along the DNA, and (iii) the model parameterization from high-throughput sequencing data and fluorescence microscopy experiments in living cells. We discuss strategies that address these issues to efficiently compute transcription factor binding in chromatin.
Collapse
Affiliation(s)
- Vladimir B Teif
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum-DKFZ & BioQuant, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
58
|
Abstract
A major challenge in nuclear organization is the packaging of DNA into dynamic chromatin structures that can respond to changes in the transcriptional requirements of the cell. Posttranslational protein modifications, of histones and other chromatin-associated factors, are essential regulators of chromatin dynamics. In this Review, we summarize studies demonstrating that posttranslational modification of proteins by small ubiquitin-related modifiers (SUMOs) regulates chromatin structure and function at multiple levels and through a variety of mechanisms to influence gene expression and maintain genome integrity.
Collapse
Affiliation(s)
- Caelin Cubeñas-Potts
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
59
|
Use of biotinylated plasmid DNA as a surrogate for HSV DNA to identify proteins that repress or activate viral gene expression. Proc Natl Acad Sci U S A 2012; 109:E3549-57. [PMID: 23223531 DOI: 10.1073/pnas.1218783109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ICP0, a key herpes simplex virus regulatory protein, functions first in the nucleus and then in the cytoplasm. The duration of its nuclear sojourn in cells transfected with DNA and then infected is related to the quantity of transfected DNA. Furthermore, ICP0 transactivates both viral genes and genes encoded by the transfected DNA. The data support the hypothesis that ICP0 is retained in the nucleus until it completes the replacement of repressive chromatin with effector proteins that enable transcription of both DNA templates.To identify the effector proteins, we transfected cells with biotinylated DNA encoding a nonviral gene and then infected the cells with wild-type virus. Proteins bound to transfected biotinylated plasmid recovered from mock-treated and infected cells were identified using mass spectrometry followed by appropriate database search. The transfected DNA from mock-infected cells yielded proteins associated with repression, whereas DNA recovered from infected cells included proteins known to enable transcription and proteins that have not been previously associated with that role. To test the hypothesis that the proteins hitherto not known to associate with viral gene expression are nevertheless essential, we tested the role of the DEAD-box helicase Ddx17. We report that Ddx17 plays a critical role in the expression of early and late viral genes. Thus, biotinylated DNA recovered from transfected infected cells can function as a surrogate for viral DNA and is a rich source of proteins that play a role in viral gene expression but which have not been previously identified in that role.
Collapse
|
60
|
Geng Y, Monajembashi S, Shao A, Cui D, He W, Chen Z, Hemmerich P, Tang J. Contribution of the C-terminal regions of promyelocytic leukemia protein (PML) isoforms II and V to PML nuclear body formation. J Biol Chem 2012; 287:30729-42. [PMID: 22773875 PMCID: PMC3436317 DOI: 10.1074/jbc.m112.374769] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/25/2012] [Indexed: 12/12/2022] Open
Abstract
Promyelocytic leukemia protein (PML) nuclear bodies are dynamic and heterogeneous nuclear protein complexes implicated in various important functions, most notably tumor suppression. PML is the structural component of PML nuclear bodies and has several nuclear splice isoforms that share a common N-terminal region but differ in their C termini. Previous studies have suggested that the coiled-coil motif within the N-terminal region is sufficient for PML nuclear body formation by mediating homo/multi-dimerization of PML molecules. However, it has not been investigated whether any of the C-terminal variants of PML may contribute to PML body assembly. Here we report that the unique C-terminal domains of PML-II and PML-V can target to PML-NBs independent of their N-terminal region. Strikingly, both domains can form nuclear bodies in the absence of endogenous PML. The C-terminal domain of PML-II interacts transiently with unknown binding sites at PML nuclear bodies, whereas the C-terminal domain of PML-V exhibits hyperstable binding to PML bodies via homo-dimerization. This strong interaction is mediated by a putative α-helix in the C terminus of PML-V. Moreover, nuclear bodies assembled from the C-terminal domain of PML-V also recruit additional PML body components, including Daxx and Sp100. These observations establish the C-terminal domain of PML-V as an additional important contributor to the assembly mechanism(s) of PML bodies.
Collapse
Affiliation(s)
- Yunyun Geng
- From the State Key Laboratory of Agrobiotechnology and
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | | | - Anwen Shao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Di Cui
- From the State Key Laboratory of Agrobiotechnology and
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Weiyong He
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhongzhou Chen
- From the State Key Laboratory of Agrobiotechnology and
- the College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Peter Hemmerich
- the Leibniz Institute for Age Research, 07743 Jena, Germany, and
| | - Jun Tang
- From the State Key Laboratory of Agrobiotechnology and
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
61
|
Altmannová V, Kolesár P, Krejčí L. SUMO Wrestles with Recombination. Biomolecules 2012; 2:350-75. [PMID: 24970142 PMCID: PMC4030836 DOI: 10.3390/biom2030350] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 06/27/2012] [Accepted: 07/13/2012] [Indexed: 01/21/2023] Open
Abstract
DNA double-strand breaks (DSBs) comprise one of the most toxic DNA lesions, as the failure to repair a single DSB has detrimental consequences on the cell. Homologous recombination (HR) constitutes an error-free repair pathway for the repair of DSBs. On the other hand, when uncontrolled, HR can lead to genome rearrangements and needs to be tightly regulated. In recent years, several proteins involved in different steps of HR have been shown to undergo modification by small ubiquitin-like modifier (SUMO) peptide and it has been suggested that deficient sumoylation impairs the progression of HR. This review addresses specific effects of sumoylation on the properties of various HR proteins and describes its importance for the homeostasis of DNA repetitive sequences. The article further illustrates the role of sumoylation in meiotic recombination and the interplay between SUMO and other post-translational modifications.
