51
|
Lichtwark G, Wilson A. Optimal muscle fascicle length and tendon stiffness for maximising gastrocnemius efficiency during human walking and running. J Theor Biol 2008; 252:662-73. [DOI: 10.1016/j.jtbi.2008.01.018] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 01/17/2008] [Accepted: 01/23/2008] [Indexed: 10/22/2022]
|
52
|
Rankin JW, Neptune RR. A theoretical analysis of an optimal chainring shape to maximize crank power during isokinetic pedaling. J Biomech 2008; 41:1494-502. [PMID: 18395213 DOI: 10.1016/j.jbiomech.2008.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 01/23/2008] [Accepted: 02/18/2008] [Indexed: 10/22/2022]
Abstract
Previous studies have sought to improve cycling performance by altering various aspects of the pedaling motion using novel crank-pedal mechanisms and non-circular chainrings. However, most designs have been based on empirical data and very few have provided significant improvements in cycling performance. The purpose of this study was to use a theoretical framework that included a detailed musculoskeletal model driven by individual muscle actuators, forward dynamic simulations and design optimization to determine if cycling performance (i.e., maximal power output) could be improved by optimizing the chainring shape to maximize average crank power during isokinetic pedaling conditions. The optimization identified a consistent non-circular chainring shape at pedaling rates of 60, 90 and 120 rpm with an average eccentricity of 1.29 that increased crank power by an average of 2.9% compared to a conventional circular chainring. The increase in average crank power was the result of the optimal chainrings slowing down the crank velocity during the downstroke (power phase) to allow muscles to generate power longer and produce more external work. The data also showed that chainrings with higher eccentricity increased negative muscle work following the power phase due to muscle activation-deactivation dynamics. Thus, the chainring shape that maximized average crank power balanced these competing demands by providing enough eccentricity to increase the external work generated by muscles during the power phase while minimizing negative work during the subsequent recovery phase.
Collapse
Affiliation(s)
- Jeffery W Rankin
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
53
|
Measuring mechanical properties, including isotonic fatigue, of fast and slow MLC/mIgf-1 transgenic skeletal muscle. Ann Biomed Eng 2008; 36:1281-90. [PMID: 18415017 DOI: 10.1007/s10439-008-9496-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 04/02/2008] [Indexed: 10/22/2022]
Abstract
Contractile properties of fast-twitch (EDL) and slow-twitch (soleus) skeletal muscles were measured in MLC/mIgf-1 transgenic and wild-type mice. MLC/mIgf-1 mice express the local factor mIgf-1 under the transcriptional control of MLC promoter, selectively activated in fast-twitch muscle fibers. Isolated muscles were studied in vitro in both isometric and isotonic conditions. We used a rapid "ad hoc" testing protocol that measured, in a single procedure, contraction time, tetanic force, Hill's (F-v) curve, power curve and isotonic muscle fatigue. Transgenic soleus muscles did not differ from wild-type with regard to any measured variable. In contrast, transgenic EDL muscles displayed a hypertrophic phenotype, with a mass increase of 29.2% compared to wild-type. Absolute tetanic force increased by 21.5% and absolute maximum power by 34.1%. However, when normalized to muscle cross-sectional area and mass, specific force and normalized power were the same in transgenic and wild-type EDL muscles, revealing that mIgf-1 expression induces a functional hypertrophy without altering fibrotic tissue accumulation. Isotonic fatigue behavior did not differ between transgenic and wild-type muscles, suggesting that the ability of mIgf-1 transgenic muscle to generate a considerable higher absolute power did not affect its resistance to fatigue.
Collapse
|
54
|
Ellerby DJ, Askew GN. Modulation of flight muscle power output in budgerigars Melopsittacus undulatus and zebra finches Taeniopygia guttata: in vitro muscle performance. ACTA ACUST UNITED AC 2008; 210:3780-8. [PMID: 17951419 DOI: 10.1242/jeb.006288] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The pectoralis muscles are the main source of mechanical power for avian flight. The power output of these muscles must be modulated to meet the changing power requirements of flight across a range of speeds. This can be achieved at the muscle level by manipulation of strain trajectory and recruitment patterns, and/or by intermittent flight strategies. We have measured the in vitro power outputs of pectoralis muscle fascicles from budgerigars Melopsittacus undulatus and zebra finches Taeniopygia guttata under conditions replicating those previously measured in vivo during flight. This has allowed us to quantify the extent to which different power modulation mechanisms control flight muscle power output. Intermittent flight behaviour is a more important determinant of flight power in zebra finches than budgerigars. This behaviour accounts for 25-62% of power modulation relative to the maximum available mechanical power output in zebra finch, compared to 0-38% in budgerigars. Muscle level changes in fascicle strain trajectory and motor unit recruitment, rather than intermittent flight behaviours, are the main determinants of pectoralis muscle power output in budgerigars at all speeds, and in zebra finch at speeds below 14 m s(-1).
