51
|
Yang DB, Xu YC, Wang DH, Speakman JR. Effects of reproduction on immuno-suppression and oxidative damage, and hence support or otherwise for their roles as mechanisms underpinning life history trade-offs, are tissue and assay dependent. ACTA ACUST UNITED AC 2013; 216:4242-50. [PMID: 23997195 DOI: 10.1242/jeb.092049] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Life history parameters appear to be traded off against each other, but the physiological mechanisms involved remain unclear. One hypothesis is that potentially energetically costly processes such as immune function and protection from oxidative stress may be compromised during reproductive attempts because of selective resource allocation. Lower temperatures also impose energy costs, and hence allocation decisions might be more pronounced when animals are forced to reproduce in the cold. Here, we experimentally tested whether reproduction at different ambient temperatures was associated with elevated oxidative stress and suppressed immune function in Mongolian gerbils (Meriones unguiculatus). Using a variety of different markers for both immune function and oxidative stress, we found that some measures of immune function (serum bactericidal capacity and size of the thymus) were significantly suppressed, while some measures of oxidative protection [serum superoxide dismutase (SOD) activity and glutathione peroxidase (GPx) activity] were also reduced, and a marker of oxidative damage (protein carbonyls in serum) was increased in lactating compared with non-reproductive gerbils. These changes were in line with the selective resource allocation predictions. However, the phytohaemagglutinin response and serum total immunoglobulin (IgG) were not suppressed, and other markers of oxidative damage [malondialdehyde (MDA) (TBARS) and protein carbonyls in the liver] were actually lower in lactating compared with non-reproductive gerbils, consistent with increased levels of SOD activity and total antioxidant capacity in the liver. These latter changes were opposite of the expectations based on resource allocation. Furthermore, other measures of protection (GPx levels in the liver and protein thiols in both serum and liver) and damage [MDA (TBARS) in serum] were unrelated to reproductive status. Ambient temperature differences did not impact on these patterns. Collectively, our results indicated that the inferred effects of reproduction on immunosuppression and oxidative damage, and hence support or otherwise for particular physiological mechanisms that underpin life history trade-offs, are critically dependent on the exact markers and tissues used. This may be because during reproduction individuals selectively allocate protection to some key tissues, but sacrifice protection of others.
Collapse
Affiliation(s)
- Deng-Bao Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
52
|
da Silva ACA, Salomon TB, Behling CS, Putti J, Hackenhaar FS, Alabarse PVG, Schüller AK, Benfato MS. Oxidative stress in the kidney of reproductive female rats during aging. Biogerontology 2013; 14:411-22. [DOI: 10.1007/s10522-013-9440-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/17/2013] [Indexed: 02/03/2023]
|
53
|
Skibiel AL, Speakman JR, Hood WR. Testing the predictions of energy allocation decisions in the evolution of life-history trade-offs. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12130] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amy L. Skibiel
- Department of Biological Sciences; Auburn University; Auburn AL 36849 USA
- Department of Human Evolutionary Biology; Harvard University; Cambridge MA 02138 USA
| | - John R. Speakman
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen AB24 2TZ, UK
- Key State Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing Chaoyang China
| | - Wendy R. Hood
- Department of Biological Sciences; Auburn University; Auburn AL 36849 USA
| |
Collapse
|
54
|
Zhao ZJ, Król E, Moille S, Gamo Y, Speakman JR. Limits to sustained energy intake. XV. Effects of wheel running on the energy budget during lactation. J Exp Biol 2013; 216:2316-27. [DOI: 10.1242/jeb.078402] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SUMMARY
The capacity of animals to dissipate heat may constrain sustained energy intake during lactation. We examined these constraints at peak lactation in MF1 mice that had ad libitum access to food, or that had to run a pre-set target on running wheels to obtain ad libitum access to food. The voluntary distance run decreased sharply during pregnancy and peak lactation. When lactating females were provided with 80% of their estimated food requirements, and had to run pre-set distances of 2, 4 or 6 km before given access to additional ad libitum food, most of them did not complete the running target during late lactation and the mice with the highest targets failed to reach their targets earlier in lactation. There were consequently significant group differences in asymptotic food intake (2 km, 16.97±0.40 g day−1; 4 km, 14.29±0.72 g day−1; and 6 km, 12.65±0.45 g day−1) and weaned litter masses (2 km, 71.11±2.39 g; 4 km, 54.63±4.28 g and 6 km, 47.18±2.46 g). When the females did run sufficiently to gain ad libitum food access, their intake did not differ between the different distance groups or from controls that were not required to run. Thus, despite being physically capable of running the distances, mice could not exercise sufficiently in lactation to gain regular ad libitum access to food, probably because of the risks of hyperthermia when combining heat production from exercise with thermogenesis from lactation.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325027, People's Republic of China
