51
|
Burrows M, Dorosenko M. Jumping mechanisms in adult caddis flies (Insecta, Trichoptera). J Exp Biol 2015; 218:2764-74. [DOI: 10.1242/jeb.123471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
To understand the jumping mechanisms and strategies of adult caddis flies, leg morphology and movements were analysed in three species with mean masses of 3.9 to 38 mg. Two distinct jumping strategies were found. First (67% of 90 jumps), take-off was propelled solely by the middle and hind legs while the wings remained closed. Second (33% of jumps), the same leg movements were combined with wing movements before take-off. The hind legs were 70% and the middle legs were 50% longer than the front legs and represented 105% and 88%, respectively, of body length. Both hind and middle trochantera were depressed together, approximately 15 ms before take-off. The front legs apparently did not contribute to thrust in either strategy and were the first to be lifted from the ground. The hind legs were the next to lose contact, so that the middle legs alone provided the final thrust before take-off. Jumping performance did not differ significantly in the two jumping strategies or between species, in acceleration times (range of means for the three species 14.5–15.4 ms), take-off velocities (range 0.7–1 m s−1) and trajectory angles. A significant difference in jumps propelled only by the legs was the lower angle (9.3±1.9 deg) of the body relative to the horizontal at take-off compared with jumps involving wing movements (35.3±2.5 deg). Calculations from the kinematics indicated that jumps were produced by direct muscle contractions and did not require power amplification or energy storage.
Collapse
Affiliation(s)
- Malcolm Burrows
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Marina Dorosenko
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
52
|
Harris RM, Pfeiffer BD, Rubin GM, Truman JW. Neuron hemilineages provide the functional ground plan for the Drosophila ventral nervous system. eLife 2015; 4. [PMID: 26193122 PMCID: PMC4525104 DOI: 10.7554/elife.04493] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 07/15/2015] [Indexed: 01/03/2023] Open
Abstract
Drosophila central neurons arise from neuroblasts that generate neurons in a pair-wise fashion, with the two daughters providing the basis for distinct A and B hemilineage groups. 33 postembryonically-born hemilineages contribute over 90% of the neurons in each thoracic hemisegment. We devised genetic approaches to define the anatomy of most of these hemilineages and to assessed their functional roles using the heat-sensitive channel dTRPA1. The simplest hemilineages contained local interneurons and their activation caused tonic or phasic leg movements lacking interlimb coordination. The next level was hemilineages of similar projection cells that drove intersegmentally coordinated behaviors such as walking. The highest level involved hemilineages whose activation elicited complex behaviors such as takeoff. These activation phenotypes indicate that the hemilineages vary in their behavioral roles with some contributing to local networks for sensorimotor processing and others having higher order functions of coordinating these local networks into complex behavior.
Collapse
Affiliation(s)
- Robin M Harris
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Barret D Pfeiffer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
53
|
Cheng XE, Wang SH, Qian ZM, Chen YQ. Estimating Orientation of Flying Fruit Flies. PLoS One 2015; 10:e0132101. [PMID: 26173128 PMCID: PMC4501570 DOI: 10.1371/journal.pone.0132101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 06/10/2015] [Indexed: 11/19/2022] Open
Abstract
The recently growing interest in studying flight behaviours of fruit flies, Drosophila melanogaster, has highlighted the need for developing tools that acquire quantitative motion data. Despite recent advance of video tracking systems, acquiring a flying fly’s orientation remains a challenge for these tools. In this paper, we present a novel method for estimating individual flying fly’s orientation using image cues. Thanks to the line reconstruction algorithm in computer vision field, this work can thereby focus on the practical detail of implementation and evaluation of the orientation estimation algorithm. The orientation estimation algorithm can be incorporated into tracking algorithms. We rigorously evaluated the effectiveness and accuracy of the proposed algorithm by running experiments both on simulation data and on real-world data. This work complements methods for studying the fruit fly’s flight behaviours in a three-dimensional environment.
Collapse
Affiliation(s)
- Xi En Cheng
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, China
- Jingdezhen Ceramic Institute, Jingdezhen, China
| | - Shuo Hong Wang
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, China
| | - Zhi-Ming Qian
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, China
| | - Yan Qiu Chen
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
54
|
Gibson WT, Gonzalez CR, Fernandez C, Ramasamy L, Tabachnik T, Du RR, Felsen PD, Maire MR, Perona P, Anderson DJ. Behavioral responses to a repetitive visual threat stimulus express a persistent state of defensive arousal in Drosophila. Curr Biol 2015; 25:1401-15. [PMID: 25981791 DOI: 10.1016/j.cub.2015.03.058] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/03/2015] [Accepted: 03/30/2015] [Indexed: 12/25/2022]
Abstract
The neural circuit mechanisms underlying emotion states remain poorly understood. Drosophila offers powerful genetic approaches for dissecting neural circuit function, but whether flies exhibit emotion-like behaviors has not been clear. We recently proposed that model organisms may express internal states displaying "emotion primitives," which are general characteristics common to different emotions, rather than specific anthropomorphic emotions such as "fear" or "anxiety." These emotion primitives include scalability, persistence, valence, and generalization to multiple contexts. Here, we have applied this approach to determine whether flies' defensive responses to moving overhead translational stimuli ("shadows") are purely reflexive or may express underlying emotion states. We describe a new behavioral assay in which flies confined in an enclosed arena are repeatedly exposed to an overhead translational stimulus. Repetitive stimuli promoted graded (scalable) and persistent increases in locomotor velocity and hopping, and occasional freezing. The stimulus also dispersed feeding flies from a food resource, suggesting both negative valence and context generalization. Strikingly, there was a significant delay before the flies returned to the food following stimulus-induced dispersal, suggestive of a slowly decaying internal defensive state. The length of this delay was increased when more stimuli were delivered for initial dispersal. These responses can be mathematically modeled by assuming an internal state that behaves as a leaky integrator of stimulus exposure. Our results suggest that flies' responses to repetitive visual threat stimuli express an internal state exhibiting canonical emotion primitives, possibly analogous to fear in mammals. The mechanistic basis of this state can now be investigated in a genetically tractable insect species.
Collapse
Affiliation(s)
- William T Gibson
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA; Division of Biology & Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA; Division of Engineering & Applied Sciences 136-93, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Carlos R Gonzalez
- Division of Engineering & Applied Sciences 136-93, California Institute of Technology, Pasadena, CA 91125, USA
| | - Conchi Fernandez
- Division of Engineering & Applied Sciences 136-93, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lakshminarayanan Ramasamy
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Tanya Tabachnik
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Rebecca R Du
- Division of Biology & Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Panna D Felsen
- Division of Engineering & Applied Sciences 136-93, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael R Maire
- Division of Engineering & Applied Sciences 136-93, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pietro Perona
- Division of Engineering & Applied Sciences 136-93, California Institute of Technology, Pasadena, CA 91125, USA
| | - David J Anderson
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA; Division of Biology & Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA; Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
55
|
Computational Aerodynamic Analysis of a Micro-CT Based Bio-Realistic Fruit Fly Wing. PLoS One 2015; 10:e0124824. [PMID: 25954946 PMCID: PMC4425528 DOI: 10.1371/journal.pone.0124824] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/17/2015] [Indexed: 11/19/2022] Open
Abstract
The aerodynamic features of a bio-realistic 3D fruit fly wing in steady state (snapshot) flight conditions were analyzed numerically. The wing geometry was created from high resolution micro-computed tomography (micro-CT) of the fruit fly Drosophila virilis. Computational fluid dynamics (CFD) analyses of the wing were conducted at ultra-low Reynolds numbers ranging from 71 to 200, and at angles of attack ranging from -10° to +30°. It was found that in the 3D bio-realistic model, the corrugations of the wing created localized circulation regions in the flow field, most notably at higher angles of attack near the wing tip. Analyses of a simplified flat wing geometry showed higher lift to drag performance values for any given angle of attack at these Reynolds numbers, though very similar performance is noted at -10°. Results have indicated that the simplified flat wing can successfully be used to approximate high-level properties such as aerodynamic coefficients and overall performance trends as well as large flow-field structures. However, local pressure peaks and near-wing flow features induced by the corrugations are unable to be replicated by the simple wing. We therefore recommend that accurate 3D bio-realistic geometries be used when modelling insect wings where such information is useful.
Collapse
|
56
|
Abstract
The new field of “Computational Ethology” is made possible by advances in technology, mathematics, and engineering that allow scientists to automate the measurement and the analysis of animal behavior. We explore the opportunities and long-term directions of research in this area.