Collapse
Affiliation(s)
- David J Ellerby
- Institute of Integrative and Comparative Biology, University of Leeds, Leeds, UK
| | | |
Collapse
|
55
|
Richards CT, Biewener AA. Modulation of in vivo muscle power output during swimming in the African clawed frog (Xenopus laevis). ACTA ACUST UNITED AC 2007; 210:3147-59. [PMID: 17766291 DOI: 10.1242/jeb.005207] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The goal of this study is to explore how swimming animals produce the wide range of performance that is seen across their natural behaviors. In vivo recordings of plantaris longus muscle length change were obtained by sonomicrometry. Simultaneous with muscle length data, force measurements were obtained using a novel tendon buckle force transducer placed on the Achilles tendon of Xenopus laevis frogs during brief accelerating bursts of swimming. In vivo work loops revealed that the plantaris generates a variable amount of positive muscle work over a range of swimming cycle durations (from 0.23 to 0.76 s), resulting in a large range of cycle power output (from 2.32 to 74.17 W kg(-1) muscle). Cycle duration correlated negatively with cycle power, and cycle work correlated positively (varying as a function of peak cycle stress and, to a much lesser extent, fascicle strain amplitude). However, variation in cycle duration only contributed to 12% of variation in power, with cycle work accounting for the remaining 88%. Peak cycle stress and strain amplitude were also highly variable, yet peak stress was a much stronger predictor of cycle work than strain amplitude. Additionally, EMG intensity correlated positively with peak muscle stress (r(2)=0.53). Although the timing of muscle recruitment (EMG phase and EMG duty cycle) varied considerably within and among frogs, neither parameter correlated strongly with cycle power, cycle work, peak cycle stress or strain amplitude. These results suggest that relatively few parameters (cycle duration, peak cycle stress and strain amplitude) vary to permit a wide range of muscle power output, which allows anurans to swim over a large range of velocities and accelerations.
Collapse
|
56
|
Ellerby DJ, Askew GN. Modulation of pectoralis muscle function in budgerigarsMelopsitaccus undulatusand zebra finchesTaeniopygia guttatain response to changing flight speed. J Exp Biol 2007; 210:3789-97. [DOI: 10.1242/jeb.006296] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYFlight power varies in a U-shaped relationship with flight speed, requiring the modulation of flight muscle power in order to meet these changing power demands. The power output of the pectoralis muscle can potentially be modulated by changing strain trajectory and the relative timing and intensity of muscle activity. Pectoralis muscle length change and activity patterns were recorded in budgerigars Melopsitaccus undulatus and zebra finches Taeniopygia guttata at a range of flight speeds using sonomicrometry and electromyography (EMG). The pectoralis muscles in these species contain a single muscle fibre type. Therefore, the power output is entirely determined by muscle activity and strain trajectory, rather than recruitment of motor units with different contractile properties as in many other vertebrate muscle systems. Relative EMG intensity, wingbeat frequency and muscle strain varied in an approximately U-shaped relationship with flight speed. The shape of the length trajectory varied with flight speed in budgerigars, with the proportion of the cycle spent shortening being lowest at intermediate flight speeds. In zebra finch pectoralis muscle the shape of the length trajectory did not vary significantly with flight speed. In both species the observed changes in muscle recruitment and length trajectory are consistent with meeting flight power requirements that vary in a U-shaped pattern with speed. Both species utilised intermittent flight, tending to spend relatively less time flapping at intermediate flight speeds. This supports the idea that intermittent flight is used as a simple power modulation strategy. However, the idea that intermittent flight serves to maintain a `fixed gear' is over-simplistic and fails to recognise the plasticity in performance at the level of the muscle. Intermittent flight is only one component of a complex power modulation strategy.
