51
|
Silflow CD, Liu B, LaVoie M, Richardson EA, Palevitz BA. Gamma-tubulin in Chlamydomonas: characterization of the gene and localization of the gene product in cells. CELL MOTILITY AND THE CYTOSKELETON 2000; 42:285-97. [PMID: 10223635 DOI: 10.1002/(sici)1097-0169(1999)42:4<285::aid-cm3>3.0.co;2-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In addition to their role in nucleating the assembly of axonemal microtubules, basal bodies often are associated with a microtubule organizing center (MTOC) for cytoplasmic microtubules. In an effort to define molecular components of the basal body apparatus in Chlamydomonas reinhardtii, genomic and cDNA clones encoding gamma-tubulin were isolated and sequenced. The gene, present in a single copy in the Chlamydomonas genome, encodes a protein with a predicted molecular mass of 52,161 D and 73% and 65% conservation with gamma-tubulin from higher plants and humans, respectively. To examine the distribution of gamma-tubulin in cells, a polyclonal antibody was raised against two peptides contained within the protein. Immunoblots of Chlamydomonas proteins show a major cross-reaction with a protein of Mr 53,000. In Chlamydomonas cells, the antibody stains the basal body apparatus as two or four spots at the base of the flagella and proximal to the microtubule rootlets. During cell division, two groups of fluorescent dots separate and localize to opposite ends of the mitotic apparatus. They then migrate during cleavage to positions known to be occupied by basal bodies. Changes in gamma-tubulin localization during the cell cycle are consistent with a role for this protein in the nucleation of microtubules of both the interphase cytoplasmic array and the mitotic spindle. Immunogold labeling of cell sections showed that gamma-tubulin is closely associated with the basal bodies. The flagellar transition region was also labeled, possibly indicating a role for gamma-tubulin in assembly of the central pair microtubules of the axoneme.
Collapse
Affiliation(s)
- C D Silflow
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA
| | | | | | | | | |
Collapse
|
52
|
Nohýnkova E, Dráber P, Reischig J, Kulda J. Localization of gamma-tubulin in interphase and mitotic cells of a unicellular eukaryote, Giardia intestinalis. Eur J Cell Biol 2000; 79:438-45. [PMID: 10928459 DOI: 10.1078/0171-9335-00066] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Giardia intestinalis, a bi-nucleated amitochondrial flagellate, possesses a complex cytoskeleton based on several microtubular systems (flagella, adhesive disk, median body, funis, mitotic spindles). MTOCs of the individual systems have not been fully defined. By using monoclonal antibodies against a conserved synthetic peptide from the C-terminus of human gamma-tubulin we investigated occurrence and distribution of gamma-tubulin in interphase and mitotic Giardia cells. On the immunoblots of Giardia cytoskeletal extracts the antibodies bound to a single polypeptide of approximately 50 kDa. Immunostaining of the interphase cell demonstrated gamma-tubulin as four bright spots at the basis of four out of eight flagella. Gamma-tubulin label was associated with perikinetosomal areas of the ventral and posterolateral pairs of flagella which are formed de novo during cell division. Basal body regions of the anterolateral and caudal pairs of flagella which persist during the division and are integrated into the flagellar systems of the daughter cells did not show gamma-tubulin staining. At early mitosis, gamma-tubulin spots disappeared reappearing again at late mitosis in accord with reorientation of parent flagella and reorganization of flagellar apparatus during cell division. The antibody-detectable gamma-tubulin epitope was absent at the poles of both mitotic spindles. Albendazole-treated Giardia, in which spindle assembly was completely inhibited, showed the same gamma-tubulin staining pattern thus confirming that the fluorescent label is exclusively located in the basal body regions. Our results point to a role of gamma-tubulin in nucleation of microtubules of newly formed flagella and indicate unusual mitotic spindle assembly. Moreover, the demonstration of gamma-tubulin in Giardia shows ubiquity of this protein through the evolutionary history of eukaryotes.
Collapse
Affiliation(s)
- E Nohýnkova
- Department of Tropical Medicine, Faculty Hospital Bulovka-1st Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
53
|
Lee J, Miyano T, Moor RM. Spindle formation and dynamics of gamma-tubulin and nuclear mitotic apparatus protein distribution during meiosis in pig and mouse oocytes. Biol Reprod 2000; 62:1184-92. [PMID: 10775165 DOI: 10.1095/biolreprod62.5.1184] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
This work focuses on the assembly and transformation of the spindle during the progression through the meiotic cell cycle. For this purpose, immunofluorescent confocal microscopy was used in comparative studies to determine the spatial distribution of alpha- and gamma-tubulin and nuclear mitotic apparatus protein (NuMA) from late G2 to the end of M phase in both meiosis and mitosis. In pig endothelial cells, consistent with previous reports, gamma-tubulin was localized at the centrosomes in both interphase and M phase, and NuMA was localized in the interphase nucleus and at mitotic spindle poles. During meiotic progression in pig oocytes, gamma-tubulin and NuMA were initially detected in a uniform distribution across the nucleus. In early diakinesis and just before germinal vesicle breakdown, microtubules were first detected around the periphery of the germinal vesicle and cell cortex. At late diakinesis, a mass of multi-arrayed microtubules was formed around chromosomes. In parallel, NuMA localization changed from an amorphous to a highly aggregated form in the vicinity of the chromosomes, but gamma-tubulin localization remained in an amorphous form surrounding the chromosomes. Then the NuMA foci moved away from the condensed chromosomes and aligned at both poles of a barrel-shaped metaphase I spindle while gamma-tubulin was localized along the spindle microtubules, suggesting that pig meiotic spindle poles are formed by the bundling of microtubules at the minus ends by NuMA. Interestingly, in mouse oocytes, the meiotic spindle pole was composed of several gamma-tubulin foci rather than NuMA. Further, nocodazole, an inhibitor of microtubule polymerization, induced disappearance of the pole staining of NuMA in pig metaphase II oocytes, whereas the mouse meiotic spindle pole has been reported to be resistant to the treatment. These results suggest that the nature of the meiotic spindle differs between species. The axis of the pig meiotic spindle rotated from a perpendicular to a parallel position relative to the cell surface during telophase I. Further, in contrast to the stable localization of NuMA and gamma-tubulin at the spindle poles in mitosis, NuMA and gamma-tubulin became relocalized to the spindle midzone during anaphase I and telophase I in pig oocytes. We postulate that in the centrosome-free meiotic spindle, NuMA aggregates the spindle microtubules at the midzone during anaphase and telophase and that the polarity of meiotic spindle microtubules might become inverted during spindle elongation.
