51
|
Sharma S, Conover GM, Elliott JL, Der Perng M, Herrmann H, Quinlan RA. αB-crystallin is a sensor for assembly intermediates and for the subunit topology of desmin intermediate filaments. Cell Stress Chaperones 2017; 22:613-626. [PMID: 28470624 PMCID: PMC5465037 DOI: 10.1007/s12192-017-0788-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/07/2017] [Accepted: 03/16/2017] [Indexed: 12/04/2022] Open
Abstract
Mutations in the small heat shock protein chaperone CRYAB (αB-crystallin/HSPB5) and the intermediate filament protein desmin, phenocopy each other causing cardiomyopathies. Whilst the binding sites for desmin on CRYAB have been determined, desmin epitopes responsible for CRYAB binding and also the parameters that determine CRYAB binding to desmin filaments are unknown. Using a combination of co-sedimentation centrifugation, viscometric assays and electron microscopy of negatively stained filaments to analyse the in vitro assembly of desmin filaments, we show that the binding of CRYAB to desmin is subject to its assembly status, to the subunit organization within filaments formed and to the integrity of the C-terminal tail domain of desmin. Our in vitro studies using a rapid assembly protocol, C-terminally truncated desmin and two disease-causing mutants (I451M and R454W) suggest that CRYAB is a sensor for the surface topology of the desmin filament. Our data also suggest that CRYAB performs an assembly chaperone role because the assembling filaments have different CRYAB-binding properties during the maturation process. We suggest that the capability of CRYAB to distinguish between filaments with different surface topologies due either to mutation (R454W) or assembly protocol is important to understanding the pathomechanism(s) of desmin-CRYAB myopathies.
Collapse
Affiliation(s)
- Sarika Sharma
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Gloria M Conover
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Jayne L Elliott
- Department of Biosciences and the Biophysical Sciences Institute, University of Durham, Durham, UK
| | - Ming Der Perng
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
- Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Roy A Quinlan
- Department of Biosciences and the Biophysical Sciences Institute, University of Durham, Durham, UK.
| |
Collapse
|
52
|
Brodehl A, Gaertner-Rommel A, Klauke B, Grewe SA, Schirmer I, Peterschröder A, Faber L, Vorgerd M, Gummert J, Anselmetti D, Schulz U, Paluszkiewicz L, Milting H. The novel αB-crystallin (CRYAB) mutation p.D109G causes restrictive cardiomyopathy. Hum Mutat 2017; 38:947-952. [PMID: 28493373 DOI: 10.1002/humu.23248] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 11/09/2022]
Abstract
Restrictive cardiomyopathy (RCM) is a rare heart disease characterized by diastolic dysfunction and atrial enlargement. The genetic etiology of RCM is not completely known. We identified by a next-generation sequencing panel the novel CRYAB missense mutation c.326A>G, p.D109G in a small family with RCM in combination with skeletal myopathy with an early onset of the disease. CRYAB encodes αB-crystallin, a member of the small heat shock protein family, which is highly expressed in cardiac and skeletal muscle. In addition to in silico prediction analysis, our structural analysis of explanted myocardial tissue of a mutation carrier as well as in vitro cell transfection experiments revealed abnormal protein aggregation of mutant αB-crystallin and desmin, supporting the deleterious effect of this novel mutation. In conclusion, CRYAB appears to be a novel RCM gene, which might have relevance for the molecular diagnosis and the genetic counseling of further affected families in the future.