Collapse
Affiliation(s)
- David J. Ellerby
- Institute of Integrative and Comparative Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Graham N. Askew
- Institute of Integrative and Comparative Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
57
|
Abstract
Force-velocity, force-time, and force-length relations of muscle are typically evaluated with reductionist techniques in which force is measured while the variable of interest is manipulated. However, force produced during voluntary movement arises from complex interaction of these contractile characteristics. Nonetheless, neuromuscular performance for cyclical, work-producing movements can be predicted from the interaction of average muscle shortening velocity and movement frequency.
Collapse
Affiliation(s)
- James C Martin
- Department of Exercise and Sport Science, the University of Utah, Salt Lake City, UT 84112-0920, USA.
| |
Collapse
|
58
|
Hodson-Tole E. Effects of treadmill inclination and speed on forelimb muscle activity and kinematics in the horse. ACTA ACUST UNITED AC 2007. [DOI: 10.1079/ecp200681] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AbstractThe study aimed to investigate the effect of speed and incline on EMG activity in thebrachiocephalicusmuscle and the long and lateral heads of thetriceps brachiimuscle. Six horses were exercised on a treadmill at walk (1.7 m s-1), trot (4.0 m s-1) and right lead canter (7.2 m s-1) on a 0 and 8% incline. Kinematics (120 Hz) and electromyography (EMG) (2000 Hz) data were collected simultaneously from the left forelimb of each horse. Significant differences in relation to velocity and incline were identified using two-way ANOVA andpost hocStudent–Newman–Keuls tests (P≪0.05). The degree of association between timing of peak EMG intensity and the timing of maximum protraction/retraction angles was assessed using ANCOVA. Increases in velocity led to an increase in stride length and reduction in stride duration. Exercise on the incline increased stance duration and decreased swing duration, while limb protraction/retraction increased. The time of peak EMG activity in thebrachiocephalicuswas highly related to time of maximum limb retraction (r2=0.84). The time of peak EMG activity in the long head of thetriceps brachiiwas highly associated with time of maximum limb protraction (r2=0.87). Increases in velocity and incline both caused an increase in the intensity of the EMG signal from each muscle. Duration of EMG activity was prolonged in the long head of thetriceps brachiimuscle and in thebrachiocephalicusmuscle as velocity increased. Treadmill speed and slope therefore both alter the workload placed on forelimb muscles.
Collapse
|
59
|
Ahn AN, Meijer K, Full RJ. In situ muscle power differs without varying in vitro mechanical properties in two insect leg muscles innervated by the same motor neuron. ACTA ACUST UNITED AC 2006; 209:3370-82. [PMID: 16916973 DOI: 10.1242/jeb.02392] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanical behavior of muscle during locomotion is often predicted by its anatomy, kinematics, activation pattern and contractile properties. The neuromuscular design of the cockroach leg provides a model system to examine these assumptions, because a single motor neuron innervates two extensor muscles operating at a single joint. Comparisons of the in situ measurements under in vivo running conditions of muscle 178 to a previously examined muscle (179) demonstrate that the same inputs (e.g. neural signal and kinematics) can result in different mechanical outputs. The same neural signal and kinematics, as determined during running, can result in different mechanical functions, even when the two anatomically similar muscles possess the same contraction kinetics, force-velocity properties and tetanic force-length properties. Although active shortening greatly depressed force under in vivo-like strain and stimulation conditions, force depression was similarly proportional to strain, similarly inversely proportional to stimulation level, and similarly independent of initial length and shortening velocity between the two muscles. Lastly, passive pre-stretch enhanced force similarly between the two muscles. The forces generated by the two muscles when stimulated with their in vivo pattern at lengths equal to or shorter than rest length differed, however. Overall, differences between the two muscles in their submaximal force-length relationships can account for up to 75% of the difference between the two muscles in peak force generated at short lengths observed during oscillatory contractions. Despite the fact that these muscles act at the same joint, are stimulated by the same motor neuron with an identical pattern, and possess many of the same in vitro mechanical properties, the mechanical outputs of two leg extensor muscles can be vastly different.