| | - Elzbieta Król
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
- Mammal Research Institute PAS, 17-230 Białowieża, Poland
| | - Sophie Moille
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Yuko Gamo
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - John R. Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
- Institute of Genetics and Developmental Biology, State Key Laboratory of Molecular Developmental Biology, Chinese Academy of Sciences, Beichen Xi Lu, Chaoyang, Beijing 100101, People's Republic of China
| |
Collapse
|
55
|
Metcalfe NB, Monaghan P. Does reproduction cause oxidative stress? An open question. Trends Ecol Evol 2013; 28:347-50. [DOI: 10.1016/j.tree.2013.01.015] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
|
56
|
Pichaud N, Garratt M, Ballard JWO, Brooks RC. Physiological adaptations to reproduction. II. Mitochondrial adjustments in livers of lactating mice. ACTA ACUST UNITED AC 2013; 216:2889-95. [PMID: 23619407 DOI: 10.1242/jeb.082685] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reproduction imposes significant costs and is characterized by an increased energy demand. As a consequence, individuals adjust their cellular structure and function in response to this physiological constraint. Because mitochondria are central to energy production, changes in their functional properties are likely to occur during reproduction. Such changes could cause adjustments in reactive oxygen species (ROS) production and consequently in oxidative stress levels. In this study, we investigated several mechanisms involved in energy production, including mitochondrial respiration at different steps of the electron transport system (ETS) and related the results to citrate synthase activity in the liver of non-reproductive and reproductive (two and eight pups) female house mice at peak lactation. Whereas we did not find differences between females having different litter sizes, liver mitochondria of reproductive females showed lower ETS activity and an increase in mitochondrial density when compared with the non-reproductive females. Although it is possible that these changes were due to combined processes involved in reproduction and not to the relative investment in lactation, we propose that the mitochondrial adjustment in liver might help to spare substrates and therefore energy for milk production in the mammary gland. Moreover, our results suggest that these changes lead to an increase in ROS production that subsequently upregulates antioxidant defence activity and decreases oxidative stress.
Collapse
Affiliation(s)
- Nicolas Pichaud
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | | | | | | |
Collapse
|
57
|
Garratt M, Pichaud N, King EDA, Brooks RC. Physiological adaptations to reproduction. I. Experimentally increasing litter size enhances aspects of antioxidant defence but does not cause oxidative damage in mice. ACTA ACUST UNITED AC 2013; 216:2879-88. [PMID: 23619417 DOI: 10.1242/jeb.082669] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Life history theory suggests that investment in reproduction can trade off against growth, longevity and both reproduction and performance later in life. One possible reason for this trade-off is that reproduction directly causes somatic damage. Oxidative stress, an overproduction of reactive oxygen species in relation to cellular defences, can correlate with reproductive investment and has been implicated as a pathway leading to senescence. This has led to the suggestion that this aspect of physiology could be an important mechanism underlying the trade-off between reproduction and lifespan. We manipulated female reproductive investment to test whether oxidative stress increases with reproduction in mice. Each female's pups were cross-fostered to produce litters of either two or eight, representing low and high levels of reproductive investment for wild mice. No differences were observed between reproductive groups at peak lactation for several markers of oxidative stress in the heart and gastrocnemius muscle. Surprisingly, oxidative damage to proteins was lower in the livers of females with a litter size of eight than in females with two pups or non-reproductive control females. While protein oxidation decreased, activity levels of the antioxidant enzyme superoxide dismutase increased in the liver, suggesting this may be one pathway used to protect against oxidative stress. Our results highlight the need for caution when interpreting correlative relationships and suggest that oxidative stress does not increase with enhanced reproductive effort during lactation.