Collapse
Affiliation(s)
- J Lee
- Laboratory of Protein Function, The Babraham Institute, Babraham, Cambridge CB2 4AT, United Kingdom
| | | | | |
Collapse
|
54
|
Paluh JL, Nogales E, Oakley BR, McDonald K, Pidoux AL, Cande WZ. A mutation in gamma-tubulin alters microtubule dynamics and organization and is synthetically lethal with the kinesin-like protein pkl1p. Mol Biol Cell 2000; 11:1225-39. [PMID: 10749926 PMCID: PMC14843 DOI: 10.1091/mbc.11.4.1225] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mitotic segregation of chromosomes requires spindle pole functions for microtubule nucleation, minus end organization, and regulation of dynamics. gamma-Tubulin is essential for nucleation, and we now extend its role to these latter processes. We have characterized a mutation in gamma-tubulin that results in cold-sensitive mitotic arrest with an elongated bipolar spindle but impaired anaphase A. At 30 degrees C cytoplasmic microtubule arrays are abnormal and bundle into single larger arrays. Three-dimensional time-lapse video microscopy reveals that microtubule dynamics are altered. Localization of the mutant gamma-tubulin is like the wild-type protein. Prediction of gamma-tubulin structure indicates that non-alpha/beta-tubulin protein-protein interactions could be affected. The kinesin-like protein (klp) Pkl1p localizes to the spindle poles and spindle and is essential for viability of the gamma-tubulin mutant and in multicopy for normal cell morphology at 30 degrees C. Localization and function of Pkl1p in the mutant appear unaltered, consistent with a redundant function for this protein in wild type. Our data indicate a broader role for gamma-tubulin at spindle poles in regulating aspects of microtubule dynamics and organization. We propose that Pkl1p rescues an impaired function of gamma-tubulin that involves non-tubulin protein-protein interactions, presumably with a second motor, MAP, or MTOC component.
Collapse
Affiliation(s)
- J L Paluh
- Department of Molecular Biology, University of California, Berkeley, California 94720-3200, USA.
| | | | | | | | | | | |
Collapse
|
55
|
Terada Y, Simerly CR, Hewitson L, Schatten G. Sperm aster formation and pronuclear decondensation during rabbit fertilization and development of a functional assay for human sperm. Biol Reprod 2000; 62:557-63. [PMID: 10684795 DOI: 10.1095/biolreprod62.3.557] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Microtubule organization and chromatin configurations in rabbit eggs after in vivo rabbit fertilization and after intracytoplasmic injection with human sperm were characterized. In unfertilized eggs, an anastral barrel-shaped meiotic spindle, oriented radially to the cortex, was observed. After rabbit sperm incorporation, microtubules were organized into a radial aster from the sperm head, and cytoplasmic microtubules were organized around the male and female pronuclei. The microtubules extending from the decondensed sperm head participated in pronuclear migration, and organization around the female pronucleus may also be important for pronuclear centration. Support for these observations was found in parthenogenetically activated eggs, in which microtubule arrays were organized around the single female pronucleus that formed after artificial activation. These observations support a biparental centrosomal contribution during rabbit fertilization as opposed to a strictly paternal inheritance pattern suggested from previous studies. In rabbit eggs that received injected human donor sperm, an astral array of microtubules radiated from the sperm neck and enlarged as the sperm head underwent pronuclear decondensation. gamma-Tubulin was observed in the center of the sperm aster. We conclude that the rabbit egg exhibits a blended centrosomal contribution necessary for completion of fertilization and that the rabbit egg may be a novel animal model for assessing centrosomal function in human sperm and spermatogenic cells following intracytoplasmic injection.
Collapse
Affiliation(s)
- Y Terada
- Department of Reproductive Sciences, Oregon Regional Primate Research Center (Oregon Health Sciences University), Beaverton, Oregon 97006, USA
| | | | | | | |
Collapse
|
56
|
Sutovsky P, Schatten G. Paternal contributions to the mammalian zygote: fertilization after sperm-egg fusion. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 195:1-65. [PMID: 10603574 DOI: 10.1016/s0074-7696(08)62703-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian fertilization has traditionally been regarded as a simple blending of two gametes, during which the haploid genome of the fertilizing spermatozoon constitutes the primary paternal contribution to the resulting embryo. In contrast to this view, new research provides evidence of important cytoplasmic contributions made by the fertilizing spermatozoon to the zygotic makeup, to the organization of preimplantation development, and even reproductive success of new forms of assisted fertilization. The central role of the sperm-contributed centriole in the reconstitution of zygotic centrosome has been established in most mammalian species and is put in contrast with strictly maternal centrosomal inheritance in rodents. The complementary reduction or multiplication of sperm and oocyte organelles during gametogenesis, exemplified by the differences in the biogenesis of centrosome in sperm and oocytes, represents an intriguing mechanism for avoiding their redundancy during early embryogenesis. New studies on perinuclear theca of sperm revealed its importance for both spermatogenesis and fertilization. Remodeling of the sperm chromatin into a male pronucleus is guided by oocyte-produced, reducing peptide glutathione and a number of molecules required for the reconstitution of the functional nuclear envelope and nuclear skeleton. Although some of the sperm structures are transformed into zygotic components, the elimination of others is vital to early stages of embryonic development. Sperm mitochondria, carrying potentially harmful paternal mtDNA, appear to be eliminated by a ubiquitin-dependent mechanism. Other accessory structures of the sperm axoneme, including fibrous sheath, microtubule doublets, outer dense fibers, and the striated columns of connecting piece, are discarded in an orderly fashion. The new methods of assisted fertilization, represented by intracytoplasmic sperm injection and round spermatid injection, bypass multiple steps of natural fertilization by introducing an intact spermatozoon or spermatogenic cell into oocyte cytoplasm. Consequently, the carryover of sperm accessory structures that would normally be eliminated before or during the entry of sperm into oocyte cytoplasm persist therein and may interfere with early embryonic development, thus decreasing the success rate of assisted fertilization and possibly causing severe embryonic anomalies. Similarly, foreign organelles, proteins, messenger RNAs, and mitochondrial DNAs, which may have a profound impact on the embryonic development, are propagated by the nuclear transfer of embryonic blastomeres and somatic cell nuclei. This aspect of assisted fertilization is yet to be explored by a focused effort.