Collapse
Affiliation(s)
- A N Ahn
- Department of Integrative Biology, University of California, Berkeley, 94720-3140, USA.
| | | | | |
Collapse
|
60
|
Lappin AK, Monroy JA, Pilarski JQ, Zepnewski ED, Pierotti DJ, Nishikawa KC. Storage and recovery of elastic potential energy powers ballistic prey capture in toads. ACTA ACUST UNITED AC 2006; 209:2535-53. [PMID: 16788037 DOI: 10.1242/jeb.02276] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ballistic tongue projection in toads is a remarkably fast and powerful movement. The goals of this study were to: (1) quantify in vivo power output and activity of the depressor mandibulae muscles that are responsible for ballistic mouth opening, which powers tongue projection; (2) quantify the elastic properties of the depressor mandibulae muscles and their series connective tissues using in situ muscle stimulation and force-lever studies; and (3) develop and test an elastic recoil model, based on the observed elastic properties of the depressor mandibulae muscles and series connective tissues, that accounts for displacement, velocity, acceleration and power output during ballistic mouth opening in toads. The results demonstrate that the depressor mandibulae muscles of toads are active for up to 250 ms prior to mouth opening. During this time, strains of up to 21.4% muscle resting length (ML) develop in the muscles and series connective tissues. At maximum isometric force, series connective tissues develop strains up to 14% ML, and the muscle itself develops strains up to 17.5% ML. When the mouth opens rapidly, the peak instantaneous power output of the depressor mandibulae muscles and series connective tissues can reach 9600 W kg(-1). The results suggest that: (1) elastic recoil of muscle itself can contribute significantly to the power of ballistic movements; (2) strain in series elastic elements of the depressor mandibulae muscle is too large to be borne entirely by the cross bridges and the actin-myosin filament lattice; and (3) central nervous control of ballistic tongue projection in toads likely requires the specification of relatively few parameters.
Collapse
Affiliation(s)
- A Kristopher Lappin
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-5640, USA.
| | | | | | | | | | | |
Collapse
|
61
|
Carroll AM, Wainwright PC. Muscle function and power output during suction feeding in largemouth bass, Micropterus salmoides. Comp Biochem Physiol A Mol Integr Physiol 2006; 143:389-99. [PMID: 16458031 DOI: 10.1016/j.cbpa.2005.12.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 12/19/2005] [Accepted: 12/19/2005] [Indexed: 10/25/2022]
Abstract
Muscle power output is thought to limit suction feeding performance, yet muscle power output during suction feeding has never been directly measured. In this study, epaxial activation and strain, hyoid depression, and intra-oral pressure were simultaneously measured during suction feeding in the largemouth bass (Micropterus salmoides). A mechanical model of muscle force transmission between the neurocranium and oral cavity was used to estimate muscle stress, work, and power. The epaxials shortened from rest an average of 9% of their length, with the highest efforts producing greater than 20% strain. Onset of shortening was simultaneous with or shortly after (< 10 ms) onset of activation. Maximal net power for individual fish ranged from 17 to 137 W kg(-1). Muscle power was significantly correlated with rectified EMG area (r = 0.80; p < 0.0001). The power required for cranial expansion was significantly correlated with epaxial power (r = 0.81; p < 0.0001), and the power exponent of this relationship ( approximately 1 for 3 of the 4 fish) implies that epaxial power accounts for most of the power of cranial expansion. The limitations imposed by the kinematic requirements and loading environment of suction feeding (short delay between activation and strain, maximal stress occurring after shortening, operation at lengths shorter than resting length) may prevent maximal muscular power production.
Collapse
Affiliation(s)
- Andrew M Carroll
- Concord Field Station, Harvard University, Old Causeway Rd., Bedford, MA 01730, USA.
| | | |
Collapse
|
62
|
Collis LP, Sun Y, Hill RB. Length-dependent deactivation of ventricular trabeculae in the bivalve, Spisula solidissima. J Comp Physiol B 2005; 176:371-85. [PMID: 16365767 DOI: 10.1007/s00360-005-0060-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 11/23/2005] [Accepted: 11/23/2005] [Indexed: 10/25/2022]
Abstract
Shortening-deactivation has been identified and characterized in ventricular trabeculae of the bivalve, Spisula solidissima (Heterodonta, Mactridae). This muscle had ultrastructural similarities to vertebrate smooth muscle. Deactivation was defined as the fraction of maximal force lost during a contraction when a muscle is shortened rapidly (by a quick-release, QR) to a known length, relative to a control isometric contraction at that same length. The magnitude of deactivation was dependent on the size of the release and the point at which the release was applied during the cycle of contraction. QR/quick-stretch (QS) perturbations at the same point during the contraction resulted in negligible deactivation. The magnitude of deactivation was independent of shortening rate. Deactivation was attenuated by applying caffeine (100 microM) and blocked with high extracellular Ca(2+) (56 mM). The Ca(2+) ionophore, A23187 (10 microM), augmented deactivation as did the positive inotrope serotonin (100 nM). Treatment with ryanodine (5 microM) had no significant effect on deactivation. These results suggest that a reduction in Ca(2+) at the contractile element and/or sequestration of Ca(2+) may occur during shortening. Deactivation may minimize the magnitude of work done during active shortening of bivalve cardiac muscle, particularly against the low afterload exhibited in the bivalve peripheral circulatory system. Intracellular Ca(2+) fluxes during sudden length perturbations may explain the effect of stretch on action potential duration in the bivalve heart, as shown previously.
