51
|
Wang XH, Guo YW, Tolba E, Kokkinopoulou M, Wiens M, Schröder HC, Müller WEG. Two-Armed Activation of Bone Mineral Deposition by the Flavones Baicalin and Baicalein, Encapsulated in Polyphosphate Microparticles. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:533-555. [PMID: 28367715 DOI: 10.1142/s0192415x1750032x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, we investigated the effect of the two flavonoids, baicalin (baicalein 7-O-[Formula: see text]- d-glucuronic acid) and its aglycone, baicalein (5,6,7-trihydroxyflavone), after encapsulation into amorphous calcium polyphosphate (Ca-polyP) microparticles on mineralization of primary human osteoblasts (phOSB). Both flavonoids, which come from root extracts of Scutellaria baicalensis Georgi, are used in Traditional Chinese Medicine, and are nontoxic in cells up to a concentration of 3[Formula: see text][Formula: see text]g/ml. The morphogenetically active, energy-rich Ca-polyP particles with a stoichiometric P:Ca ratio of 1:2 are degraded by cellular alkaline phosphatase (ALP) to ortho-phosphate used for bone hydroxyapatite formation. Here we show that the flavone-loaded Ca-polyP microparticles are readily taken up by phOSB, resulting in the accumulation of polyP around the nuclei and the formation of intracellular vesicles containing the ALP. In addition, we demonstrate that baicalin/baicalein causes a rise of the intracellular calcium [Ca[Formula: see text]]i a level which markedly is augmented after encapsulation into Ca-polyP, through activation of the phospholipase C. Moreover, both flavones, either alone or associated with Ca-polyP microparticles, upregulate the expression of the osteoblast calcium efflux channel, the plasma membrane Ca[Formula: see text]-ATPase (PMCA), while the expression of ALP, which promotes bone mineralization, is induced by Ca-polyP and by the flavones only if present in the Ca-polyP-microparticle-associated form. As a result, the extent of bone mineralization is markedly enhanced. Based on the two-armed activating function, new applications of baicalin/baicalein as a component of nutriceuticals for osteoporosis prevention or bone implants can be envisaged.
Collapse
Affiliation(s)
- Xiao-Hong Wang
- * ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| | - Yue-Wei Guo
- † State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Emad Tolba
- * ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| | | | - Matthias Wiens
- * ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| | - Heinz C Schröder
- * ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| | - Werner E G Müller
- * ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| |
Collapse
|
52
|
Biocalcite and Carbonic Acid Activators. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017. [PMID: 28238040 DOI: 10.1007/978-3-319-51284-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Based on evolution of biomineralizing systems and energetic considerations, there is now compelling evidence that enzymes play a driving role in the formation of the inorganic skeletons from the simplest animals, the sponges, up to humans. Focusing on skeletons based on calcium minerals, the principle enzymes involved are the carbonic anhydrase (formation of the calcium carbonate-based skeletons of many invertebrates like the calcareous sponges, as well as deposition of the calcium carbonate bioseeds during human bone formation) and the alkaline phosphatase (providing the phosphate for bone calcium phosphate-hydroxyapatite formation). These two enzymes, both being involved in human bone formation, open novel not yet exploited targets for pharmacological intervention of human bone diseases like osteoporosis, using compounds that act as activators of these enzymes. This chapter focuses on carbonic anhydrases of biomedical interest and the search for potential activators of these enzymes, was well as the interplay between carbonic anhydrase-mediated calcium carbonate bioseed synthesis and metabolism of energy-rich inorganic polyphosphates. Beyond that, the combination of the two metabolic products, calcium carbonate and calcium-polyphosphate, if applied in an amorphous form, turned out to provide the basis for a new generation of scaffold materials for bone tissue engineering and repair that are, for the first time, morphogenetically active.