Collapse
Affiliation(s)
- P Sutovsky
- Department of Obstetrics and Gynecology, Oregon Health Science University, USA
| | | |
Collapse
|
57
|
Rubina KA, Gulak PV, Smirnova EA, Starodubov SM, Onishchenko GE. Identification of microtubule-organizing centers in interphase melanophores of Xenopus laevis larvae in vivo. PIGMENT CELL RESEARCH 1999; 12:295-310. [PMID: 10541039 DOI: 10.1111/j.1600-0749.1999.tb00763.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The morphological characteristics of microtubule-organizing centers (MTOCs) in dermal interphase melanophores of Xenopus laevis larvae in vivo at 51-53 stages of development has been studied using immunostained semi-thick sections by fluorescent microscopy combined with computer image analysis. Computer image analysis of melanophores with aggregated and dispersed pigment granules, stained with the antibodies against the centrosome-specific component (CTR210) and tubulin, has revealed the presence of one main focus of microtubule convergence in the cell body, which coincides with the localization of the centrosome-specific antigen. An electron microscopy of those melanophores has shown that aggregation or dispersion of melanosomes is accompanied by changes in the morphological arrangement of the MTOC/centrosome. The centrosome in melanophores with dispersed pigment exhibits a conventional organization, and their melanosomes are situated in an immediate vicinity of the centrioles. In melanophores with aggregated pigment, MTOC is characterized by a three-zonal organization: the centrosome with centrioles, the centrosphere, and an outlying radial arrangement of microtubules and their associated inclusions. The centrosome in interphase melanophores is presumed to contain a pair of centrioles or numerous centrioles. Because of an inability of detecting additional MTOCs, it has been considered that an active MTOC in interphase melanophores of X. laevis is the centrosome. We assume that remaining intact microtubules in the cytoplasmic processes of mitotic melanophores (Rubina et al., 1999) derive either from the aster or the centrosome active at the interphase.
Collapse
Affiliation(s)
- K A Rubina
- Department of Cytology and Histology, Moscow State University, Russia.
| | | | | | | | | |
Collapse
|
58
|
Simerly C, Zoran SS, Payne C, Dominko T, Sutovsky P, Navara CS, Salisbury JL, Schatten G. Biparental inheritance of gamma-tubulin during human fertilization: molecular reconstitution of functional zygotic centrosomes in inseminated human oocytes and in cell-free extracts nucleated by human sperm. Mol Biol Cell 1999; 10:2955-69. [PMID: 10473639 PMCID: PMC25540 DOI: 10.1091/mbc.10.9.2955] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Human sperm centrosome reconstitution and the parental contributions to the zygotic centrosome are examined in mammalian zygotes and after exposure of spermatozoa to Xenopus laevis cell-free extracts. The presence and inheritance of the conserved centrosomal constituents gamma-tubulin, centrin, and MPM-2 (which detects phosphorylated epitopes) are traced, as is the sperm microtubule-nucleating capability on reconstituted centrosomes. gamma-Tubulin is biparentally inherited in humans (maternal >> than paternal): Western blots detect the presence of paternal gamma-tubulin. Recruitment of maternal gamma-tubulin to the sperm centrosome occurs after sperm incorporation in vivo or exposure to cell-free extract, especially after sperm "priming" induced by disulfide bond reduction. Centrin is found in the proximal sperm centrosomal region, demonstrates expected calcium sensitivity, but appears absent from the zygotic centrosome after sperm incorporation or exposure to extracts. Sperm centrosome phosphorylation is detected after exposure of primed sperm to egg extracts as well as during the early stages of sperm incorporation after fertilization. Finally, centrosome reconstitution in cell-free extracts permits sperm aster microtubule assembly in vitro. Collectively, these results support a model of a blended zygotic centrosome composed of maternal constituents attracted to an introduced paternal template after insemination.
Collapse
Affiliation(s)
- C Simerly
- Departments of Cell-Developmental Biology and Obstetrics-Gynecology, Oregon Health Sciences University, and the Oregon Regional Primate Research Center, Portland, Oregon 97006, USA
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
As an organizer of the microtubule cytoskeleton in animals, the centrosome has an important function. From the early light microscopic observation of the centrosome to examination by electron microscopy, the centrosome field is now in an era of molecular identification and precise functional analyses. Tables compiling centrosomal proteins and reviews on the centrosome are presented here and demonstrate how active the field is. However, despite this intense research activity, many classical questions are still unanswered. These include those regarding the precise function of centrioles, the mechanism of centrosome duplication and assembly, the origin of the centrosome, and the regulation and mechanism of the centrosomal microtubule nucleation activity. Fortunately, these questions are becoming elucidated based on experimental data discussed here. Given the fact that the centrosome is primarily a site of microtubule nucleation, special focus is placed on the process of microtubule nucleation and on the regulation of centrosomal microtubule nucleation capacity during the cell cycle and in some tissues.
Collapse
Affiliation(s)
- S S Andersen
- Department of Molecular Biology, Princeton University, New Jersey 08540-1014, USA
| |
Collapse
|
60
|
Manandhar G, Sutovsky P, Joshi HC, Stearns T, Schatten G. Centrosome reduction during mouse spermiogenesis. Dev Biol 1998; 203:424-34. [PMID: 9808791 DOI: 10.1006/dbio.1998.8947] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sperm does not contribute the centrosome during murine fertilization. To determine the manner in which a functional centrosome is reduced, we have studied centrosome degeneration during spermiogenesis of mice. The round spermatids display normal centrosomes consisting of a pair of centrioles along with gamma-tubulin containing foci. However, they do not seem to organize microtubules. Elongating spermatids display gamma-tubulin spots in the neck region, while microtubules are organized from the perinuclear ring as the manchette. Electron microscopic studies using immunogold labeling revealed that gamma-tubulin is mainly localized in the centriolar adjunct from which an aster of microtubules emanates. Microtubules repolymerized randomly in the cytoplasm after nocodazole treatment and reversal. gamma-Tubulin dissociates from the neck region and is discarded in the residual bodies during spermiation. The distal centriole degenerates during testicular stage of spermiogenesis, while the proximal centriole is lost during epididymal stage. Loss of centrosomal protein and centrioles in mouse sperm further confirm the maternal inheritance of centrosome during murine fertilization.