Collapse
Affiliation(s)
- L P Collis
- Biocurrents Research Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA.
| | | | | |
Collapse
|
63
|
Tobalske BW, Puccinelli LA, Sheridan DC. Contractile activity of the pectoralis in the zebra finch according to mode and velocity of flap-bounding flight. J Exp Biol 2005; 208:2895-901. [PMID: 16043594 DOI: 10.1242/jeb.01734] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYWe studied flying zebra finch (Taeniopygia guttata, N=12), to provide a new test of a long-standing `fixed-gear'hypothesis that flap-bounding birds use only intermittent non-flapping phases,instead of variation in muscle activity, to vary mechanical power output in flight. Using sonomicrometry and electromyography, we measured in vivo fascicle length and neuromuscular recruitment in the pectoralis as the birds flew in different flight modes (level, ascending, descending; mean velocity 1.6±0.3 m s–1) and across velocities in a new, variable-speed wind tunnel (0–12 m s–1). Synchronized high-speed digital video (250 Hz) provided a record of wing kinematics. Flight mode had a significant effect upon pectoralis strain,strain rate, fractional shortening and the relative timing of muscle activity(onset, offset and duration). Among flight velocities, we observed significant variation in pectoralis strain, fractional lengthening and shortening, strain rate, relative electromyographic (EMG) amplitude, and EMG duration and offset. In particular, variation in strain rate and relative EMG amplitude indicates that the fixed-gear hypothesis should be rejected. Instead, it appears that zebra finch vary work and power output within wingbeats by modulating muscle contractile behavior and between wingbeats using intermittent bounds. Muscle activity patterns and wing kinematics were similar between free flight and wind tunnel flight at similar speeds. Comparing flights with and without surgically implanted transducers and electrodes, zebra finch exhibited a reduction in maximum velocity (from 14 to 12 m s–1) and a significant increase in wingbeat frequency and percent time flapping. This identifies a potential limitation of in vivo flight measurements, and similar studies of bird flight should, therefore, include measurements of the extent to which flight performance is compromised by experimental protocol.
Collapse
Affiliation(s)
- Bret W Tobalske
- Department of Biology, University of Portland, 5000 N. Willamette Boulevard, Portland, OR 97203, USA.
| | | | | |
Collapse
|
64
|
Abstract
To achieve the required generality, models designed to predict scaling relationships for diverse groups of animals generally need to be simple. An argument based on considerations of dynamic similarity predicts correctly that the mechanical cost of transport for running [power/(body mass x speed)] will be independent of body mass; but measurements of oxygen consumption for running birds and mammals show that the metabolic cost of transport is proportional to (body mass)-0.32. Thus the leg muscles seem to work more efficiently in larger animals. A model that treats birds as fixed wing aircraft predicts that the mechanical power required for flight at the maximum range speed will be proportional to (body mass)1.02, but the metabolic power is found to be proportional to (body mass)0.83; again, larger animals seem to have more efficient muscles. A model that treats hovering hummingbirds and insects as helicopters predicts mechanical power to be approximately proportional to body mass, but measurements of oxygen consumption once again show efficiency increasing with body mass. A model of swimming fish as rigid submarines predicts power to be proportional to (body mass)0.5 x (speed)2.5 or to (body mass)0.6 x (speed)2.8, depending on whether flow in the boundary layer is laminar or turbulent. Unfortunately, this prediction cannot easily be compared with available compilations of metabolic data. The finding that efficiency seems to increase with body mass, at least in running and flight, is discussed in relation to the metabolic energy costs of muscular work and force.