Collapse
Affiliation(s)
- David J Anderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Pietro Perona
- Division of Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
57
|
Whitehead SC, Beatus T, Canale L, Cohen I. Pitch perfect: how fruit flies control their body pitch angle. J Exp Biol 2015; 218:3508-19. [DOI: 10.1242/jeb.122622] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/03/2015] [Indexed: 11/20/2022]
Abstract
Flapping insect flight is a complex and beautiful phenomenon that relies on fast, active control mechanisms to counter aerodynamic instability. To directly investigate how freely-flying D. melanogaster control their body pitch angle against such instability, we perturb them using impulsive mechanical torques and film their corrective maneuvers with high-speed video. Combining experimental observations and numerical simulation, we find that flies correct for pitch deflections of up to 40° in 29±8 ms by bilaterally modulating their wings' front-most stroke angle in a manner well-described by a linear proportional-integral (PI) controller. Flies initiate this corrective process only 10±2 ms after the perturbation onset, indicating that pitch stabilization involves a fast reflex response. Remarkably, flies can also correct for very large-amplitude pitch perturbations–greater than 150°–providing a regime in which to probe the limits of the linear-response framework. Together with previous studies regarding yaw and roll control, our results on pitch show that flies' stabilization of each of these body angles is consistent with PI control
Collapse
Affiliation(s)
| | - Tsevi Beatus
- Department of Physics, Cornell University, Ithaca, New York, 14853, USA
| | - Luca Canale
- Département de Mécanique, École Polytechnique, 911128, Palaiseau, France
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
58
|
Burrows M, Dorosenko M. Jumping mechanisms in lacewings (Neuroptera, Chrysopidae and Hemerobiidae). ACTA ACUST UNITED AC 2014; 217:4252-61. [PMID: 25359935 DOI: 10.1242/jeb.110841] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lacewings launch themselves into the air by simultaneous propulsive movements of the middle and hind legs as revealed in video images captured at a rate of 1000 s(-1). These movements were powered largely by thoracic trochanteral depressor muscles but did not start from a particular preset position of these legs. Ridges on the lateral sides of the meso- and metathorax fluoresced bright blue when illuminated with ultraviolet light, suggesting the presence of the elastic protein resilin. The middle and hind legs were longer than the front legs but their femora and tibiae were narrow tubes of similar diameter. Jumps were of two types. First, those in which the body was oriented almost parallel to the ground (-7±8 deg in green lacewings, 13.7±7 deg in brown lacewings) at take-off and remained stable once animals were airborne. The wings did not move until 5 ms after take-off when flapping flight ensued. Second, were jumps in which the head pointed downwards at take-off (green lacewings, -37±3 deg; brown lacewings, -35±4 deg) and the body rotated in the pitch plane once airborne without the wings opening. The larger green lacewings (mass 9 mg, body length 10.3 mm) took 15 ms and the smaller brown lacewings (3.6 mg and 5.3 mm) 9 ms to accelerate the body to mean take-off velocities of 0.6 and 0.5 m s(-1). During their fastest jumps green and brown lacewings experienced accelerations of 5.5 or 6.3 G: , respectively. They required an energy expenditure of 5.6 or 0.7 μJ, a power output of 0.3 or 0.1 mW and exerted a force of 0.6 or 0.2 mN. The required power was well within the maximum active contractile limit of normal muscle, so that jumping could be produced by direct muscle contractions without a power amplification mechanism or an energy store.
Collapse
Affiliation(s)
- Malcolm Burrows
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Marina Dorosenko
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
59
|
The roles of troponin C isoforms in the mechanical function of Drosophila indirect flight muscle. J Muscle Res Cell Motil 2014; 35:211-23. [PMID: 25134799 DOI: 10.1007/s10974-014-9387-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/29/2014] [Indexed: 10/24/2022]
Abstract
Stretch activation (SA) is a fundamental property of all muscle types that increases power output and efficiency, yet its mechanism is unknown. Recently, studies have implicated troponin isoforms as important in the SA mechanism. The highly stretch-activated Drosophila IFMs express two isoforms of the Ca(2+)-binding subunit of troponin (TnC). TnC1 (TnC-F2 in Lethocerus IFM) has two calcium binding sites, while an unusual isoform, TnC4 (TnC-F1 in Lethocerus IFM), has only one binding site. We investigated the roles of these two TnC isoforms in Drosophila IFM by targeting RNAi to each isoform. IFMs with TnC4 expression (normally ~90% of total TnC) replaced by TnC1 did not generate isometric tension, power or display SA. However, TnC4 knockdown resulted in sarcomere ultrastructure disarray, which could explain the lack of mechanical function and thus make interpretation of the influence of TnC4 on SA difficult. Elimination of TnC1 expression (normally ~10% of total TnC) by RNAi resulted in normal muscle structure. In these IFMs, fiber power generation, isometric tension, stretch-activated force and calcium sensitivity were statistically identical to wild type. When TnC1 RNAi was driven by an IFM specific driver, there was no decrease in flight ability or wing beat frequency, which supports our mechanical findings suggesting that TnC1 is not essential for the mechanical function of Drosophila IFM. This finding contrasts with previous work in Lethocerus IFM showing TnC1 is essential for maximum isometric force generation. We propose that differences in TnC1 function in Lethocerus and Drosophila contribute to the ~40-fold difference in IFM isometric tension generated between these species.
Collapse
|
60
|
A spike-timing mechanism for action selection. Nat Neurosci 2014; 17:962-70. [PMID: 24908103 DOI: 10.1038/nn.3741] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/14/2014] [Indexed: 12/13/2022]
Abstract
We discovered a bimodal behavior in the genetically tractable organism Drosophila melanogaster that allowed us to directly probe the neural mechanisms of an action selection process. When confronted by a predator-mimicking looming stimulus, a fly responds with either a long-duration escape behavior sequence that initiates stable flight or a distinct, short-duration sequence that sacrifices flight stability for speed. Intracellular recording of the descending giant fiber (GF) interneuron during head-fixed escape revealed that GF spike timing relative to parallel circuits for escape actions determined which of the two behavioral responses was elicited. The process was well described by a simple model in which the GF circuit has a higher activation threshold than the parallel circuits, but can override ongoing behavior to force a short takeoff. Our findings suggest a neural mechanism for action selection in which relative activation timing of parallel circuits creates the appropriate motor output.
Collapse
|
61
|
Shelton RM, Jackson BE, Hedrick TL. The mechanics and behavior of cliff swallows during tandem flights. ACTA ACUST UNITED AC 2014; 217:2717-25. [PMID: 24855672 DOI: 10.1242/jeb.101329] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cliff swallows (Petrochelidon pyrrhonota) are highly maneuverable social birds that often forage and fly in large open spaces. Here we used multi-camera videography to measure the three-dimensional kinematics of their natural flight maneuvers in the field. Specifically, we collected data on tandem flights, defined as two birds maneuvering together. These data permit us to evaluate several hypotheses on the high-speed maneuvering flight performance of birds. We found that high-speed turns are roll-based, but that the magnitude of the centripetal force created in typical maneuvers varied only slightly with flight speed, typically reaching a peak of ~2 body weights. Turning maneuvers typically involved active flapping rather than gliding. In tandem flights the following bird copied the flight path and wingbeat frequency (~12.3 Hz) of the lead bird while maintaining position slightly above the leader. The lead bird turned in a direction away from the lateral position of the following bird 65% of the time on average. Tandem flights vary widely in instantaneous speed (1.0 to 15.6 m s(-1)) and duration (0.72 to 4.71 s), and no single tracking strategy appeared to explain the course taken by the following bird.