Collapse
Affiliation(s)
- G Manandhar
- Cell & Developmental Biology, Oregon Health Science University, Beaverton, Oregon, 97006, USA
| | | | | | | | | |
Collapse
|
61
|
Dow MR, Mains PE. Genetic and molecular characterization of the caenorhabditis elegans gene, mel-26, a postmeiotic negative regulator of mei-1, a meiotic-specific spindle component. Genetics 1998; 150:119-28. [PMID: 9725834 PMCID: PMC1460337 DOI: 10.1093/genetics/150.1.119] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have previously described the gene mei-1, which encodes an essential component of the Caenorhabditis elegans meiotic spindle. When ectopically expressed after the completion of meiosis, mei-1 protein disrupts the function of the mitotic cleavage spindles. In this article, we describe the cloning and the further genetic characterization of mel-26, a postmeiotic negative regulator of mei-1. mel-26 was originally identified by a gain-of-function mutation. We have reverted this mutation to a loss-of-function allele, which has recessive phenotypes identical to the dominant defects of its gain-of-function parent. Both the dominant and recessive mutations of mel-26 result in mei-1 protein ectopically localized in mitotic spindles and centrosomes, leading to small and misoriented cleavage spindles. The loss-of-function mutation was used to clone mel-26 by transformation rescue. As suggested by genetic results indicating that mel-26 is required only maternally, mel-26 mRNA was expressed predominantly in the female germline. The gene encodes a protein that includes the BTB motif, which is thought to play a role in protein-protein interactions.
Collapse
Affiliation(s)
- M R Dow
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
62
|
Yang Z, Gallicano GI, Yu QC, Fuchs E. An unexpected localization of basonuclin in the centrosome, mitochondria, and acrosome of developing spermatids. J Cell Biol 1997; 137:657-69. [PMID: 9151672 PMCID: PMC2139879 DOI: 10.1083/jcb.137.3.657] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/1997] [Revised: 02/21/1997] [Indexed: 02/04/2023] Open
Abstract
Basonuclin is a zinc finger protein that was thought to be restricted to keratinocytes of stratified squamous epithelia. In epidermis, basonuclin is associated with the nuclei of mitotically active basal cells but not in terminally differentiating keratinocytes. We report here the isolation of a novel form of basonuclin, which we show is also expressed in stratified epithelia. Most unexpectedly, we find both forms in testis, where a surprising localization pattern was uncovered. While basonuclin RNA expression occurs in mitotically active germ cells, protein was not detected until the meiotic stage, where basonuclin localized to the appendage of the distal centriole of spermatocytes and spermatids. Near the end of spermiogenesis, basonuclin also accumulated in the acrosome and mitochondrial sheath surrounding the flagellum. Intriguingly, a perfect six-amino acid residue mitochondrial targeting sequence (Komiya, T., N. Hachiya, M. Sakaguchi, T. Omura, and K. Mihara. 1994. J. Biol. Chem. 269:30893-30897; Shore, G.C., H.M. McBride, D.G. Millar, N.A. Steenaart, and M. Nguyen. 1995. Eur. J. Biochem. 227: 9-18; McBride, H.M., I.S. Goping, and G.C. Shore. 1996. J. Cell. Biol. 134:307-313) is present in basonuclin 1a but not in the 1b form. Moreover, three distinct affinity-purified peptide antibodies gave this unusual pattern of basonuclin antibody staining, which was confirmed by cell fractionation studies. Our findings suggest a unique role for basonuclin in centrosomes within the developing spermatid, and a role for one of the protein forms in germ cell mitochondrial function. Its localization with the acrosome suggests that it may also perform a special function during or shortly after fertilization.
Collapse
Affiliation(s)
- Z Yang
- Department of Molecular Genetics and Cell Biology, The Howard Hughes Medical Institute, The University of Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
63
|
Scott V, Sherwin T, Gull K. gamma-tubulin in trypanosomes: molecular characterisation and localisation to multiple and diverse microtubule organising centres. J Cell Sci 1997; 110 ( Pt 2):157-68. [PMID: 9044046 DOI: 10.1242/jcs.110.2.157] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A genomic clone from Trypanosoma brucei, which contains a full length gamma-tubulin gene, was isolated using degenerate oligonucleotide primers. The sequence of this clone predicts a protein of 447 amino acids having a high degree of homology with gamma-tubulins from human and Xenopus laevis (67.2% amino acid identity) and only 57.7% identity with the Plasmodium falciparum gamma-tubulin. Northern blot analysis of poly(A)+ selected RNA from a procyclic culture detects a major transcript of approximately 2.2 kb plus a minor transcript of approximately 3.6 kb. A fusion protein comprising almost the full length gamma-tubulin gene product (amino acids 8–447) plus an amino-terminal histidine tag has been expressed and purified from Escherichia coli and used to raise a polyclonal antibody. Immunofluorescence, using this antibody, shows classical centrosomal localisation in mammalian cells. In T. brucei gamma-tubulin is present in the basal bodies which subtend the flagellum and also at the anterior tip of the cell body where many minus ends of microtubules are located. Furthermore the antibody reveals a small subset of the sub-pellicular microtubules and a discrete dot within the nucleus which alters form with progression through the mitotic cycle. Evidence is also presented for discrete punctate staining within the microtubules of the cell body which may represent the presence of gamma-tubulin on the ends of individual microtubules. Our results indicate that gamma-tubulin is associated with diverse microtubule organising centres and structures in trypanosomes.