Collapse
Affiliation(s)
- Michael Garratt
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | | | | | | |
Collapse
|
58
|
Stier A, Reichert S, Massemin S, Bize P, Criscuolo F. Constraint and cost of oxidative stress on reproduction: correlative evidence in laboratory mice and review of the literature. Front Zool 2012; 9:37. [PMID: 23268929 PMCID: PMC3551645 DOI: 10.1186/1742-9994-9-37] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 12/17/2012] [Indexed: 01/10/2023] Open
Abstract
Background One central concept in evolutionary ecology is that current and residual reproductive values are negatively linked by the so-called cost of reproduction. Previous studies examining the nature of this cost suggested a possible involvement of oxidative stress resulting from the imbalance between pro- and anti-oxidant processes. Still, data remain conflictory probably because, although oxidative damage increases during reproduction, high systemic levels of oxidative stress might also constrain parental investment in reproduction. Here, we investigated variation in oxidative balance (i.e. oxidative damage and antioxidant defences) over the course of reproduction by comparing female laboratory mice rearing or not pups. Results A significant increase in oxidative damage over time was only observed in females caring for offspring, whereas antioxidant defences increased over time regardless of reproductive status. Interestingly, oxidative damage measured prior to reproduction was negatively associated with litter size at birth (constraint), whereas damage measured after reproduction was positively related to litter size at weaning (cost). Conclusions Globally, our correlative results and the review of literature describing the links between reproduction and oxidative stress underline the importance of timing/dynamics when studying and interpreting oxidative balance in relation to reproduction. Our study highlights the duality (constraint and cost) of oxidative stress in life-history trade-offs, thus supporting the theory that oxidative stress plays a key role in life-history evolution.
Collapse
Affiliation(s)
- Antoine Stier
- Centre National de la Recherche Scientifique, UMR7178, Strasbourg, 67037, France.,Université de Strasbourg, IPHC, 23 rue Becquerel, Strasbourg, 67087, France
| | - Sophie Reichert
- Centre National de la Recherche Scientifique, UMR7178, Strasbourg, 67037, France.,Université de Strasbourg, IPHC, 23 rue Becquerel, Strasbourg, 67087, France
| | - Sylvie Massemin
- Centre National de la Recherche Scientifique, UMR7178, Strasbourg, 67037, France.,Université de Strasbourg, IPHC, 23 rue Becquerel, Strasbourg, 67087, France
| | - Pierre Bize
- Department of Ecology and Evolution, University of Lausanne, Biophore, Lausanne-Dorigny, 1015, Switzerland
| | - François Criscuolo
- Centre National de la Recherche Scientifique, UMR7178, Strasbourg, 67037, France.,Université de Strasbourg, IPHC, 23 rue Becquerel, Strasbourg, 67087, France
| |
Collapse
|
59
|
Fletcher QE, Selman C, Boutin S, McAdam AG, Woods SB, Seo AY, Leeuwenburgh C, Speakman JR, Humphries MM. Oxidative damage increases with reproductive energy expenditure and is reduced by food-supplementation. Evolution 2012; 67:1527-36. [PMID: 23617928 DOI: 10.1111/evo.12014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 11/02/2012] [Indexed: 01/02/2023]
Abstract
A central principle in life-history theory is that reproductive effort negatively affects survival. Costs of reproduction are thought to be physiologically based, but the underlying mechanisms remain poorly understood. Using female North American red squirrels (Tamiasciurus hudsonicus), we test the hypothesis that energetic investment in reproduction overwhelms investment in antioxidant protection, leading to oxidative damage. In support of this hypothesis we found that the highest levels of plasma protein oxidative damage in squirrels occurred during the energetically demanding period of lactation. Moreover, plasma protein oxidative damage was also elevated in squirrels that expended the most energy and had the lowest antioxidant protection. Finally, we found that squirrels that were food-supplemented during lactation and winter had increased antioxidant protection and reduced plasma protein oxidative damage providing the first experimental evidence in the wild that access to abundant resources can reduce this physiological cost.
Collapse
Affiliation(s)
- Quinn E Fletcher
- Department of Natural Resource Sciences, Macdonald Campus, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Selman C, Blount JD, Nussey DH, Speakman JR. Oxidative damage, ageing, and life-history evolution: where now? Trends Ecol Evol 2012; 27:570-7. [PMID: 22789512 DOI: 10.1016/j.tree.2012.06.006] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 06/06/2012] [Accepted: 06/15/2012] [Indexed: 01/09/2023]
Abstract
The idea that resources are limited and animals can maximise fitness by trading costly activities off against one another forms the basis of life-history theory. Although investment in reproduction or growth negatively affects survival, the mechanisms underlying such trade-offs remain obscure. One plausible mechanism is oxidative damage to proteins, lipids, and nucleic acids caused by reactive oxygen species (ROS). Here, we critically evaluate the premise that ROS-induced oxidative damage shapes life history, focussing on birds and mammals, and highlight the importance of ecological studies examining free-living animals within this experimental framework. We conclude by emphasising the value of using multiple assays to determine oxidative protection and damage. We also highlight the importance of using standardised and appropriate protocols, and discuss future research directions.
Collapse
Affiliation(s)
- Colin Selman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| | | | | | | |
Collapse
|