Collapse
Affiliation(s)
- Ryan M Shelton
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brandon E Jackson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Biological and Environmental Sciences, Longwood University, Farmville, VA 23909, USA
| | - Tyson L Hedrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
62
|
Wang Z, Ji A, Endlein T, Samuel D, Yao N, Wang Z, Dai Z. The role of fore- and hindlimbs during jumping in the Dybowski's frog (Rana dybowskii). ACTA ACUST UNITED AC 2014; 321:324-33. [DOI: 10.1002/jez.1865] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/16/2014] [Accepted: 03/21/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Zhongyuan Wang
- Institute of Bio-inspired Structure and Surface Engineering; Nanjing University of Aeronautics and Astronautics; Nanjing PR China
- College of Mechanical and Electrical Engineering; Nanjing University of Aeronautics and Astronautics; Nanjing PR China
| | - Aihong Ji
- Institute of Bio-inspired Structure and Surface Engineering; Nanjing University of Aeronautics and Astronautics; Nanjing PR China
| | - Thomas Endlein
- The Centre for Cell Engineering; University of Glasgow; Glasgow Scotland United Kingdom
| | - Diana Samuel
- The Centre for Cell Engineering; University of Glasgow; Glasgow Scotland United Kingdom
| | - Ning Yao
- Institute of Bio-inspired Structure and Surface Engineering; Nanjing University of Aeronautics and Astronautics; Nanjing PR China
- College of Mechanical and Electrical Engineering; Nanjing University of Aeronautics and Astronautics; Nanjing PR China
| | - Zhouyi Wang
- Institute of Bio-inspired Structure and Surface Engineering; Nanjing University of Aeronautics and Astronautics; Nanjing PR China
- College of Mechanical and Electrical Engineering; Nanjing University of Aeronautics and Astronautics; Nanjing PR China
| | - Zhendong Dai
- Institute of Bio-inspired Structure and Surface Engineering; Nanjing University of Aeronautics and Astronautics; Nanjing PR China
| |
Collapse
|
63
|
Mu L, Bacon JP, Ito K, Strausfeld NJ. Responses of Drosophila giant descending neurons to visual and mechanical stimuli. ACTA ACUST UNITED AC 2014; 217:2121-9. [PMID: 24675562 DOI: 10.1242/jeb.099135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In Drosophila, the paired giant descending neurons (GDNs), also known as giant fibers, and the paired giant antennal mechanosensory descending neurons (GAMDNs), are supplied by visual and mechanosensory inputs. Both neurons have the largest cell bodies in the brain and both supply slender axons to the neck connective. The GDN axon thereafter widens to become the largest axon in the thoracic ganglia, supplying information to leg extensor and wing depressor muscles. The GAMDN axon remains slender, interacting with other descending neuron axons medially. GDN and GAMDN dendrites are partitioned to receive inputs from antennal mechanosensory afferents and inputs from the optic lobes. Although GDN anatomy has been well studied in Musca domestica, less is known about the Drosophila homolog, including electrophysiological responses to sensory stimuli. Here we provide detailed anatomical comparisons of the GDN and the GAMDN, characterizing their sensory inputs. The GDN showed responses to light-on and light-off stimuli, expanding stimuli that result in luminance decrease, mechanical stimulation of the antennae, and combined mechanical and visual stimulation. We show that ensembles of lobula columnar neurons (type Col A) and mechanosensory antennal afferents are likely responsible for these responses. The reluctance of the GDN to spike in response to stimulation confirms observations of the Musca GDN. That this reluctance may be a unique property of the GDN is suggested by comparisons with the GAMDN, in which action potentials are readily elicited by mechanical and visual stimuli. The results are discussed in the context of descending pathways involved in multimodal integration and escape responses.
Collapse
Affiliation(s)
- Laiyong Mu
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA
| | - Jonathan P Bacon
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Kei Ito
- Center for Bioinformatics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Nicholas J Strausfeld
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
64
|
Abstract
Insights into how exactly a fly powers and controls flight have been hindered by the need to unpick the dynamic complexity of the muscles involved. The wingbeats of insects are driven by two antagonistic groups of power muscles and the force is funneled to the wing via a very complex hinge mechanism. The hinge consists of several hardened and articulated cuticle elements called sclerites. This articulation is controlled by a great number of small steering muscles, whose function has been studied by means of kinematics and muscle activity. The details and partly novel function of some of these steering muscles and their tendons have now been revealed in research published in this issue of PLOS Biology. The new study from Graham Taylor and colleagues applies time-resolved X-ray microtomography to obtain a three-dimensional view of the blowfly wingbeat. Asymmetric power output is achieved by differential wingbeat amplitude on the left and right wing, which is mediated by muscular control of the hinge elements to mechanically block the wing stroke and by absorption of work by steering muscles on one of the sides. This new approach permits visualization of the motion of the thorax, wing muscles, and the hinge mechanism. This very promising line of work will help to reveal the complete picture of the flight motor of a fly. It also holds great potential for novel bio-inspired designs of fly-like micro air vehicles.
Collapse
|
65
|
Flying Drosophila stabilize their vision-based velocity controller by sensing wind with their antennae. Proc Natl Acad Sci U S A 2014; 111:E1182-91. [PMID: 24639532 DOI: 10.1073/pnas.1323529111] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flies and other insects use vision to regulate their groundspeed in flight, enabling them to fly in varying wind conditions. Compared with mechanosensory modalities, however, vision requires a long processing delay (~100 ms) that might introduce instability if operated at high gain. Flies also sense air motion with their antennae, but how this is used in flight control is unknown. We manipulated the antennal function of fruit flies by ablating their aristae, forcing them to rely on vision alone to regulate groundspeed. Arista-ablated flies in flight exhibited significantly greater groundspeed variability than intact flies. We then subjected them to a series of controlled impulsive wind gusts delivered by an air piston and experimentally manipulated antennae and visual feedback. The results show that an antenna-mediated response alters wing motion to cause flies to accelerate in the same direction as the gust. This response opposes flying into a headwind, but flies regularly fly upwind. To resolve this discrepancy, we obtained a dynamic model of the fly's velocity regulator by fitting parameters of candidate models to our experimental data. The model suggests that the groundspeed variability of arista-ablated flies is the result of unstable feedback oscillations caused by the delay and high gain of visual feedback. The antenna response drives active damping with a shorter delay (~20 ms) to stabilize this regulator, in exchange for increasing the effect of rapid wind disturbances. This provides insight into flies' multimodal sensory feedback architecture and constitutes a previously unknown role for the antennae.
Collapse
|
66
|
Zhao C, Swank DM. An embryonic myosin isoform enables stretch activation and cyclical power in Drosophila jump muscle. Biophys J 2014; 104:2662-70. [PMID: 23790374 DOI: 10.1016/j.bpj.2013.04.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/19/2013] [Accepted: 04/29/2013] [Indexed: 11/30/2022] Open
Abstract
The mechanism behind stretch activation (SA), a mechanical property that increases muscle force and oscillatory power generation, is not known. We used Drosophila transgenic techniques and our new muscle preparation, the jump muscle, to determine if myosin heavy chain isoforms influence the magnitude and rate of SA force generation. We found that Drosophila jump muscles show very low SA force and cannot produce positive power under oscillatory conditions at pCa 5.0. However, we transformed the jump muscle to be moderately stretch-activatable by replacing its myosin isoform with an embryonic isoform (EMB). Expressing EMB, jump muscle SA force increased by 163% and it generated net positive power. The rate of SA force development decreased by 58% with EMB expression. Power generation is Pi dependent as >4 mM Pi was required for positive power from EMB. Pi increased EMB SA force, but not wild-type SA force. Our data suggest that when muscle expressing EMB is stretched, EMB is more easily driven backward to a weakly bound state than wild-type jump muscle. This increases the number of myosin heads available to rapidly bind to actin and contribute to SA force generation. We conclude that myosin heavy chain isoforms influence both SA kinetics and SA force, which can determine if a muscle is capable of generating oscillatory power at a fixed calcium concentration.
Collapse
Affiliation(s)
- Cuiping Zhao
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | | |
Collapse
|
67
|
Fox JL, Frye MA. Figure-ground discrimination behavior in Drosophila. II. Visual influences on head movement behavior. ACTA ACUST UNITED AC 2013; 217:570-9. [PMID: 24198264 PMCID: PMC3922834 DOI: 10.1242/jeb.080192] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Visual identification of small moving targets is a challenge for all moving animals. Their own motion generates displacement of the visual surroundings, inducing wide-field optic flow across the retina. Wide-field optic flow is used to sense perturbations in the flight course. Both ego-motion and corrective optomotor responses confound any attempt to track a salient target moving independently of the visual surroundings. What are the strategies that flying animals use to discriminate small-field figure motion from superimposed wide-field background motion? We examined how fruit flies adjust their gaze in response to a compound visual stimulus comprising a small moving figure against an independently moving wide-field ground, which they do by re-orienting their head or their flight trajectory. We found that fixing the head in place impairs object fixation in the presence of ground motion, and that head movements are necessary for stabilizing wing steering responses to wide-field ground motion when a figure is present. When a figure is moving relative to a moving ground, wing steering responses follow components of both the figure and ground trajectories, but head movements follow only the ground motion. To our knowledge, this is the first demonstration that wing responses can be uncoupled from head responses and that the two follow distinct trajectories in the case of simultaneous figure and ground motion. These results suggest that whereas figure tracking by wing kinematics is independent of head movements, head movements are important for stabilizing ground motion during active figure tracking.