Collapse
Affiliation(s)
- V Scott
- School of Biological Sciences, University of Manchester, UK
| | | | | |
Collapse
|
64
|
|
65
|
Abstract
Meiotic spindles in males of higher Lepidotera are unusual in that the bulk of the spindle microtubules (MTs) ends about halfway between the equatorial plate and the centrosomes in metaphase. It appears worthwhile to determine how the MTs are nucleated, while their pole proximal ends are distant from the centrosomes. To this end, spermatocytes of Phragmatobia fuliginosa (Arctiidae), collected in the field, were double-labeled with antibodies to beta- and gamma-tubulin. The former antibody reveals the entire microtubular cytoskeleton, and the latter is directed against a newly-discovered tublin isoform that is prevalent in microtubule-organizing centers (MTOCs). The immunocytochemical work was supplemented by a fine structural analysis of MTOCs and spindles. Gamma-tubulin was clearly detected at the spindle poles, and prominent microtubular asters originated from these sites. Additionally, MT arrays at both sides of the equatorial plate in metaphase spermatocytes contained gamma-tubulin. The staining persisted in late anaphase, when kinetochore MTs are depolymerized. This indicates that at least nonkinetochore MTs contain gamma-tubulin. The analysis of ultrathin sections through spindles revealed large amounts of pericentriolar material at the spindles poles, in prometaphase through anaphase. The spindle MTs appeared as regular, straight elements in longitudinal sections. We assume that gamma-tubulin is located at the pole proximal ends of the MTs and/or is associated with the spindle MTs throughout their lengths. In order to distinguish between these possibilities, testes of Ephestia kuehniella (Pyralidae), a laboratory species, were cold-treated prior to double-labeling with antibodies to beta- and gamma-tubulin. The treatment was expected to depolymerize MTs. Astral MTs, which were nucleated end-on by gamma-tubulin-containing material, indeed depolymerized. In contrast, the gamma-tubulin-containing spindle MTs persisted. It is, therefore, conceivable that gamma-tubulin is associated with MTs throughout their lengths in male meiosis of Lepidoptera species. It is plausible that this association stabilizes the MTs against cold-induced disassembly.
Collapse
Affiliation(s)
- K W Wolf
- Institut für Anthropologie, Johannes Gutenberg-Universität Mainz, Germany
| | | |
Collapse
|
66
|
Lajoie-Mazenc I, Détraves C, Rotaru V, Garès M, Tollon Y, Jean C, Julian M, Wright M, Raynaud-Messina B. A single gamma-tubulin gene and mRNA, but two gamma-tubulin polypeptides differing by their binding to the spindle pole organizing centres. J Cell Sci 1996; 109 ( Pt 10):2483-92. [PMID: 8923209 DOI: 10.1242/jcs.109.10.2483] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Cells of eukaryotic organisms exhibit microtubules with various functions during the different developmental stages. The identification of multiple forms of alpha- and beta-tubulins had raised the question of their possible physiological roles. In the myxomycete Physarum polycephalum a complex polymorphism for alpha- and beta-tubulins has been correlated with a specific developmental expression pattern. Here, we have investigated the potential heterogeneity of gamma-tubulin in this organism. A single gene, with 3 introns and 4 exons, and a single mRNA coding for gamma-tubulin were detected. They coded for a polypeptide of 454 amino acids, with a predicted molecular mass of 50,674, which presented 64–76% identity with other gamma-tubulins. However, immunological studies identified two gamma-tubulin polypeptides, both present in the two developmental stages of the organism, uninucleate amoebae and multinucleate plasmodia. The two gamma-tubulins, called gamma s- and gamma f-tubulin for slow and fast electrophoretic mobility, exhibited apparent molecular masses of 52,000 and 50,000, respectively. They were recognized by two antibodies (R70 and JH46) raised against two distinct conserved sequences of gamma-tubulins. They were present both in the preparations of amoebal centrosomes possessing two centrioles and in the preparations of plasmodial nuclear metaphases devoid of structurally distinct polar structures. These two gamma-tubulins exhibited different sedimentation properties as shown by ultracentrifugation and sedimentation in sucrose gradients. Moreover, gamma s-tubulin was tightly bound to microtubule organizing centers (MTOCs) while gamma f-tubulin was loosely associated with these structures. This first demonstration of the presence of two gamma-tubulins with distinct properties in the same MTOC suggests a more complex physiological role than previously assumed.
Collapse
Affiliation(s)
- I Lajoie-Mazenc
- Institut de Pharmacologie et de Biologie Structurale (CNRS), Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Wolf KW, Joshi HC. Distribution of gamma-tubulin differs in primary and secondary oocytes of Ephestia kuehniella (Pyralidae, Lepidoptera). Mol Reprod Dev 1996; 45:225-30. [PMID: 8914081 DOI: 10.1002/(sici)1098-2795(199610)45:2<225::aid-mrd16>3.0.co;2-#] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In a previous study, barrel-shaped spindles were found in metaphase I oocytes of Ephestia kuehniella (Pyralidae, Lepidoptera). Aster microtubules (MTs) were missing (Wolf, 1993: Cell Motil Cytoskeleton 24:200-204). This points to an acentriolar organization of the spindle apparatus. The present study was aimed at the question of whether gamma-tubulin, a newly detected member of the tubulin superfamily that has often been identified in microtubule-organizing centers, plays a role in the nucleation of MTs in meiotic spindles of the moth. To this end, the distribution of gamma-tubulin was examined in oocytes of E. kuehniella using an antibody against gamma-tubulin in combination with indirect immunofluorescence. The antibody evenly decorated spindle MTs in metaphase I oocytes of the moth. Enhanced staining of the spindle poles was not detectable. In subsequent stages of meiosis, gamma-tubulin was gradually lost from spindle MTs and was then found at the surface of the so-called elimination chromatin. Female meiosis in Lepidoptera is achiasmatic. The elimination chromatin, i.e., modified and persisting synaptonemal complexes, is believed to keep homologous chromosomes linked until the onset of anaphase I. In meiosis I of female Lepidoptera, the elimination chromatin persists at the spindle equator between the segregating chromatin masses. It is plausible to assume that gamma-tubulin is involved in spindle organization in the absence of canonical centrosomes. In MTs of metaphase II spindles of E. kuehniella, gamma-tubulin was no longer detectable with our immunological approach. This points to a far-reaching change in spindle organization during transition from meiosis I to meiosis II.
Collapse
Affiliation(s)
- K W Wolf
- Johannes Gutenberg-Universität Mainz, Institut für Anthropologie, Germany
| | | |
Collapse
|
68
|
Abstract
In animal cells, microtubule assembly is usually initiated at one specialized structure, the centrosome. By contrast, in plant cells, microtubule assembly begins at a variety of locations within the cell. A member of the tubulin gene family, gamma-tubulin, is localized to the centrosome in animal cells and is important in the assembly of microtubules in vivo. Recent reports have identified gamma-tubulin genes in plants and have described the complex intracellular distribution of the encoded polypeptides. Here, Harish Joshi and Barry Palevitz comment upon how this information may help elucidate the organizing principles of the complex arrays of microtubules in plant cells.