Collapse
Affiliation(s)
- Andreas Brodehl
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Bad Oeynhausen, Germany
| | - Anna Gaertner-Rommel
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Bad Oeynhausen, Germany
| | - Bärbel Klauke
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Bad Oeynhausen, Germany
| | - Simon Andre Grewe
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Bad Oeynhausen, Germany
| | - Ilona Schirmer
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Bad Oeynhausen, Germany
| | - Andreas Peterschröder
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Institute of Radiology, Nuclear Medicine and Molecular Imaging, Bad Oeynhausen, Germany
| | - Lothar Faber
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Clinic of Cardiology, Bad Oeynhausen, Germany
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Jan Gummert
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Bad Oeynhausen, Germany
| | - Dario Anselmetti
- Bielefeld University and Bielefeld Institute for Nanoscience (BINAS), Faculty of Physics, Experimental Biophysics and Applied Nanoscience, Bielefeld, Germany
| | - Uwe Schulz
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Bad Oeynhausen, Germany
| | - Lech Paluszkiewicz
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Bad Oeynhausen, Germany
| | - Hendrik Milting
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, Erich and Hanna Klessmann Institute for Cardiovascular Research & Development (EHKI), Bad Oeynhausen, Germany
| |
Collapse
|
53
|
Guichard JL, Rogowski M, Agnetti G, Fu L, Powell P, Wei CC, Collawn J, Dell'Italia LJ. Desmin loss and mitochondrial damage precede left ventricular systolic failure in volume overload heart failure. Am J Physiol Heart Circ Physiol 2017; 313:H32-H45. [PMID: 28455287 PMCID: PMC5538858 DOI: 10.1152/ajpheart.00027.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/27/2017] [Accepted: 04/10/2017] [Indexed: 01/10/2023]
Abstract
Heart failure due to chronic volume overload (VO) in rats and humans is characterized by disorganization of the cardiomyocyte desmin/mitochondrial network. Here, we tested the hypothesis that desmin breakdown is an early and continuous process throughout VO. Male Sprague-Dawley rats had aortocaval fistula (ACF) or sham surgery and were examined 24 h and 4 and 12 wk later. Desmin/mitochondrial ultrastructure was examined by transmission electron microscopy (TEM) and immunohistochemistry (IHC). Protein and kinome analysis were performed in isolated cardiomyocytes, and desmin cleavage was assessed by mass spectrometry in left ventricular (LV) tissue. Echocardiography demonstrated a 40% decrease in the LV mass-to-volume ratio with spherical remodeling at 4 wk with ACF and LV systolic dysfunction at 12 wk. Starting at 24 h and continuing to 4 and 12 wk, with ACF there is TEM evidence of extensive mitochondrial clustering, IHC evidence of disorganization associated with desmin breakdown, and desmin protein cleavage verified by Western blot analysis and mass spectrometry. IHC results revealed that ACF cardiomyocytes at 4 and 12 wk had perinuclear translocation of αB-crystallin from the Z disk with increased α, β-unsaturated aldehyde 4-hydroxynonelal. Use of protein markers with verification by TUNEL staining and kinome analysis revealed an absence of cardiomyocyte apoptosis at 4 and 12 wk of ACF. Significant increases in protein indicators of mitophagy were countered by a sixfold increase in p62/sequestosome-1, which is indicative of an inability to complete autophagy. An early and continuous disruption of the desmin/mitochondrial architecture, accompanied by oxidative stress and inhibition of apoptosis and mitophagy, suggests its causal role in LV dilatation and systolic dysfunction in VO.NEW & NOTEWORTHY This study provides new evidence of early onset (24 h) and continuous (4-12 wk) desmin misarrangement and disruption of the normal sarcomeric and mitochondrial architecture throughout the progression of volume overload heart failure, suggesting a causal link between desmin cleavage and mitochondrial disorganization and damage.