Collapse
Affiliation(s)
- Jessica L Fox
- Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095-7239, USA
| | | |
Collapse
|
68
|
Fox JL, Aptekar JW, Zolotova NM, Shoemaker PA, Frye MA. Figure-ground discrimination behavior in Drosophila. I. Spatial organization of wing-steering responses. ACTA ACUST UNITED AC 2013; 217:558-69. [PMID: 24198267 PMCID: PMC3922833 DOI: 10.1242/jeb.097220] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The behavioral algorithms and neural subsystems for visual figure–ground discrimination are not sufficiently described in any model system. The fly visual system shares structural and functional similarity with that of vertebrates and, like vertebrates, flies robustly track visual figures in the face of ground motion. This computation is crucial for animals that pursue salient objects under the high performance requirements imposed by flight behavior. Flies smoothly track small objects and use wide-field optic flow to maintain flight-stabilizing optomotor reflexes. The spatial and temporal properties of visual figure tracking and wide-field stabilization have been characterized in flies, but how the two systems interact spatially to allow flies to actively track figures against a moving ground has not. We took a systems identification approach in flying Drosophila and measured wing-steering responses to velocity impulses of figure and ground motion independently. We constructed a spatiotemporal action field (STAF) – the behavioral analog of a spatiotemporal receptive field – revealing how the behavioral impulse responses to figure tracking and concurrent ground stabilization vary for figure motion centered at each location across the visual azimuth. The figure tracking and ground stabilization STAFs show distinct spatial tuning and temporal dynamics, confirming the independence of the two systems. When the figure tracking system is activated by a narrow vertical bar moving within the frontal field of view, ground motion is essentially ignored despite comprising over 90% of the total visual input.
Collapse
Affiliation(s)
- Jessica L Fox
- Howard Hughes Medical Institute and Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095-7239, USA
| | | | | | | | | |
Collapse
|
69
|
Abstract
Most experiments on the flight behavior of Drosophila melanogaster have been performed within confined laboratory chambers, yet the natural history of these animals involves dispersal that takes place on a much larger spatial scale. Thirty years ago, a group of population geneticists performed a series of mark-and-recapture experiments on Drosophila flies, which demonstrated that even cosmopolitan species are capable of covering 10 km of open desert, probably in just a few hours and without the possibility of feeding along the way. In this review I revisit these fascinating and informative experiments and attempt to explain how-from takeoff to landing-the flies might have made these journeys based on our current knowledge of flight behavior. This exercise provides insight into how animals generate long behavioral sequences using sensory-motor modules that may have an ancient evolutionary origin.
Collapse
|
70
|
Chen MW, Zhang YL, Sun M. Wing and body motion and aerodynamic and leg forces during take-off in droneflies. J R Soc Interface 2013; 10:20130808. [PMID: 24132205 DOI: 10.1098/rsif.2013.0808] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Here, we present a detailed analysis of the take-off mechanics in droneflies performing voluntary take-offs. Wing and body kinematics of the insects during take-off were measured using high-speed video techniques. Based on the measured data, the inertia force acting on the insect was computed and the aerodynamic force of the wings was calculated by the method of computational fluid dynamics. Subtracting the aerodynamic force and the weight from the inertia force gave the leg force. In take-off, a dronefly increases its stroke amplitude gradually in the first 10-14 wingbeats and becomes airborne at about the 12th wingbeat. The aerodynamic force increases monotonously from zero to a value a little larger than its weight, and the leg force decreases monotonously from a value equal to its weight to zero, showing that the droneflies do not jump and only use aerodynamic force of flapping wings to lift themselves into the air. Compared with take-offs in insects in previous studies, in which a very large force (5-10 times of the weight) generated either by jumping legs (locusts, milkweed bugs and fruit flies) or by the 'fling' mechanism of the wing pair (butterflies) is used in a short time, the take-off in the droneflies is relatively slow but smoother.
Collapse
Affiliation(s)
- Mao Wei Chen
- Ministry-of-Education Key Laboratory of Fluid Mechanics, Beijing University of Aeronautics and Astronautics, , Beijing, People's Republic of China
| | | | | |
Collapse
|
71
|
A large-scale behavioral screen to identify neurons controlling motor programs in the Drosophila brain. G3-GENES GENOMES GENETICS 2013; 3:1629-37. [PMID: 23934998 PMCID: PMC3789788 DOI: 10.1534/g3.113.006205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drosophila is increasingly used for understanding the neural basis of behavior through genetically targeted manipulation of specific neurons. The primary approach in this regard has relied on the suppression of neuronal activity. Here, we report the results of a novel approach to find and characterize neural circuits by expressing neuronal activators to stimulate subsets of neurons to induce behavior. Classical electrophysiological studies demonstrated that stimulation of command neurons could activate neural circuits to trigger fixed action patterns. Our method was designed to find such command neurons for diverse behaviors by screening flies in which random subsets of brain cells were activated. We took advantage of the large collection of Gal4 lines from the NP project and crossed 835 Gal4 strains with relatively limited Gal4 expression in the brain to flies carrying a UAS transgene encoding TRPM8, a cold-sensitive ion channel. Low temperatures opened the TRPM8 channel in Gal4-expressing cells, leading to their excitation, and in many cases induced overt behavioral changes in adult flies. Paralysis was reproducibly observed in the progeny of crosses with 84 lines, whereas more specific behaviors were induced with 24 other lines. Stimulation performed using the heat-activated channel, TrpA1, resulted in clearer and more robust behaviors, including flight, feeding, and egg-laying. Through follow-up studies starting from this screen, we expect to find key components of the neural circuits underlying specific behaviors, thus providing a new avenue for their functional analysis.
Collapse
|
72
|
Van Truong T, Byun D, Kim MJ, Yoon KJ, Park HC. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect. BIOINSPIRATION & BIOMIMETICS 2013; 8:036007. [PMID: 23851351 DOI: 10.1088/1748-3182/8/3/036007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The aim of this work is to provide an insight into the aerodynamic performance of the beetle during takeoff, which has been estimated in previous investigations. We employed a scaled-up electromechanical model flapping wing to measure the aerodynamic forces and the three-dimensional flow structures on the flapping wing. The ground effect on the unsteady forces and flow structures were also characterized. The dynamically scaled wing model could replicate the general stroke pattern of the beetle's hind wing kinematics during takeoff flight. Two wing kinematic models have been studied to examine the influences of wing kinematics on unsteady aerodynamic forces. In the first model, the angle of attack is asymmetric and varies during the translational motion, which is the flapping motion of the beetle's hind wing. In the second model, the angle of attack is constant during the translational motion. The instantaneous aerodynamic forces were measured for four strokes during the beetle's takeoff by the force sensor attached at the wing base. Flow visualization provided a general picture of the evolution of the three-dimensional leading edge vortex (LEV) on the beetle hind wing model. The LEV is stable during each stroke, and increases radically from the root to the tip, forming a leading-edge spiral vortex. The force measurement results show that the vertical force generated by the hind wing is large enough to lift the beetle. For the beetle hind wing kinematics, the total vertical force production increases 18.4% and 8.6% for the first and second strokes, respectively, due to the ground effect. However, for the model with a constant angle of attack during translation, the vertical force is reduced during the first stroke. During the third and fourth strokes, the ground effect is negligible for both wing kinematic patterns. This finding suggests that the beetle's flapping mechanism induces a ground effect that can efficiently lift its body from the ground during takeoff.
Collapse
Affiliation(s)
- Tien Van Truong
- Department of Aerospace and Information Engineering, Konkuk University, Korea
| | | | | | | | | |
Collapse
|
73
|
Bimbard G, Kolomenskiy D, Bouteleux O, Casas J, Godoy-Diana R. Force balance in the take-off of a pierid butterfly: relative importance and timing of leg impulsion and aerodynamic forces. ACTA ACUST UNITED AC 2013; 216:3551-63. [PMID: 23788714 DOI: 10.1242/jeb.084699] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Up to now, the take-off stage has remained an elusive phase of insect flight that was relatively poorly explored compared with other maneuvers. An overall assessment of the different mechanisms involved in force production during take-off has never been explored. Focusing on the first downstroke, we have addressed this problem from a force balance perspective in butterflies taking off from the ground. In order to determine whether the sole aerodynamic wing force could explain the observed motion of the insect, we have firstly compared a simple analytical model of the wing force with the acceleration of the insect's center of mass estimated from video tracking of the wing and body motions. Secondly, wing kinematics were also used for numerical simulations of the aerodynamic flow field. Similar wing aerodynamic forces were obtained by the two methods. However, neither are sufficient, nor is the inclusion of the ground effect, to predict faithfully the body acceleration. We have to resort to the leg forces to obtain a model that best fits the data. We show that the median and hind legs display an active extension responsible for the initiation of the upward motion of the insect's body, occurring before the onset of the wing downstroke. We estimate that legs generate, at various times, an upward force that can be much larger than all other forces applied to the insect's body. The relative timing of leg and wing forces explains the large variability of trajectories observed during the maneuvers.