Collapse
Affiliation(s)
- H C Joshi
- Dept of Anatomy and Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
69
|
Behaviour of centrosomes in early Tubifex embryos: asymmetric segregation and mitotic cycle-dependent duplication. ACTA ACUST UNITED AC 1996; 205:290-299. [PMID: 28306032 DOI: 10.1007/bf00365807] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/1995] [Accepted: 09/21/1995] [Indexed: 10/26/2022]
Abstract
An antibody raised against a highly conserved peptide of γ-tubulin (Joshi et al. 1992) recognized a 50 kDa polypeptide in centrosomes in Tubifex embryos. Centrosomes labelled with this antibody are found at both poles of the first meiotic spindle and at the inner pole of the second meiotic spindle. At the transition to the second meiosis, there is no change in morphology of the centrosomes which are retained in the egg proper. In contrast, as the second meiosis proceeds from anaphase to telophase, centrosomes labelled with the antibody gradually become smaller, but are still recognized as tiny dots; each egg exhibits no more than one tiny dot. The first cleavage spindles exhibit a centrosome at one pole but not at the other. The spindle pole with a centrosome forms an aster which is inherited by the larger cell, CD, of the two-cell embryo; the centrosome-free spindle pole then becomes anastral and is segregated to a smaller cell AB. Centrosomes are present in the C and D cell lineages but not in the A and B lineages, at least up to the eighth cleavage cycle. During cleavage stages, centrosomes duplicate early in telophase of each mitosis, and their size changes in a cell cycle-specific fashion. Centrosomes which otherwise duplicate asynchronously in separate cells do so synchronously in a common cytoplasm. Centrosome duplication is inhibited by nocodazole but not by cytochalasin D. An examination of embryos treated with cycloheximide or aphidicolin also suggests that centrosome duplication during cleavages requires protein synthesis but no DNA replication per se. These results suggest that the centrosome cycle in Tubifex blastomeres is linked to the mitotic cycle more closely than is that in other animals.
Collapse
|
70
|
Masuda H, Shibata T. Role of gamma-tubulin in mitosis-specific microtubule nucleation from the Schizosaccharomyces pombe spindle pole body. J Cell Sci 1996; 109 ( Pt 1):165-77. [PMID: 8834801 DOI: 10.1242/jcs.109.1.165] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of the Schizosacchromyces pombe spindle pole body to nucleate microtubules is activated at the onset of mitosis for forming a mitotic spindle, but it is inactivated during interphase. We have previously developed an in vitro assay for studying the molecular mechanism of spindle pole body activation using permeabilized interphase S. pombe cells and Xenopus mitotic extracts. We have shown that the interphase spindle pole body is activated indirectly by p34cdc2 protein kinase in Xenopus mitotic extracts. In this study we examined the role of gamma-tubulin, a component of both interphase and mitotic spindle pole body, in formation of the microtubule nucleating complex at the mitotic spindle pole body. A polyclonal antibody specific to S. pombe gamma-tubulin inhibited both activation of the interphase spindle pole body and microtubule nucleation from the mitotic spindle pole body. Addition of bacterially expressed S. pombe gamma-tubulin or its amino-terminal fragments to Xenopus mitotic extracts inhibited spindle pole body activation. Affinity chromatography of partially fractionated Xenopus mitotic extracts with the amino-terminal fragment of S. pombe gamma-tubulin showed that fractions bound to the fragment supported the activation. The fractions did not contain Xenopus gamma-tubulin, showing that activation of the spindle pole body is not due to recruitment of Xenopus gamma-tubulin to the spindle pole body. The spindle pole body activation occurred in extracts depleted of p34cdc2 protein kinase or MAP kinase. The activity of the fractions bound to the fragment was inhibited by a protein kinase inhibitor, staurosporine. These results suggest that S. pombe gamma-tubulin is a component of the microtubule nucleating complex, and that the function of proteins that interact with gamma-tubulin is required for activation of the spindle pole body. We present possible models for the activation that convert the immature microtubule nucleating complex at interphase into the mature microtubule nucleating complex at mitosis.
Collapse
Affiliation(s)
- H Masuda
- Precursory Research for Embryonic Science and Technology (PRESTO), Research Development Corporation of Japan (JRDC)
| | | |
Collapse
|
71
|
Balczon R. The centrosome in animal cells and its functional homologs in plant and yeast cells. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 169:25-82. [PMID: 8843652 DOI: 10.1016/s0074-7696(08)61984-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The centrosome is the principal microtubule-organizing center in mammalian cells. Until recently, the centrosome could only be studied at the ultrastructural level and defined as a functional entity. However, during the past decade a number of clever experimental strategies have been used to identify numerous molecular components of the centrosome. The identification of biochemical subunits of the centrosome complex has allowed the centrosome to be investigated in much more detail, resulting in important advances being made in our understanding of microtubule nucleation events, spindle formation, the assembly and replication of the centrosome, and the nature of the microtubule-organizing centers in plant cells and lower eukaryotes. The next several years should see additional rapid progress in our understanding of the microtubule cytoskeleton as investigators begin to assign functions to the centrosome proteins that have already been reported and as additional centrosome components are discovered.
Collapse
Affiliation(s)
- R Balczon
- Department of Structural and Cellular Biology, University of South Alabama, Mobile 36688, USA
| |
Collapse
|
72
|
Wolf KW, Joshi HC. Microtubule organization and the distribution of gamma-tubulin in spermatogenesis of a beetle, Tenebrio molitor (Tenebrionidae, Coleoptera, Insecta). J Cell Sci 1995; 108 ( Pt 12):3855-65. [PMID: 8719891 DOI: 10.1242/jcs.108.12.3855] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The present study focuses on the restructuring of the microtubule (MT) cytoskeleton and microtubule-organizing centres (MTOCs) throughout spermatogenesis of a darkling beetle, Tenebrio molitor (Tenebrionidae, Coleoptera, Insecta). To this end, serial ultrathin sections through male germ cells were studied using transmission electron microscopy. Additionally, spindles and young spermatids were isolated from testes under MT-stabilizing conditions and doubly labeled with antibodies against beta- and gamma-tubulin. The latter is a tubulin isoform detected in MTOCs of a wide variety of species. The observations suggest that microtubules may be nucleated from sites with and without high gamma-tubulin content and that these sites do not necessarily possess canonical centrosomes. In a prominent cytoplasmic MT system of primary spermatocytes in prophase, microtubule nucleation apparently occurs in the absence of immunologically detectable gamma-tubulin. At the poles of meiotic spindles, MTs are directly inserted into gamma-tubulin-containing material and this connection is considered responsible for their nucleation. The interzone spindle MTs of telophase cells contain gamma-tubulin and this may confer stability to them. Finally, manchette MTs of spermatids originate in the vicinity of the acrosome precursor but are not inserted into this body. The acrosome precursor is surrounded by a membrane and is clearly detected by the antibody against gamma-tubulin.