Collapse
|
65
|
James RS, Kohlsdorf T, Cox VM, Navas CA. 70 microM caffeine treatment enhances in vitro force and power output during cyclic activities in mouse extensor digitorum longus muscle. Eur J Appl Physiol 2005; 95:74-82. [PMID: 15959797 DOI: 10.1007/s00421-005-1396-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2005] [Indexed: 10/25/2022]
Abstract
Caffeine ingestion by human athletes has been found to improve endurance performance primarily acting via the central nervous system as an adenosine receptor antagonist. However, a few studies have implied that the resultant micromolar levels of caffeine in blood plasma (70 microM maximum for humans) may directly affect skeletal muscle causing enhanced force production. In the present study, the effects of 70 microM caffeine on force and power output in isolated mouse extensor digitorum longus muscle were investigated in vitro at 35 degrees C. Muscle preparations were subjected to cyclical sinusoidal length changes with electrical stimulation conditions optimised to produce maximal work. 70 microM caffeine caused a small but significant increase (2-3%) in peak force and net work produced during work loops (where net work represents the work input required to lengthen the muscle subtracted from the work produced during shortening). However, these micromolar caffeine levels did not affect the overall pattern of fatigue or the pattern of recovery from fatigue. Our results suggest that the plasma concentrations found when caffeine is used to enhance athletic performance in human athletes might directly enhance force and power during brief but not prolonged activities. These findings potentially confirm previous in vivo studies, using humans, which implied caffeine ingestion may cause acute improvements in muscle force and power output but would not enhance endurance.
Collapse
Affiliation(s)
- Rob S James
- School of Science and the Environment, James Starley Building, Coventry University, Priory Street, Coventry CV1 5FB, UK.
| | | | | | | |
Collapse
|
66
|
Wagner H, Siebert T, Ellerby DJ, Marsh RL, Blickhan R. ISOFIT: a model-based method to measure muscle–tendon properties simultaneously. Biomech Model Mechanobiol 2005; 4:10-9. [PMID: 15895262 DOI: 10.1007/s10237-005-0068-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 12/08/2004] [Indexed: 11/26/2022]
Abstract
Estimation of muscle parameters specifying force-length and force-velocity behavior requires in general a large number of sophisticated experiments often including a combination of isometric, isokinetic, isotonic, and quick-release experiments. This study validates a simpler method (ISOFIT) to determine muscle properties by fitting a Hill-type muscle model to a set of isovelocity data. Muscle properties resulting from the ISOFIT method agreed well with muscle properties determined separately in in vitro measurements using frog semitendinosus muscles. The force-length curve was described well by the results of the model. The force-velocity curve resulting from the model coincided with the experimentally determined curve above approximately 20% of maximum isometric force (correlation coefficient R>0.99). At lower forces and thus higher velocities the predicted curve underestimated velocity. The stiffness of the series elastic component determined with direct experiments was approximately 10% lower than that determined by the ISOFIT method. Use of the ISOFIT method can decrease experimental time up to 80% and reduce potential changes in muscle parameters due to fatigue.
Collapse
Affiliation(s)
- H Wagner
- Department Science of Motion, Friedrich-Schiller-University Jena, 07749 Jena, Germany.
| | | | | | | | | |
Collapse
|
67
|
Carroll AM. Muscle activation and strain during suction feeding in the largemouth bassMicropterus salmoides. J Exp Biol 2004; 207:983-91. [PMID: 14766957 DOI: 10.1242/jeb.00862] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYActivation and strain in the sternohyoideus (SH) were measured in vivo in five largemouth bass Micropterus salmoides. The SH is thought to actuate lower jaw depression, hyoid depression and suspensorial abduction during suction feeding in teleost fish. Sonomicrometry was used to measure fascicle shortening and lower jaw kinematics, while activity was measured by electromyography (EMG). SH fascicles shortened by an average of 11% during suction feeding. In three fish SH fascicles consistently shortened during fast lower jaw depression, but in two individuals they contracted isometrically or lengthened slightly during fast lower jaw depression. The SH continued shortening after peak gape, presumably actuating hyoid depression and lateral expansion of the buccal cavity. Onset of SH relengthening and onset of lower jaw elevation were simultaneous, as were the return of the SH to resting length and gape closure. Activation followed the onset of shortening by an average of 23 ms, although the muscle was active an average of 15 ms before the onset of rapid shortening. SH fascicles reached sustained shortening velocities averaging –2.5 fascicle lengths per second, and generally increased shortening velocity after peak gape. The shortening velocities measured in this study suggest that the SH actively shortens to generate power during suction feeding. This study is the first direct measurement of in vivo muscle function during suction feeding, the most common mechanism of prey capture among aquatic vertebrates.