Collapse
Affiliation(s)
- Gaëlle Bimbard
- Institut de Recherche sur la Biologie de l'Insecte IRBI, CNRS UMR 7261, UFR Sciences et Techniques, Université François Rabelais, 37200 Tours, France.
| | | | | | | | | |
Collapse
|
74
|
Affiliation(s)
- Philip E. Howse
- Centre for Biological Sciences; Faculty of Natural & Environmental Sciences; University of Southampton; Building 85; Highfield Campus; Southampton; SO17 1BJ; UK
| |
Collapse
|
75
|
de Vries SEJ, Clandinin T. Optogenetic stimulation of escape behavior in Drosophila melanogaster. J Vis Exp 2013:50192. [PMID: 23380919 DOI: 10.3791/50192] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A growing number of genetically encoded tools are becoming available that allow non-invasive manipulation of the neural activity of specific neurons in Drosophila melanogaster. Chief among these are optogenetic tools, which enable the activation or silencing of specific neurons in the intact and freely moving animal using bright light. Channelrhodopsin (ChR2) is a light-activated cation channel that, when activated by blue light, causes depolarization of neurons that express it. ChR2 has been effective for identifying neurons critical for specific behaviors, such as CO(2) avoidance, proboscis extension and giant-fiber mediated startle response. However, as the intense light sources used to stimulate ChR2 also stimulate photoreceptors, these optogenetic techniques have not previously been used in the visual system. Here, we combine an optogenetic approach with a mutation that impairs phototransduction to demonstrate that activation of a cluster of loom-sensitive neurons in the fly's optic lobe, Foma-1 neurons, can drive an escape behavior used to avoid collision. We used a null allele of a critical component of the phototransduction cascade, phospholipase C-β, encoded by the norpA gene, to render the flies blind and also use the Gal4-UAS transcriptional activator system to drive expression of ChR2 in the Foma-1 neurons. Individual flies are placed on a small platform surrounded by blue LEDs. When the LEDs are illuminated, the flies quickly take-off into flight, in a manner similar to visually driven loom-escape behavior. We believe that this technique can be easily adapted to examine other behaviors in freely moving flies.
Collapse
|
76
|
Burrows M. Jumping from the surface of water by the long-legged fly Hydrophorus (Diptera, Dolichopodidae). J Exp Biol 2013; 216:1973-81. [DOI: 10.1242/jeb.083683] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
The fly, Hydrophorus that is 4 mm long and has a mass of 4.7 mg moves around upon and jumps from water without its tarsi penetrating the surface. All 6 tarsi have a surface area of 1.3 mm-2 in contact with the water but did not dimple its surface when standing. Jumping was propelled by depression of the trochantera and extension of the tibiae of both hind and middle legs which are 40% longer than the front legs and 170% longer than the body. As these four legs progressively propelled the insect to take-off, they each created dimples on the water surface that expanded in depth and area. No dimples were associated with the front legs, which were not moved in a consistent sequence. The wings opened while the legs were moving and then flapped at a frequency of 148 Hz. The body was accelerated in a mean time of 21 ms to a mean take-off velocity of 0.7 m s-1. The best jumps reached velocities of 1.6 m s-1, required an energy output of 7 µJ and a power output of 0.6 mW, with the fly experiencing a force of 140 g. The required power output indicates that direct muscle contractions could propel the jump without the need for elaborate mechanisms for energy storage. Take-off trajectories were steep with a mean of 87 degrees to the horizontal. Take-off velocity fell if a propulsive tarsus penetrated the surface of the water. If more tarsi became submerged, take-off was not successful. A second strategy for take-off was powered only by the wings and was associated with slower (1 degree ms-1 compared with 10 degrees ms-1 when jumping) and less extensive movements of the propulsive joints of the middle and hind legs. No dimples were then created on the surface of the water. When jumping was combined with wing flapping, the acceleration time to take-off was reduced by 84 % and the take-off velocity was increased by 168 %. Jumping can potentially therefore enhance survival when threatened by a potential predator.
Collapse
|
77
|
Herberholz J, Marquart GD. Decision Making and Behavioral Choice during Predator Avoidance. Front Neurosci 2012; 6:125. [PMID: 22973187 PMCID: PMC3428584 DOI: 10.3389/fnins.2012.00125] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 08/08/2012] [Indexed: 12/21/2022] Open
Abstract
One of the most important decisions animals have to make is how to respond to an attack from a potential predator. The response must be prompt and appropriate to ensure survival. Invertebrates have been important models in studying the underlying neurobiology of the escape response due to their accessible nervous systems and easily quantifiable behavioral output. Moreover, invertebrates provide opportunities for investigating these processes at a level of analysis not available in most other organisms. Recently, there has been a renewed focus in understanding how value-based calculations are made on the level of the nervous system, i.e., when decisions are made under conflicting circumstances, and the most desirable choice must be selected by weighing the costs and benefits for each behavioral choice. This article reviews samples from the current literature on anti-predator decision making in invertebrates, from single neurons to complex behaviors. Recent progress in understanding the mechanisms underlying value-based behavioral decisions is also discussed.
Collapse
Affiliation(s)
- Jens Herberholz
- Department of Psychology, University of Maryland College Park, MD, USA
| | | |
Collapse
|
78
|
Abstract
Kinesin heavy chain (Khc) is crucially required for axonal transport and khc mutants show axonal swellings and paralysis. Here, we demonstrate that in Drosophila khc is equally important in glial cells. Glial-specific downregulation of khc by RNA interference suppresses neuronal excitability and results in spastic flies. The specificity of the phenotype was verified by interspecies rescue experiments and further mutant analyses. Khc is mostly required in the subperineurial glia forming the blood-brain barrier. Following glial-specific knockdown, peripheral nerves are swollen with maldistributed mitochondria. To better understand khc function, we determined Khc-dependent Rab proteins in glia and present evidence that Neurexin IV, a well known blood-brain barrier constituent, is one of the relevant cargo proteins. Our work shows that the role of Khc for neuronal excitability must be considered in the light of its necessity for directed transport in glia.
Collapse
|
79
|
Oliva D, Tomsic D. Visuo-motor transformations involved in the escape response to looming stimuli in the crab Neohelice (=Chasmagnathus) granulata. ACTA ACUST UNITED AC 2012; 215:3488-500. [PMID: 22735348 DOI: 10.1242/jeb.070755] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Escape responses to directly approaching predators represent one instance of an animal's ability to avoid collision. Usually, such responses can be easily evoked in the laboratory using two-dimensional computer simulations of approaching objects, known as looming stimuli. Therefore, escape behaviors are considered useful models for the study of computations performed by the brain to efficiently transform visual information into organized motor patterns. The escape response of the crab Neohelice (previously Chasmagnathus) granulata offers an opportunity to investigate the processing of looming stimuli and its transformation into complex motor patterns. Here we studied the escape performance of this crab to a variety of different looming stimuli. The response always consisted of a vigorous run away from the stimulus. However, the moment at which it was initiated, as well as the developed speed, closely matched the expansion dynamics of each particular stimulus. Thus, we analyzed the response events as a function of several variables that could theoretically be used by the crab (angular size, angular velocity, etc.). Our main findings were that: (1) the decision to initiate the escape run is made when the stimulus angular size increases by 7 deg; (2) the escape run is not a ballistic kind of response, as its speed is adjusted concurrently with changes in the optical stimulus variables; and (3) the speed of the escape run can be faithfully described by a phenomenological input-output relationship based on the stimulus angular increment and the angular velocity of the stimulus.
Collapse
Affiliation(s)
- Damián Oliva
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña, Bernal (1876), Provincia Buenos Aires, Argentina
| | | |
Collapse
|
80
|
Pirri JK, Alkema MJ. The neuroethology of C. elegans escape. Curr Opin Neurobiol 2012; 22:187-93. [PMID: 22226513 PMCID: PMC3437330 DOI: 10.1016/j.conb.2011.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/01/2011] [Accepted: 12/15/2011] [Indexed: 01/17/2023]
Abstract
Escape behaviors are crucial to survive predator encounters. Touch to the head of Caenorhabditis elegans induces an escape response where the animal rapidly backs away from the stimulus and suppresses foraging head movements. The coordination of head and body movements facilitates escape from predacious fungi that cohabitate with nematodes in organic debris. An appreciation of the natural habitat of laboratory organisms, like C. elegans, enables a comprehensive neuroethological analysis of behavior. In this review we discuss the neuronal mechanisms and the ecological significance of the C. elegans touch response.