Collapse
Affiliation(s)
- K W Wolf
- Institut für Biologie, Medizinische Universität Lübeck, Deutschland
| | | |
Collapse
|
73
|
Debec A, Détraves C, Montmory C, Géraud G, Wright M. Polar organization of gamma-tubulin in acentriolar mitotic spindles of Drosophila melanogaster cells. J Cell Sci 1995; 108 ( Pt 7):2645-53. [PMID: 7593305 DOI: 10.1242/jcs.108.7.2645] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spindle pole localization of gamma-tubulin was compared in wild type and acentriolar cultured Drosophila cells using polyclonal antibodies specifically raised against the carboxy terminal amino acid sequence of Drosophila gamma-tubulin-1 (-KSEDSRSVTSAGS). During interphase, gamma-tubulin was present in the centrosome of wild type cells and accumulated around this organelle in a cell cycle dependent manner. In contrast, no such structure was observed in acentriolar cells. Wild type mitoses were homogeneously composed of biconical spindles, with two centrosome-associated gamma-tubulin spots at the poles. The mitotic apparatuses observed in the acentriolar cells were heterogeneous; multipolar mitoses, bipolar mitoses with a barrel-shaped spindle and bipolar mitoses with biconical spindles were observed. In acentriolar cells, gamma-tubulin accumulation at mitotic poles was dependent on spindle microtubule integrity. Most acentriolar spindles presented a dispersed gamma-tubulin labeling at the poles. Only well polarized and biconical acentriolar spindles showed a strong gamma-tubulin polar spot. Finally, acentriolar mitotic poles were not organized around true centrosomes. In contrast to wild type cells, in acentriolar cells the Bx63 centrosome-associated antigen was absent and the gamma-tubulin containing material dispersed readily following microtubule disassembly. These observations confirm that gamma-tubulin plays an essential role in the nucleation of microtubules even in the absence of mitotic polar organelles. In addition the data suggest that the mechanisms involved in the bipolarization of wild type and acentriolar mitoses are different, and that centrioles play a role in the spatial organization of the nucleating material containing gamma-tubulin.
Collapse
Affiliation(s)
- A Debec
- Groupe de Génétique Cellulaire et Moléculaire, Unité Associée du CNRS 1135, Université Paris 6, France
| | | | | | | | | |
Collapse
|
74
|
Burns RG. Analysis of the γ-tubulin sequences: implications for the functional properties of γ-tubulin. J Cell Sci 1995; 108 ( Pt 6):2123-30. [PMID: 7673333 DOI: 10.1242/jcs.108.6.2123] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- R G Burns
- Biophysics Section, Blackett Laboratory, Imperial College of Science, Technology and Medicine, London, UK
| |
Collapse
|
75
|
Sobel JS, Pinto-Correia C, Goldstein EG. Identification of an M(r) 60,000 polypeptide unique to the meiotic spindle of the mouse oocyte. Mol Reprod Dev 1995; 40:467-80. [PMID: 7598913 DOI: 10.1002/mrd.1080400411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The mouse oocyte expresses an M(r) 60,000 (p60) polypeptide that is associated with the first and second meiotic spindles. Immunoreactive p60 was not detectable in the meiotic spindles of male germ cells or in mitotic spindles. P60 was identified with a polyclonal antibody whose predominant activity is directed against ankyrin. However, immunoadsorption experiments demonstrated that p60 is not an ankyrin isoform and represents a secondary activity of the polyclonal antibody. Circumstantial evidence suggest that p60 may be a microtubule-associated protein. Since the most obvious difference between the female meiotic spindle and other spindles is the long half-life of the former, we hypothesize that p60 may function in the maintenance of the long-lived female meiotic apparatus.
Collapse
Affiliation(s)
- J S Sobel
- Department of Anatomical Sciences, State University of New York at Buffalo 14214, USA
| | | | | |
Collapse
|
76
|
Vassilev A, Kimble M, Silflow CD, LaVoie M, Kuriyama R. Identification of intrinsic dimer and overexpressed monomeric forms of gamma-tubulin in Sf9 cells infected with baculovirus containing the Chlamydomonas gamma-tubulin sequence. J Cell Sci 1995; 108 ( Pt 3):1083-92. [PMID: 7622595 DOI: 10.1242/jcs.108.3.1083] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new member of the tubulin superfamily, gamma-tubulin, is localized at microtubule-organizing centers (MTOCs) in a variety of organisms. Chlamydomonas cDNA coding for the full-length sequence of gamma-tubulin was expressed in insect ovarian Sf9 cells using the baculovirus expression system. Approximately half of the induced 52 kDa gamma-tubulin was recovered in the supernatant after centrifugation of Sf9 cell lysates at 18,000 g for 15 minutes. When the cell supernatant was analyzed by FPLC on a Superdex 200 sizing column, Chlamydomonas gamma-tubulin separated into two major peaks. The lagging peak contained a monomeric form of gamma-tubulin with a sedimentation coefficient of 2.5 S, which interacted with the Superdex column in a salt-dependent manner. The leading peak, with an apparent molecular mass of 900 kDa, corresponded to a molecular chaperonin complex, and TCP1 chaperonin released folded gamma-tubulin polypeptide from the complex in the presence of MgATP. The released gamma-tubulin monomers were capable of binding to microtubules in vitro and biochemical quantities of active monomers were further purified using a combination of size-exclusion and ion-exchange column chromatography. The endogenous Sf9 cell gamma-tubulin migrated faster than Chlamydomonas gamma-tubulin with an apparent molecular mass of 49 kDa on gels. Analyses on gel filtration and sucrose density gradient centrifugation showed that, while overexpressed Chlamydomonas gamma-tubulin was present in a monomeric form, endogenous gamma-tubulin from Sf9 and HeLa cells exists as a dimer. These results may suggest the possibility that gamma-tubulin could form a heterodimer with hitherto unknown molecule(s).