Collapse
Affiliation(s)
| | - Peter Kolesár
- Department of Biology, Masaryk University, Brno 62500, Czech Republic.
| | - Lumír Krejčí
- Department of Biology, Masaryk University, Brno 62500, Czech Republic.
| |
Collapse
|
62
|
de Thé H, Le Bras M, Lallemand-Breitenbach V. The cell biology of disease: Acute promyelocytic leukemia, arsenic, and PML bodies. J Cell Biol 2012; 198:11-21. [PMID: 22778276 PMCID: PMC3392943 DOI: 10.1083/jcb.201112044] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 06/15/2012] [Indexed: 12/12/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is driven by a chromosomal translocation whose product, the PML/retinoic acid (RA) receptor α (RARA) fusion protein, affects both nuclear receptor signaling and PML body assembly. Dissection of APL pathogenesis has led to the rediscovery of PML bodies and revealed their role in cell senescence, disease pathogenesis, and responsiveness to treatment. APL is remarkable because of the fortuitous identification of two clinically effective therapies, RA and arsenic, both of which degrade PML/RARA oncoprotein and, together, cure APL. Analysis of arsenic-induced PML or PML/RARA degradation has implicated oxidative stress in the biogenesis of nuclear bodies and SUMO in their degradation.
Collapse
Affiliation(s)
- Hugues de Thé
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 944, Equipe labellisée par la Ligue Nationale contre le Cancer, 2 University Paris-Diderot, Sorbonne Paris Cité, Paris, France.
| | | | | |
Collapse
|
63
|
Londoño-Vallejo JA, Wellinger RJ. Telomeres and telomerase dance to the rhythm of the cell cycle. Trends Biochem Sci 2012; 37:391-9. [PMID: 22727244 DOI: 10.1016/j.tibs.2012.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 05/21/2012] [Accepted: 05/25/2012] [Indexed: 11/27/2022]
Abstract
The stability of the ends of linear eukaryotic chromosomes is ensured by functional telomeres, which are composed of short, species-specific direct repeat sequences. The maintenance of telomeres depends on a specialized ribonucleoprotein (RNP) called telomerase. Both telomeres and telomerase are dynamic entities with different physical behaviors and, given their substrate-enzyme relation, they must establish a productive interaction. Regulatory mechanisms controlling this interaction are key missing elements in our understanding of telomere functions. Here, we review the dynamic properties of telomeres and the maturing telomerase RNPs, and summarize how tracking the timing of their dance during the cell cycle will yield insights into chromosome stability mechanisms. Cancer cells often display loss of genome integrity; therefore, these issues are of particular interest for our understanding of cancer initiation or progression.
Collapse
Affiliation(s)
- J Arturo Londoño-Vallejo
- Laboratoire Télomères et Cancer, UMR3244, Institut Curie, 26 rue d'Ulm, 75248 Paris, France; UPMC Université Paris 06, F-75005 Paris, France
| | | |
Collapse
|
64
|
Chung I, Osterwald S, Deeg KI, Rippe K. PML body meets telomere: the beginning of an ALTernate ending? Nucleus 2012; 3:263-75. [PMID: 22572954 PMCID: PMC3414403 DOI: 10.4161/nucl.20326] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The unlimited proliferation potential of cancer cells requires the maintenance of their telomeres. This is frequently accomplished by reactivation of telomerase. However, in a significant fraction of tumors an alternative lengthening of telomeres (ALT) mechanism is active. The molecular mechanism of the ALT pathway remains elusive. In particular, the role of characteristic complexes of promyelocytic leukemia nuclear bodies (PML-NBs) with telomeres, the ALT-associated PML-NBs (APBs), is currently under investigation. Here, we review recent findings on the assembly, structure and functions of APBs. It is discussed how genomic aberrations in ALT-positive cancer cells could result in the formation of APBs and in ALT activity. We conclude that they are important functional intermediates in what is considered the canonical ALT pathway and discuss deregulations of cellular pathways that contribute to the emergence of the ALT phenotype.
Collapse
Affiliation(s)
- Inn Chung
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Heidelberg, Germany
| | | | | | | |
Collapse
|
65
|
Telomeres and the nucleus. Semin Cancer Biol 2012; 23:116-24. [PMID: 22330096 DOI: 10.1016/j.semcancer.2012.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/01/2012] [Accepted: 02/02/2012] [Indexed: 01/08/2023]
Abstract
Telomeres are crucial for the maintenance of genome stability through "capping" of chromosome ends to prevent their recognition as double-strand breaks, thus avoiding end-to-end fusions or illegitimate recombination [1-3]. Similar to other genomic regions, telomeres participate to the nuclear architecture while being highly mobile. The interaction of telomeres with nuclear domains or compartments greatly differs not only between organisms but also between cells within the same organism. It is also expected that biological processes like replication, repair or telomere elongation impact the distribution of chromosome extremities within the nucleus, as they probably do with other regions of the genome. Pathological processes such as cancer induce profound changes in the nuclear architecture, which also affects telomere dynamics and spatial organization. Here we will expose our present knowledge on the relationship between telomeres and nuclear architecture and on how this relationship is affected by normal or abnormal telomere metabolisms.
Collapse
|