Collapse
Affiliation(s)
| | - Mark J. Alkema
- Corresponding author: Mark J. Alkema, Department of Neurobiology, LRB 717, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, U.S.A., Tel: 508 856 6158, Fax: 508 856 6266,
| |
Collapse
|
81
|
de Vries SEJ, Clandinin TR. Loom-sensitive neurons link computation to action in the Drosophila visual system. Curr Biol 2012; 22:353-62. [PMID: 22305754 DOI: 10.1016/j.cub.2012.01.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 12/08/2011] [Accepted: 01/04/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND Many animals extract specific cues from rich visual scenes to guide appropriate behaviors. Such cues include visual motion signals produced both by self-movement and by moving objects in the environment. The complexity of these signals requires neural circuits to link particular patterns of motion to specific behavioral responses. RESULTS Through electrophysiological recordings, we characterize genetically identified neurons in the optic lobe of Drosophila that are specifically tuned to detect motion signals produced by looming objects on a collision course with the fly. Using a genetic manipulation to specifically silence these neurons, we demonstrate that signals from these cells are important for flies to efficiently initiate the loom escape response. Moreover, through targeted expression of channelrhodopsin in these cells, in flies that are blind, we reveal that optogenetic stimulation of these neurons is typically sufficient to elicit escape, even in the absence of any visual stimulus. CONCLUSIONS In this compact nervous system, a small group of neurons that extract a specific visual cue from local motion inputs serve to trigger the ethologically appropriate behavioral response.
Collapse
|
82
|
Escape behaviors in insects. Curr Opin Neurobiol 2012; 22:180-6. [PMID: 22226514 DOI: 10.1016/j.conb.2011.12.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/05/2011] [Accepted: 12/15/2011] [Indexed: 11/20/2022]
Abstract
Escape behaviors are, by necessity, fast and robust, making them excellent systems with which to study the neural basis of behavior. This is especially true in insects, which have comparatively tractable nervous systems and members who are amenable to manipulation with genetic tools. Recent technical developments in high-speed video reveal that, despite their short duration, insect escape behaviors are more complex than previously appreciated. For example, before initiating an escape jump, a fly performs sophisticated posture and stimulus-dependent preparatory leg movements that enable it to jump away from a looming threat. This newfound flexibility raises the question of how the nervous system generates a behavior that is both rapid and flexible. Recordings from the cricket nervous system suggest that synchrony between the activity of specific interneuron pairs may provide a rapid cue for the cricket to detect the direction of an approaching predator and thus which direction it should run. Technical advances make possible wireless recording from neurons while locusts escape from a looming threat, enabling, for the first time, a direct correlation between the activity of multiple neurons and the time-course of an insect escape behavior.
Collapse
|
83
|
Lacey ES, Cardé RT. Activation, orientation and landing of female Culex quinquefasciatus in response to carbon dioxide and odour from human feet: 3-D flight analysis in a wind tunnel. MEDICAL AND VETERINARY ENTOMOLOGY 2011; 25:94-103. [PMID: 21118282 DOI: 10.1111/j.1365-2915.2010.00921.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This study investigated the interaction between carbon dioxide (CO(2) ) and human foot odour on activation, upwind orientation and landing of host-seeking female Culex quinquefasciatus (Say) (Diptera: Culicidae) in a wind tunnel. More mosquitoes landed on warmed glass beads coated with foot odour than on clean beads; adding a plume of 4% CO(2) did not influence the proportion of mosquitoes landing. A second experiment used 3-dimensional video tracking to assess flight performance. Activation was more rapid with CO(2) and with CO(2) + foot odour than with clean air or with foot odour alone. Upwind flights were fastest with CO(2) and with clean air, and slowest with foot odour; the CO(2) + foot odour treatment overlapped the previous three treatments in significance. Flight headings tended more towards due upwind with CO(2) and with clean air than with CO(2) + foot odour or with foot odour alone. In both experiments, many mosquitoes flew upwind in clean air. There was little evidence of females changing course upon entering or exiting the CO(2) plume or reacting to foot odour during flight.
Collapse
Affiliation(s)
- E S Lacey
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | | |
Collapse
|
84
|
Lussier Desbiens A, Asbeck AT, Cutkosky MR. Landing, perching and taking off from vertical surfaces. Int J Rob Res 2011. [DOI: 10.1177/0278364910393286] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An approach is presented whereby small, unmanned aircraft can land on walls. The approach is demonstrated with a plane that uses an ultrasonic sensor to initiate a pitch-up maneuver as it flies toward a wall. The plane contacts the wall with spines that engage asperities on the surface. A non-linear suspension absorbs the kinetic energy while keeping the spines attached. A planar dynamic model is used to evaluate pitch-up maneuvers and determine suspension parameters that satisfy constraints on the contact forces for a range of flight velocities. Simulations conducted using the model are compared with data obtained using high-speed video and a force plate embedded in a wall.
Collapse
Affiliation(s)
- Alexis Lussier Desbiens
- Biomimetic and Dextrous Manipulation Laboratory, Center for Design Research, Stanford University, USA
| | - Alan T Asbeck
- Biomimetic and Dextrous Manipulation Laboratory, Center for Design Research, Stanford University, USA
| | - Mark R Cutkosky
- Biomimetic and Dextrous Manipulation Laboratory, Center for Design Research, Stanford University, USA,
| |
Collapse
|
85
|
Graetzel CF, Nelson BJ, Fry SN. Frequency response of lift control in Drosophila. J R Soc Interface 2010; 7:1603-16. [PMID: 20462877 DOI: 10.1098/rsif.2010.0040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The flight control responses of the fruitfly represent a powerful model system to explore neuromotor control mechanisms, whose system level control properties can be suitably characterized with a frequency response analysis. We characterized the lift response dynamics of tethered flying Drosophila in presence of vertically oscillating visual patterns, whose oscillation frequency we varied between 0.1 and 13 Hz. We justified these measurements by showing that the amplitude gain and phase response is invariant to the pattern oscillation amplitude and spatial frequency within a broad dynamic range. We also showed that lift responses are largely linear and time invariant (LTI), a necessary condition for a meaningful analysis of frequency responses and a remarkable characteristic given its nonlinear constituents. The flies responded to increasing oscillation frequencies with a roughly linear decrease in response gain, which dropped to background noise levels at about 6 Hz. The phase lag decreased linearly, consistent with a constant reaction delay of 75 ms. Next, we estimated the free-flight response of the fly to generate a Bode diagram of the lift response. The limitation of lift control to frequencies below 6 Hz is explained with inertial body damping, which becomes dominant at higher frequencies. Our work provides the detailed background and techniques that allow optomotor lift responses of Drosophila to be measured with comparatively simple, affordable and commercially available techniques. The identification of an LTI, pattern velocity dependent, lift control strategy is relevant to the underlying motion computation mechanisms and serves a broader understanding of insects' flight control strategies. The relevance and potential pitfalls of applying system identification techniques in tethered preparations is discussed.
Collapse
Affiliation(s)
- Chauncey F Graetzel
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
86
|
Robie AA, Straw AD, Dickinson MH. Object preference by walking fruit flies, Drosophila melanogaster, is mediated by vision and graviperception. ACTA ACUST UNITED AC 2010; 213:2494-506. [PMID: 20581279 DOI: 10.1242/jeb.041749] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Walking fruit flies, Drosophila melanogaster, use visual information to orient towards salient objects in their environment, presumably as a search strategy for finding food, shelter or other resources. Less is known, however, about the role of vision or other sensory modalities such as mechanoreception in the evaluation of objects once they have been reached. To study the role of vision and mechanoreception in exploration behavior, we developed a large arena in which we could track individual fruit flies as they walked through either simple or more topologically complex landscapes. When exploring a simple, flat environment lacking three-dimensional objects, flies used visual cues from the distant background to stabilize their walking trajectories. When exploring an arena containing an array of cones, differing in geometry, flies actively oriented towards, climbed onto, and explored the objects, spending most of their time on the tallest, steepest object. A fly's behavioral response to the geometry of an object depended upon the intrinsic properties of each object and not a relative assessment to other nearby objects. Furthermore, the preference was not due to a greater attraction towards tall, steep objects, but rather a change in locomotor behavior once a fly reached and explored the surface. Specifically, flies are much more likely to stop walking for long periods when they are perched on tall, steep objects. Both the vision system and the antennal chordotonal organs (Johnston's organs) provide sufficient information about the geometry of an object to elicit the observed change in locomotor behavior. Only when both these sensory systems were impaired did flies not show the behavioral preference for the tall, steep objects.