Collapse
Affiliation(s)
- Jason L Guichard
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama.,Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michael Rogowski
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama.,Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Giulio Agnetti
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; and
| | - Lianwu Fu
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Pamela Powell
- Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | - Chih-Chang Wei
- Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | - James Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Louis J Dell'Italia
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama; .,Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
54
|
Batonnet-Pichon S, Behin A, Cabet E, Delort F, Vicart P, Lilienbaum A. Myofibrillar Myopathies: New Perspectives from Animal Models to Potential Therapeutic Approaches. J Neuromuscul Dis 2017; 4:1-15. [PMID: 28269794 PMCID: PMC5345645 DOI: 10.3233/jnd-160203] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Myofibrillar myopathies (MFMs) are muscular disorders involving proteins that play a role in the structure, maintenance processes and protein quality control mechanisms closely related to the Z-disc in the muscular fibers. MFMs share common histological characteristics including progressive disorganization of the interfibrillar network and protein aggregation. Currently no treatment is available. In this review, we describe first clinical symptoms associated with mutations of the six genes (DES, CRYAB, MYOT, ZASP, FLNC and BAG3) primary involved in MFM and defining the origin of this pathology. As mechanisms determining the aetiology of the disease remain unclear yet, several research teams have developed animal models from invertebrates to mammalians species. Thus we describe here these different models that often recapitulate human clinical symptoms. Therefore they are very useful for deeper studies to understand early molecular and progressive mechanisms determining the pathology. Finally in the last part, we emphasize on the potential therapeutic approaches for MFM that could be conducted in the future. In conclusion, this review offers a link from patients to future therapy through the use of MFMs animal models.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Drosophila
- Humans
- Mice
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Mutation
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/pathology
- Myopathies, Structural, Congenital/physiopathology
- Myopathies, Structural, Congenital/therapy
- Oryzias
Collapse
Affiliation(s)
- Sabrina Batonnet-Pichon
- Unité de Biologie Fonctionnelle et Adaptative, Université Paris Diderot, Sorbonne Paris Cité, CNRS, UMR, Paris, France
| | - Anthony Behin
- Centre de Référence de Pathologie Neuromusculaire Paris-Est, groupe hospitalier Pitié-Salpêtrière, institut de Myologie, AP-HP, boulevard de l’Hôpital, Paris cedex 13, France
| | - Eva Cabet
- Unité de Biologie Fonctionnelle et Adaptative, Université Paris Diderot, Sorbonne Paris Cité, CNRS, UMR, Paris, France
| | - Florence Delort
- Unité de Biologie Fonctionnelle et Adaptative, Université Paris Diderot, Sorbonne Paris Cité, CNRS, UMR, Paris, France
| | - Patrick Vicart
- Unité de Biologie Fonctionnelle et Adaptative, Université Paris Diderot, Sorbonne Paris Cité, CNRS, UMR, Paris, France
| | - Alain Lilienbaum
- Unité de Biologie Fonctionnelle et Adaptative, Université Paris Diderot, Sorbonne Paris Cité, CNRS, UMR, Paris, France
| |
Collapse
|
55
|
Guo Y, Deng X, Chen S, Yang L, Ni J, Wang R, Lin J, Bai M, Jia Z, Huang S, Zhang A. MicroRNA-30e targets BNIP3L to protect against aldosterone-induced podocyte apoptosis and mitochondrial dysfunction. Am J Physiol Renal Physiol 2016; 312:F589-F598. [PMID: 27974319 DOI: 10.1152/ajprenal.00486.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs are essential for the maintenance of podocyte homeostasis. Emerging evidence has demonstrated a protective role of microRNA-30a (miR-30a), a member of the miR-30 family, in podocyte injury. However, the roles of other miR-30 family members in podocyte injury are unclear. The present study was undertaken to investigate the contribution of miR-30e to the pathogenesis of podocyte injury induced by aldosterone (Aldo), as well as the underlying mechanism. After Aldo treatment, miR-30e was reduced in a dose-and time-dependent manner. Notably, overexpression of miR-30e markedly attenuated Aldo-induced apoptosis in podocytes. In agreement with this finding, miR-30e silencing led to significant podocyte apoptosis. Mitochondrial dysfunction (MtD) has been shown to be an early event in Aldo-induced podocyte injury. Here we found that overexpression of miR-30e improved Aldo-induced MtD while miR-30e silencing resulted in MtD. Next, we found that miR-30e could directly target the BCL2/adenovirus E1B-interacting protein 3-like (BNIP3L) gene. Aldo markedly enhanced BNIP3L expression in podocytes, and silencing of BNIP3L largely abolished Aldo-induced MtD and cell apoptosis. On the contrary, overexpression of BNIP3L induced MtD and apoptosis in podocytes. Together, these findings demonstrate that miR-30e protects mitochondria and podocytes from Aldo challenge by targeting BNIP3L.
Collapse
Affiliation(s)
- Yan Guo
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China; and.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Xu Deng
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China; and.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Shuang Chen
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China; and.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Lingyun Yang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China; and.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jiajia Ni
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China; and.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Rong Wang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China; and.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jiajuan Lin
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China; and.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Mi Bai
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China; and.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China; and.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China; and.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China; and .,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|