Collapse
|
53
|
Müller WEG, Neufurth M, Ackermann M, Tolba E, Wang S, Feng Q, Schröder HC, Wang X. Fabrication of a new physiological macroporous hybrid biomaterial/bioscaffold material based on polyphosphate and collagen by freeze-extraction. J Mater Chem B 2017; 5:3823-3835. [DOI: 10.1039/c7tb00306d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A macroporous hybrid biomaterial/bioscaffold material, eliciting morphogenetic activity, was fabricated with polyphosphate, chondroitin sulfate and collagen by the freeze-extraction technology.
Collapse
Affiliation(s)
- Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- D-55128 Mainz
- Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- D-55128 Mainz
- Germany
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy
- University Medical Center of the Johannes Gutenberg University
- D-55099 Mainz
- Germany
| | - Emad Tolba
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- D-55128 Mainz
- Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- D-55128 Mainz
- Germany
| | - Qingling Feng
- Key Laboratory of Advanced Materials of Ministry of Education of China
- School of Materials Science and Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- D-55128 Mainz
- Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- D-55128 Mainz
- Germany
| |
Collapse
|
54
|
Müller WEG, Wang X, Schröder HC. New Target Sites for Treatment of Osteoporosis. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 55:187-219. [PMID: 28238039 DOI: 10.1007/978-3-319-51284-6_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the last few years, much progress has been achieved in the discovery of new drug target sites for treatment of osteoporotic disorders, one of the main challenging diseases with a large burden for the public health systems. Among these new agents promoting bone formation, shifting the impaired equilibrium between bone anabolism and bone catabolism in the direction of bone synthesis are inorganic polymers, in particular inorganic polyphosphates that show strong stimulatory effects on the expression of bone anabolic marker proteins and hydroxyapatite formation. The bone-forming activity of these polymers can even be enhanced by combination with certain small molecules like quercetin, or if given as functionally active particles with certain divalent cations like strontium ions even showing by itself biological activity. This chapter summarizes recent developments in the search and development of novel anti-osteoporotic agents, with a particular focus on therapeutic approaches based on the potential application of inorganic polymers and combinations.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany. .,NanotecMARIN GmbH, Duesbergweg 6, 55128, Mainz, Germany.
| | - Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.,NanotecMARIN GmbH, Duesbergweg 6, 55128, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.,NanotecMARIN GmbH, Duesbergweg 6, 55128, Mainz, Germany
| |
Collapse
|
55
|
Schröder HC, Tolba E, Diehl-Seifert B, Wang X, Müller WEG. Electrospinning of Bioactive Wound-Healing Nets. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 55:259-290. [PMID: 28238041 DOI: 10.1007/978-3-319-51284-6_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The availability of appropriate dressings for treatment of wounds, in particular chronic wounds, is a task that still awaits better solutions than provided by currently applied materials. The method of electrospinning enables the fabrication of novel materials for wound dressings due to the high surface area and porosity of the electrospun meshes and the possibility to include bioactive ingredients. Recent results show that the incorporation of biologically active inorganic polyphosphate microparticles and microspheres and synergistically acting retinoids into electrospun polymer fibers yields biocompatible and antibacterial mats for potential dressings with improved wound-healing properties. The underlying principles and the mechanism of these new approaches in the therapy wounds, in particular wounds showing impaired healing, as well as for further applications in skin regeneration/repair, are summarized.
Collapse
Affiliation(s)
- Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.
- NanotecMARIN GmbH, Duesbergweg 6, 55128, Mainz, Germany.
| | - Emad Tolba
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Bärbel Diehl-Seifert
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
- NanotecMARIN GmbH, Duesbergweg 6, 55128, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
- NanotecMARIN GmbH, Duesbergweg 6, 55128, Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.