Collapse
Affiliation(s)
- Alice A Robie
- Department of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | |
Collapse
|
87
|
The mechanical properties of Drosophila jump muscle expressing wild-type and embryonic Myosin isoforms. Biophys J 2010; 98:1218-26. [PMID: 20371321 DOI: 10.1016/j.bpj.2009.11.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 10/27/2009] [Accepted: 11/10/2009] [Indexed: 11/20/2022] Open
Abstract
Transgenic Drosophila are highly useful for structure-function studies of muscle proteins. However, our ability to mechanically analyze transgenically expressed mutant proteins in Drosophila muscles has been limited to the skinned indirect flight muscle preparation. We have developed a new muscle preparation using the Drosophila tergal depressor of the trochanter (TDT or jump) muscle that increases our experimental repertoire to include maximum shortening velocity (V(slack)), force-velocity curves and steady-state power generation; experiments not possible using indirect flight muscle fibers. When transgenically expressing its wild-type myosin isoform (Tr-WT) the TDT is equivalent to a very fast vertebrate muscle. TDT has a V(slack) equal to 6.1 +/- 0.3 ML/s at 15 degrees C, a steep tension-pCa curve, isometric tension of 37 +/- 3 mN/mm(2), and maximum power production at 26% of isometric tension. Transgenically expressing an embryonic myosin isoform in the TDT muscle increased isometric tension 1.4-fold, but decreased V(slack) 50% resulting in no significant difference in maximum power production compared to Tr-WT. Drosophila expressing embryonic myosin jumped <50% as far as Tr-WT that, along with comparisons to frog jump muscle studies, suggests fast muscle shortening velocity is relatively more important than high tension generation for Drosophila jumping.
Collapse
|
88
|
Dickson WB, Polidoro P, Tanner MM, Dickinson MH. A linear systems analysis of the yaw dynamics of a dynamically scaled insect model. J Exp Biol 2010; 213:3047-61. [DOI: 10.1242/jeb.042978] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Recent studies suggest that fruit flies use subtle changes to their wing motion to actively generate forces during aerial maneuvers. In addition, it has been estimated that the passive rotational damping caused by the flapping wings of an insect is around two orders of magnitude greater than that for the body alone. At present, however, the relationships between the active regulation of wing kinematics, passive damping produced by the flapping wings and the overall trajectory of the animal are still poorly understood. In this study, we use a dynamically scaled robotic model equipped with a torque feedback mechanism to study the dynamics of yaw turns in the fruit fly Drosophila melanogaster. Four plausible mechanisms for the active generation of yaw torque are examined. The mechanisms deform the wing kinematics of hovering in order to introduce asymmetry that results in the active production of yaw torque by the flapping wings. The results demonstrate that the stroke-averaged yaw torque is well approximated by a model that is linear with respect to both the yaw velocity and the magnitude of the kinematic deformations. Dynamic measurements, in which the yaw torque produced by the flapping wings was used in real-time to determine the rotation of the robot, suggest that a first-order linear model with stroke-average coefficients accurately captures the yaw dynamics of the system. Finally, an analysis of the stroke-average dynamics suggests that both damping and inertia will be important factors during rapid body saccades of a fruit fly.
Collapse
Affiliation(s)
- William B. Dickson
- California Institute of Technology, Mail Code 138-78, Pasadena, CA 91125, USA
| | - Peter Polidoro
- California Institute of Technology, Mail Code 138-78, Pasadena, CA 91125, USA
| | - Melissa M. Tanner
- California Institute of Technology, Mail Code 138-78, Pasadena, CA 91125, USA
| | | |
Collapse
|
89
|
Abstract
The importance of the interaction between the body and the brain for the control of behavior has been recognized in recent years with the advent of neuromechanics, a field in which the coupling between neural and biomechanical processes is an explicit focus. A major tool used in neuromechanics is simulation, which connects computational models of neural circuits to models of an animal's body situated in a virtual physical world. This connection closes the feedback loop that links the brain, the body, and the world through sensory stimuli, muscle contractions, and body movement. Neuromechanical simulations enable investigators to explore the dynamical relationships between the brain, the body, and the world in ways that are difficult or impossible through experiment alone. Studies in a variety of animals have permitted the analysis of extremely complex and dynamic neuromechanical systems, they have demonstrated that the nervous system functions synergistically with the mechanical properties of the body, they have examined hypotheses that are difficult to test experimentally, and they have explored the role of sensory feedback in controlling complex mechanical systems with many degrees of freedom. Each of these studies confronts a common set of questions: (i) how to abstract key features of the body, the world and the CNS in a useful model, (ii) how to ground model parameters in experimental reality, (iii) how to optimize the model and identify points of sensitivity and insensitivity, and (iv) how to share neuromechanical models for examination, testing, and extension by others.
Collapse
Affiliation(s)
- Donald H Edwards
- Neuroscience Institute, Georgia State University Atlanta, GA, USA
| |
Collapse
|
90
|
Burrows M, Picker MD. Jumping mechanisms and performance of pygmy mole crickets (Orthoptera, Tridactylidae). J Exp Biol 2010; 213:2386-98. [DOI: 10.1242/jeb.042192] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Pygmy mole crickets live in burrows at the edge of water and jump powerfully to avoid predators such as the larvae and adults of tiger beetles that inhabit the same microhabitat. Adults are 5–6 mm long and weigh 8 mg. The hind legs are dominated by enormous femora containing the jumping muscles and are 131% longer than the body. The ratio of leg lengths is: 1:2.1:4.5 (front:middle:hind, respectively). The hind tarsi are reduced and their role is supplanted by two pairs of tibial spurs that can rotate through 180 deg. During horizontal walking the hind legs are normally held off the ground. Jumps are propelled by extension of the hind tibiae about the femora at angular velocities of 68,000 deg s−1 in 2.2 ms, as revealed by images captured at rates of 5000 s−1. The two hind legs usually move together but can move asynchronously, and many jumps are propelled by just one hind leg. The take-off angle is steep and once airborne the body rotates backwards about its transverse axis (pitch) at rates of 100 Hz or higher. The take-off velocity, used to define the best jumps, can reach 5.4 m s−1, propelling the insect to heights of 700 mm and distances of 1420 mm with an acceleration of 306 g. The head and pronotum are jerked rapidly as the body is accelerated. Jumping on average uses 116 μJ of energy, requires a power output of 50 mW and exerts a force of 20 mN. In jumps powered by one hind leg the figures are about 40% less.
Collapse
Affiliation(s)
- M. Burrows
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - M. D. Picker
- Zoology Department, University of Cape Town, Private Bag X3, Rondebosch, 7701, Cape Town, South Africa
| |
Collapse
|
91
|
Sutton GP, Burrows M. The mechanics of azimuth control in jumping by froghopper insects. ACTA ACUST UNITED AC 2010; 213:1406-16. [PMID: 20400624 DOI: 10.1242/jeb.036921] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many animals move so fast that there is no time for sensory feedback to correct possible errors. The biomechanics of the limbs participating in such movements appear to be configured to simplify neural control. To test this general principle, we analysed how froghopper insects control the azimuth direction of their rapid jumps, using high speed video of the natural movements and modelling to understand the mechanics of the hind legs. We show that froghoppers control azimuth by altering the initial orientation of the hind tibiae; their mean angle relative to the midline closely predicts the take-off azimuth. This applies to jumps powered by both hind legs, or by one hind leg. Modelling suggests that moving the two hind legs at different times relative to each other could also control azimuth, but measurements of natural jumping showed that the movements of the hind legs were synchronised to within 32 mus of each other. The maximum timing difference observed (67 micros) would only allow control of azimuth over 0.4 deg. to either side of the midline. Increasing the timing differences between the hind legs is also energetically inefficient because it decreases the energy available and causes losses of energy to body spin; froghoppers with just one hind leg spin six times faster than intact ones. Take-off velocities also fall. The mechanism of azimuth control results from the mechanics of the hind legs and the resulting force vectors of their tibiae. This enables froghoppers to have a simple transform between initial body position and motion trajectory, therefore potentially simplifying neural control.