Collapse
Affiliation(s)
- A Vassilev
- Department of Cell Biology and Neuroanatomy, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | |
Collapse
|
77
|
Simerly C, Wu GJ, Zoran S, Ord T, Rawlins R, Jones J, Navara C, Gerrity M, Rinehart J, Binor Z, Asch R, Schatten G. The paternal inheritance of the centrosome, the cell's microtubule-organizing center, in humans, and the implications for infertility. Nat Med 1995; 1:47-52. [PMID: 7584952 DOI: 10.1038/nm0195-47] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Successful fertilization in humans, achieved when parental chromosomes intermix at first mitosis, requires centrosome restoration and microtubule-mediated motility. Imaging of inseminated human oocytes reveals that the sperm introduces the centrosome. The centrosome then nucleates the new microtubule assembly to form the sperm aster--a step essential for successful fertilization. Oocytes from some infertile patients failed to complete fertilization because of defects in uniting the sperm and egg nuclei, indicating that failure to properly effect the cytoplasmic motions uniting the nuclei results in human infertility. These discoveries have important implications for infertility diagnosis and managing reproduction.
Collapse
Affiliation(s)
- C Simerly
- Department of Zoology, University of Wisconsin, Madison 53706, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Liu B, Joshi HC, Palevitz BA. Experimental manipulation of gamma-tubulin distribution in Arabidopsis using anti-microtubule drugs. CELL MOTILITY AND THE CYTOSKELETON 1995; 31:113-29. [PMID: 7553905 DOI: 10.1002/cm.970310204] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
gamma-Tubulin-specific antibodies stain the microtubule (Mt) arrays of Arabidopsis suspension cells in a punctate or patchy manner. During division, staining of kinetochore fibers and the phragmoplast is extensive, except in the vicinity of the plus ends at the metaphase plate and cell plate. gamma-Tubulin localization responds to low levels of colchicine, with staining receding farther toward the minus (pole) ends of kinetochore fibers. At higher drug concentrations, gamma-tubulin also associates with abnormal Mt foci as well as with the surface of the daughter nuclei facing the phragmoplast. During UV-induced recovery from colchicine, gamma-tubulin increases along the presumptive minus ends of mitotic Mts as well as the phragmoplast near the daughter nuclei. With CIPC, immunostaining is concentrated around the centers of focal Mt arrays in multipolar spindles. In the presence of taxol, Mts are more prominent but the mitotic apparatus and phragmoplast are abnormal. As with CIPC, gamma-tubulin is concentrated at focal arrays. Increased punctate staining is also present in interphase arrays, with fluorescent dots often located at the ends of Mts. These results support a preferential association between gamma-tubulin and Mt minus ends, but are also consistent with more general binding along the walls of Mts. Thus, minus ends (and Mt nucleation sites) may be present throughout plant Mt arrays, but gamma-tubulin may also serve another function, such as in structural stabilization.
Collapse
Affiliation(s)
- B Liu
- Department of Botany, University of Georgia, Athens 30602-7271, USA
| | | | | |
Collapse
|
79
|
Lajoie-Mazenc I, Tollon Y, Detraves C, Julian M, Moisand A, Gueth-Hallonet C, Debec A, Salles-Passador I, Puget A, Mazarguil H. Recruitment of antigenic gamma-tubulin during mitosis in animal cells: presence of gamma-tubulin in the mitotic spindle. J Cell Sci 1994; 107 ( Pt 10):2825-37. [PMID: 7876350 DOI: 10.1242/jcs.107.10.2825] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been claimed repeatedly that gamma-tubulin is exclusively localized at the spindle poles in mitotic animal cells, where it plays a role in microtubule nucleation. In addition to this localization, we have observed a gamma-tubulin-specific staining of the mitotic spindle in several animal cells (human, kangaroo rat, mouse, Chinese hamster, Xenopus and Drosophila) using five polyclonal antibodies raised against unique gamma-tubulin sequences and four different fixation protocols. In HeLa and PtK2 cells, gamma-tubulin was detected in the mitotic spindle from late prometaphase to telophase. In contrast, in other cell types, it was detected in metaphase only. In all cases we failed to detect gamma-tubulin in the short aster microtubules at the spindle poles. Electron microscopic observation revealed that at least part of the gamma-tubulin localized on the surface of spindle microtubules with a preferential distribution along kinetochore microtubules. In HeLa cells, the amount of antigenic gamma-tubulin was fairly constant in the spindle poles during mitosis from prometaphase to telophase. In contrast, gamma-tubulin appeared in the mitotic spindles in prometaphase. The amount of gamma-tubulin decreased in telophase, where it relocalized in the interzone. In metaphase cells about 15–25% of the total fluorescence was localized at the spindle poles, while 75–85% of the fluorescence was distributed over the rest of the spindle. These results suggest that the localization and timing of gamma-tubulin during the cell cycle is highly regulated and that is physiological role could be more complex and diverse than initially assumed.
Collapse
Affiliation(s)
- I Lajoie-Mazenc
- Laboratoire de Pharmacologie et de Toxicologie Fondamentales CNRS, Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
The polar assembly of cellular microtubules is organized by microtubule organizing centers (MTOCs). Eukaryotic cells across different species, and different cell types within single species, have morphologically diverse MTOCs, which have the common function of organizing microtubule arrays by initiating microtubule assembly and anchoring microtubules by their slow-growing 'minus' ends, thus ensuring that the rapidly growing 'plus' ends extend distally. The past few years have witnessed a variety of approaches aimed at defining the molecular components of the MTOC that are responsible for regulating microtubule assembly by defining molecules common to all MTOCs.
Collapse
Affiliation(s)
- H C Joshi
- Department of Anatomy and Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
81
|
Abstract
In eukaryotic cells a specialized organelle called the microtubule organizing center (MTOC) is responsible for disposition of microtubules in a radial, polarized array in interphase cells and in the spindle in mitotic cells. Eukaryotic cells across different species, and different cell types within single species, have morphologically diverse MTOCs, but these share a common function of organizing microtubule arrays. MTOCs effect microtubule organization by initiating microtubule assembly and anchoring microtubules by their slowly growing minus ends, thus ensuring that the rapidly growing plus ends extend distally in each microtubule array. The goal is to define molecular components of the MTOC responsible for regulating microtubule assembly. One approach to defining the molecules responsible for MTOC function is to look for molecules common to all MTOCs. A newly discovered centrosomal protein, gamma-tubulin, is found in MTOCs in cells from many different organisms, and has several properties which make it a candidate for both initiation of microtubule assembly and anchorage. The hypothesis that gamma-tubulin plays a role in MTOCs in microtubule initiation and anchorage is currently being tested by a variety of experimental approaches.
Collapse
Affiliation(s)
- H C Joshi
- Department of Anatomy and Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|