- NanotecMARIN GmbH, Duesbergweg 6, 55128, Mainz, Germany.
| |
Collapse
|
56
|
Lui ELH, Ao CKL, Li L, Khong ML, Tanner JA. Inorganic polyphosphate triggers upregulation of interleukin 11 in human osteoblast-like SaOS-2 cells. Biochem Biophys Res Commun 2016; 479:766-771. [PMID: 27693781 DOI: 10.1016/j.bbrc.2016.09.137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 09/26/2016] [Indexed: 02/03/2023]
Abstract
Polyphosphate (polyP) is abundant in bone but its roles in signaling and control of gene expression remain unclear. Here, we investigate the effect of extracellular polyP on proliferation, migration, apoptosis, gene and protein expression in human osteoblast-like SaOS-2 cells. Extracellular polyP promoted SaOS-2 cell proliferation, increased rates of migration, inhibited apoptosis and stimulated the rapid phosphorylation of extracellular-signal-regulated kinase (ERK) directly through basic fibroblast growth factor receptor (bFGFR). cDNA microarray revealed that polyP induced significant upregulation of interleukin 11 (IL-11) at both RNA and protein levels.
Collapse
Affiliation(s)
- Eric Lik-Hang Lui
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Carl Ka-Leong Ao
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Lina Li
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Mei-Li Khong
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Julian Alexander Tanner
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
57
|
Müller WE, Neufurth M, Tolba E, Wang S, Geurtsen W, Feng Q, Schröder HC, Wang X. A biomimetic approach to ameliorate dental hypersensitivity by amorphous polyphosphate microparticles. Dent Mater 2016; 32:775-83. [DOI: 10.1016/j.dental.2016.03.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/10/2016] [Accepted: 03/22/2016] [Indexed: 12/30/2022]
|
58
|
Role of inorganic polyphosphate in mammalian cells: from signal transduction and mitochondrial metabolism to cell death. Biochem Soc Trans 2016; 44:40-5. [DOI: 10.1042/bst20150223] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Inorganic polyphosphate (polyP) is a polymer compromised of linearly arranged orthophosphate units that are linked through high-energy phosphoanhydride bonds. The chain length of this polymer varies from five to several thousand orthophosphates. PolyP is distributed in the most of the living organisms and plays multiple functions in mammalian cells, it is important for blood coagulation, cancer, calcium precipitation, immune response and many others. Essential role of polyP is shown for mitochondria, from implication into energy metabolism and mitochondrial calcium handling to activation of permeability transition pore (PTP) and cell death. PolyP is a gliotransmitter which transmits the signal in astrocytes via activation of P2Y1 receptors and stimulation of phospholipase C. PolyP-induced calcium signal in astrocytes can be stimulated by different lengths of this polymer but only long chain polyP induces mitochondrial depolarization by inhibition of respiration and opening of the PTP. It leads to induction of astrocytic cell death which can be prevented by inhibition of PTP with cyclosporine A. Thus, medium- and short-length polyP plays role in signal transduction and mitochondrial metabolism of astrocytes and long chain of this polymer can be toxic for the cells.
Collapse
|
59
|
Müller WE, Tolba E, Schröder HC, Muñoz-Espí R, Diehl-Seifert B, Wang X. Amorphous polyphosphate-hydroxyapatite: A morphogenetically active substrate for bone-related SaOS-2 cells in vitro. Acta Biomater 2016; 31:358-367. [PMID: 26654764 DOI: 10.1016/j.actbio.2015.11.060] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/24/2015] [Accepted: 11/29/2015] [Indexed: 12/22/2022]
Abstract
There is increasing evidence that inorganic calcium-polyphosphates (polyP) are involved in human bone hydroxyapatite (HA) formation. Here we investigated the morphology of the particles, containing calcium phosphate (CaP) with different concentrations of various Na-polyP concentrations, as well as their effects in cell culture. We used both SaOS-2 cells and human mesenchymal stem cells. The polymeric phosphate readily binds calcium ions under formation of insoluble precipitates. We found that addition of low concentrations of polyP (<10wt.%, referred to the CaP deposits) results in an increased size of the HA crystals. Surprisingly, at higher polyP concentrations (>10wt.