Collapse
Affiliation(s)
- G P Sutton
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | | |
Collapse
|
92
|
Lazar AA, Pnevmatikakis EA, Zhou Y. Encoding natural scenes with neural circuits with random thresholds. Vision Res 2010; 50:2200-12. [PMID: 20350565 DOI: 10.1016/j.visres.2010.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 03/20/2010] [Accepted: 03/22/2010] [Indexed: 10/19/2022]
Abstract
We present a general framework for the reconstruction of natural video scenes encoded with a population of spiking neural circuits with random thresholds. The natural scenes are modeled as space-time functions that belong to a space of trigonometric polynomials. The visual encoding system consists of a bank of filters, modeling the visual receptive fields, in cascade with a population of neural circuits, modeling encoding in the early visual system. The neuron models considered include integrate-and-fire neurons and ON-OFF neuron pairs with threshold-and-fire spiking mechanisms. All thresholds are assumed to be random. We demonstrate that neural spiking is akin to taking noisy measurements on the stimulus both for time-varying and space-time-varying stimuli. We formulate the reconstruction problem as the minimization of a suitable cost functional in a finite-dimensional vector space and provide an explicit algorithm for stimulus recovery. We also present a general solution using the theory of smoothing splines in Reproducing Kernel Hilbert Spaces. We provide examples of both synthetic video as well as for natural scenes and demonstrate that the quality of the reconstruction degrades gracefully as the threshold variability of the neurons increases.
Collapse
Affiliation(s)
- Aurel A Lazar
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA.
| | | | | |
Collapse
|
93
|
MAEDA M, GAO N, NISHIHASHI N, LIU H. A Free-Flight Simulation of Insect Flapping Flight. ACTA ACUST UNITED AC 2010. [DOI: 10.5226/jabmech.1.71] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
94
|
|
95
|
Zabala F, Card G, Fontaine E, Dickinson M, Murray R. Flight Dynamics and Control of Evasive Maneuvers: The Fruit Fly's Takeoff. IEEE Trans Biomed Eng 2009; 56:2295-8. [DOI: 10.1109/tbme.2009.2027606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
96
|
Fontaine EI, Zabala F, Dickinson MH, Burdick JW. Wing and body motion during flight initiation in Drosophila revealed by automated visual tracking. ACTA ACUST UNITED AC 2009; 212:1307-23. [PMID: 19376952 DOI: 10.1242/jeb.025379] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The fruit fly Drosophila melanogaster is a widely used model organism in studies of genetics, developmental biology and biomechanics. One limitation for exploiting Drosophila as a model system for behavioral neurobiology is that measuring body kinematics during behavior is labor intensive and subjective. In order to quantify flight kinematics during different types of maneuvers, we have developed a visual tracking system that estimates the posture of the fly from multiple calibrated cameras. An accurate geometric fly model is designed using unit quaternions to capture complex body and wing rotations, which are automatically fitted to the images in each time frame. Our approach works across a range of flight behaviors, while also being robust to common environmental clutter. The tracking system is used in this paper to compare wing and body motion during both voluntary and escape take-offs. Using our automated algorithms, we are able to measure stroke amplitude, geometric angle of attack and other parameters important to a mechanistic understanding of flapping flight. When compared with manual tracking methods, the algorithm estimates body position within 4.4+/-1.3% of the body length, while body orientation is measured within 6.5+/-1.9 deg. (roll), 3.2+/-1.3 deg. (pitch) and 3.4+/-1.6 deg. (yaw) on average across six videos. Similarly, stroke amplitude and deviation are estimated within 3.3 deg. and 2.1 deg., while angle of attack is typically measured within 8.8 deg. comparing against a human digitizer. Using our automated tracker, we analyzed a total of eight voluntary and two escape take-offs. These sequences show that Drosophila melanogaster do not utilize clap and fling during take-off and are able to modify their wing kinematics from one wingstroke to the next. Our approach should enable biomechanists and ethologists to process much larger datasets than possible at present and, therefore, accelerate insight into the mechanisms of free-flight maneuvers of flying insects.
Collapse
Affiliation(s)
- Ebraheem I Fontaine
- Mechanical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | |
Collapse
|
97
|
Pirri JK, McPherson AD, Donnelly JL, Francis MM, Alkema MJ. A tyramine-gated chloride channel coordinates distinct motor programs of a Caenorhabditis elegans escape response. Neuron 2009; 62:526-38. [PMID: 19477154 DOI: 10.1016/j.neuron.2009.04.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 02/12/2009] [Accepted: 04/08/2009] [Indexed: 10/20/2022]
Abstract
A key feature of escape responses is the fast translation of sensory information into a coordinated motor output. In C. elegans, anterior touch initiates a backward escape response in which lateral head movements are suppressed. Here, we show that tyramine inhibits head movements and forward locomotion through the activation of a tyramine-gated chloride channel, LGC-55. lgc-55 mutant animals have defects in reversal behavior and fail to suppress head oscillations in response to anterior touch. lgc-55 is expressed in neurons and muscle cells that receive direct synaptic inputs from tyraminergic motor neurons. Therefore, tyramine can act as a classical inhibitory neurotransmitter. Activation of LGC-55 by tyramine coordinates the output of two distinct motor programs, locomotion and head movements that are critical for a C. elegans escape response.
Collapse
Affiliation(s)
- Jennifer K Pirri
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
98
|
Fotowat H, Fayyazuddin A, Bellen HJ, Gabbiani F. A novel neuronal pathway for visually guided escape in Drosophila melanogaster. J Neurophysiol 2009; 102:875-85. [PMID: 19474177 DOI: 10.1152/jn.00073.2009] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Drosophila melanogaster exhibits a robust escape response to objects approaching on a collision course. Although a pair of large command interneurons called the giant fibers (GFs) have been postulated to trigger such behaviors, their role has not been directly demonstrated. Here, we show that escape from visual stimuli like those generated by approaching predators does not rely on the activation of the GFs and consists of a more complex and less stereotyped motor sequence than that evoked by the GFs. Instead, the timing of escape is tightly correlated with the activity of previously undescribed descending interneurons that signal a threshold angular size of the approaching object. The activity pattern of these interneurons shares features with those of visual escape circuits of several species, including pigeons, frogs, and locusts, and may therefore have evolved under similar constraints. These results show that visually evoked escapes in Drosophila can rely on at least two descending neuronal pathways: the GFs and the novel pathway we characterize electrophysiologically. These pathways exhibit very different patterns of sensory activity and are associated with two distinct motor programs.
Collapse
Affiliation(s)
- Haleh Fotowat
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
99
|
Burrows M. Jumping strategies and performance in shore bugs (Hemiptera, Heteroptera,Saldidae). J Exp Biol 2009; 212:106-15. [DOI: 10.1242/jeb.024448] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe jumping movements of the hemipteran shore bug (Saldula saltatoria, sub-order Heteroptera, family Saldidae) were analysed from sequences of images captured at 5000 frames s–1. Adult Saldula weigh ∼2.1 mg and are ∼3.5 mm long. The hind legs that propel jumping are 180% longer than the front legs and 90% of body length, but non-jumping species in the same family have longer hind legs relative to the lengths of their bodies. Jumps were powered by large trochanteral depressor muscles in the thorax in two different strategies. In the first (used in 24% of jumps analysed), a jump was propelled by simultaneous extension of the two hind legs powered by rapid depression movements about the coxo-trochanteral joints, while both pairs of wings remained closed. In the second strategy (74% of jumps), the wings were opened before the hind legs began to move. At take-off, the position of the wings was variable and could be 8–21 ms into either elevation or depression. When the hind legs alone propelled a jump, the body was accelerated in 3.97±0.111 ms at a take-off angle of 52±6.5° to a take-off velocity of 1.27±0.119 m s–1; when the wings also moved, the body was accelerated in 3.86±0.055 ms at a take-off angle of 58±1.7° to a take-off velocity of 1.29±0.032 m s–1. These values are not different in the two jumping strategies. In its best jumps the take-off velocity reached 1.8 m s–1 so that Saldula experienced an average acceleration of 529 m s–2, equivalent to almost 54g, expended 3.4 μJ of energy, while exerting a force of 1.1 m N. The power requirements for jumping indicate that a catapult mechanism must be used in which the trochanteral depressor muscles contract and store energy in advance of a jump. These jumps should propel it to a height of 105 mm or 30 times its body length and distances of 320 mm. The two jumping strategies achieve the same jumping performance.
Collapse
Affiliation(s)
- Malcolm Burrows
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ,UK
| |
Collapse
|
100
|
Chapter 3 Mapping and Manipulating Neural Circuits in the Fly Brain. ADVANCES IN GENETICS 2009; 65:79-143. [DOI: 10.1016/s0065-2660(09)65003-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|