%) the formation of crystalline HA is prevented and amorphous polyP/HA hybrid particles with a size of ≈50nm are formed, most likely consisting of polyP molecules linked via Ca(2+) bridges to the surface of the CaP deposits. Further studies revealed that the polyP-CaP particles cause a strong upregulation of the expression of the genes encoding for two marker proteins of bone formation, collagen type I and alkaline phosphatase. Based on their morphogenetic activity the amorphous polyP-CaP particles offer a promising material for the development of bone implants, formed from physiological inorganic precursors/polymers. STATEMENT OF SIGNIFICANCE Hydroxyapatite (HA) is a naturally occurring mineral of vertebrate bone. Natural HA, a bio-ceramic material which is crystalline to different scale, has been used as a biomaterial to fabricate scaffolds for in situ bone regeneration and other tissue engineering purposes. In contrast to natural HA, synthetic apatite is much less effective. In general, while HA is bioactive, its interaction and biocompatibility with existing bone tissue is low. These properties have been attributed to a minimal degradability in the physiological environment. In the present study we introduce a new Ca-phosphate (CaP) fabrication technology, starting from calcium chloride and dibasic ammonium phosphate with the HA characteristic Ca/P molar ratio of 10:6 and report that after addition >10% (by weight) of polyphosphate (polyP) amorphous CaP/HA samples were obtained. Those samples elicits strong morphogenetic activity let us to conclude that polyP/HA-based material might be beneficial for application as bone substitute implant.
Collapse
|
60
|
Wang X, Huang J, Wang K, Neufurth M, Schröder HC, Wang S, Müller WE. The morphogenetically active polymer, inorganic polyphosphate complexed with GdCl 3 , as an inducer of hydroxyapatite formation in vitro. Biochem Pharmacol 2016; 102:97-106. [DOI: 10.1016/j.bcp.2015.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 12/14/2015] [Indexed: 12/30/2022]
|
61
|
Müller WEG, Schröder HC, Tolba E, Diehl-Seifert B, Wang X. Mineralization of bone-related SaOS-2 cells under physiological hypoxic conditions. FEBS J 2015; 283:74-87. [PMID: 26453899 DOI: 10.1111/febs.13552] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 12/18/2022]
Abstract
Inorganic polyphosphate (polyP) is a physiological energy-rich polymer with multiple phosphoric anhydride bonds. In cells such as bone-forming osteoblasts, glycolysis is the main pathway generating metabolic energy in the form of ATP. In the present study, we show that, under hypoxic culture conditions, the growth/viability of osteoblast-like SaOS-2 cells is not impaired. The addition of polyP to those cells, administered as amorphous calcium polyP nanoparticles (aCa-polyP-NP; approximate size 100 nm), significantly increased the proliferation of the cells. In the presence of polyP, the cells produce significant levels of lactate, the end product of anaerobic glycolysis. Under those conditions, an eight-fold increase in the steady-state level of the membrane-associated carbonic anhydrase IX is found, as well as a six-fold induction of the hypoxia-inducible factor 1. Consequently, biomineral formation onto the SaOS-2 cells decreases under low oxygen tension. If the polyP nanoparticles are added to the cells, the degree of mineralization is enhanced. These changes had been measured also in human mesenchymal stem cells. The assumption that the bicarbonate, generated by the carbonic anhydrase in the presence of polyP under low oxygen, is deposited as a constituent of the bioseeds formed during initial hydroxyapatite formation is corroborated by the identification of carbon besides of calcium, oxygen and phosphorus in the initial biomineral deposit onto the cells using the sensitive technology of high-resolution energy dispersive spectrometry mapping. Based on these data, we conclude that polyP is required for the supply of metabolic energy during bone mineral formation under physiological, hypoxic conditions, acting as a 'metabolic fuel' for the cells to grow.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Emad Tolba
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Bärbel Diehl-Seifert
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
62
|
Controlled release of drugs in electrosprayed nanoparticles for bone tissue engineering. Adv Drug Deliv Rev 2015; 94:77-95. [PMID: 26415888 DOI: 10.1016/j.addr.2015.09.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 08/28/2015] [Accepted: 09/18/2015] [Indexed: 12/17/2022]
Abstract
Generating porous topographic substrates, by mimicking the native extracellular matrix (ECM) to promote the regeneration of damaged bone tissues, is a challenging process. Generally, scaffolds developed for bone tissue regeneration support bone cell growth and induce bone-forming cells by natural proteins and growth factors. Limitations are often associated with these approaches such as improper scaffold stability, and insufficient cell adhesion, proliferation, differentiation, and mineralization with less growth factor expression. Therefore, the use of engineered nanoparticles has been rapidly increasing in bone tissue engineering (BTE) applications. The electrospray technique is advantageous over other conventional methods as it generates nanomaterials of particle sizes in the micro/nanoscale range. The size and charge of the particles are controlled by regulating the polymer solution flow rate and electric voltage. The unique properties of nanoparticles such as large surface area-to-volume ratio, small size, and higher reactivity make them promising candidates in the field of biomedical engineering. These nanomaterials are extensively used as therapeutic agents and for drug delivery, mimicking ECM, and restoring and improving the functions of damaged organs. The controlled and sustained release of encapsulated drugs, proteins, vaccines, growth factors, cells, and nucleotides from nanoparticles has been well developed in nanomedicine. This review provides an insight into the preparation of nanoparticles by electrospraying technique and illustrates the use of nanoparticles in drug delivery for promoting bone tissue regeneration.
Collapse
|
63
|
Wang X, Schröder HC, Müller WEG. Polyphosphate as a metabolic fuel in Metazoa: A foundational breakthrough invention for biomedical applications. Biotechnol J 2015; 11:11-30. [PMID: 26356505 DOI: 10.1002/biot.201500168] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/24/2015] [Accepted: 08/19/2015] [Indexed: 12/17/2022]
Abstract
In animals, energy-rich molecules like ATP are generated in the intracellular compartment from metabolites, e.g. glucose, taken up by the cells. Recent results revealed that inorganic polyphosphates (polyP) can provide an extracellular system for energy transport and delivery. These polymers of multiple phosphate units, linked by high-energy phosphoanhydride bonds, use blood platelets as transport vehicles to reach their target cells. In this review it is outlined how polyP affects cell metabolism. It is discussed that polyP influences cell activity in a dual way: (i) as a metabolic fuel transferring metabolic energy through the extracellular space; and (ii) as a signaling molecule that amplifies energy/ATP production in mitochondria. Several metabolic pathways are triggered by polyP, among them biomineralization/hydroxyapatite formation onto bone cells. The accumulation of polyP in the platelets allows long-distance transport of the polymer in the extracellular space. The discovery of polyP as metabolic fuel and signaling molecule initiated the development of novel techniques for encapsulation of polyP into nanoparticles. They facilitate cellular uptake of the polymer by receptor-mediated endocytosis and allow the development of novel strategies for therapy of metabolic diseases associated with deviations in energy metabolism or mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Rheinland-Pfalz, Germany.
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Rheinland-Pfalz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Rheinland-Pfalz, Germany.
| |
Collapse
|
64
|
Lichko L, Kulakovskaya T. Polyphosphatase PPX1 of <i>Saccharomyces cerevisiae</i> as a Tool for Polyphosphate Assay. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/aer.2015.34010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
65
|
Müller WEG, Tolba E, Schröder HC, Wang S, Glasser G, Diehl-Seifert B, Wang X. Biologizing titanium alloy implant material with morphogenetically active polyphosphate. RSC Adv 2015. [DOI: 10.1039/c5ra14240g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
As a further step towards a new generation of bone implant materials, we developed a procedure for biological functionalization of titanium alloy surfaces with inorganic calcium polyphosphate (Ca-polyP).
Collapse
Affiliation(s)
- Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- D-55128 Mainz
- Germany
| | - Emad Tolba
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- D-55128 Mainz
- Germany
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- D-55128 Mainz
- Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- D-55128 Mainz
- Germany
| | - Gunnar Glasser
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | | | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University
- D-55128 Mainz
- Germany
| |
Collapse
|