Collapse
Affiliation(s)
- Andrew M Carroll
- Section of Evolution and Ecology, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
68
|
Moon BR, Conley KE, Lindstedt SL, Urquhart MR. Minimal shortening in a high-frequency muscle. J Exp Biol 2003; 206:1291-7. [PMID: 12624164 DOI: 10.1242/jeb.00253] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reducing the cost of high-frequency muscle contractions can be accomplished by minimizing cross-bridge cycling or by recycling elastic strain energy. Energy saving by contractile minimization has very different implications for muscle strain and activation patterns than by elastic recoil. Minimal cross-bridge cycling will be reflected in minimal contractile strains and highly reduced force, work and power output, whereas elastic energy storage requires a period of active lengthening that increases mechanical output. In this study, we used sonomicrometry and electromyography to test the relative contributions of energy reduction and energy recycling strategies in the tailshaker muscles of western diamondback rattlesnakes (Crotalus atrox). We found that tailshaker muscle contractions produce a mean strain of 3%, which is among the lowest strains ever recorded in vertebrate muscle during movement. The relative shortening velocities (V/V(max)) of 0.2-0.3 were in the optimal range for maximum power generation, indicating that the low power output reported previously for tailshaker muscle is due mainly to contractile minimization rather than to suboptimal V/V(max). In addition, the brief contractions (8-18 ms) had only limited periods of active lengthening (0.2-0.5 ms and 0.002-0.035%), indicating little potential for elastic energy storage and recoil. These features indicate that high-frequency muscles primarily reduce metabolic energy input rather than recycle mechanical energy output.
Collapse
Affiliation(s)
- Brad R Moon
- Department of Biology, PO Box 42451, University of Louisiana at Lafayette, Lafayette, LA 70504-2451, USA.
| | | | | | | |
Collapse
|
69
|
Abstract
Vertebrate animals exploit the elastic properties of their tendons in several different ways. Firstly, metabolic energy can be saved in locomotion if tendons stretch and then recoil, storing and returning elastic strain energy, as the animal loses and regains kinetic energy. Leg tendons save energy in this way when birds and mammals run, and an aponeurosis in the back is also important in galloping mammals. Tendons may have similar energy-saving roles in other modes of locomotion, for example in cetacean swimming. Secondly, tendons can recoil elastically much faster than muscles can shorten, enabling animals to jump further than they otherwise could. Thirdly, tendon elasticity affects the control of muscles, enhancing force control at the expense of position control.
Collapse
|
70
|
McNeill Alexander R. Energetics and optimization of human walking and running: the 2000 Raymond Pearl memorial lecture. Am J Hum Biol 2002; 14:641-8. [PMID: 12203818 DOI: 10.1002/ajhb.10067] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Humans seem to adjust their walking and running gaits to minimise the metabolic energy cost of locomotion. The walking speed that we tend to prefer is the one that minimises energy cost per unit distance, though faster speeds might seem preferable when time is valuable. At speeds up to 2 m/s, walking requires less energy than running, and we walk. At higher speeds, running is more economical, and we run. At each speed we use the stride length that minimises energy costs. A computer model that predicts metabolic rates for all conceivable gaits of a simple biped helps to understand these and other features of human gait. The energy cost of walking is increased on uphill slopes and also on soft ground. Consequently, zigzag paths should be preferred to straight ones, up hills of more than a critical gradient. Also, it may be more economical to divert a path around a hill than to travel along a straight line. Simple theories of optimum diversions are presented, both for hilly ground and for ground interrupted by marshy patches, on which costs of walking are increased. Energy costs are also increased by heavy loads, though it seems possible in some circumstances to carry moderate loads without measurable extra cost.
Collapse
|
71
|
Abstract
SUMMARYTake-off in birds at high speeds and steep angles of elevation requires a high burst power output. The mean power output of the pectoralis muscle of blue-breasted quail (Coturnix chinensis) during take-off is approximately 400 W kg-1 muscle, as determined using two independent methods. This burst power output is much higher than has been measured in any other cyclically contracting muscle. The power output of muscle is determined by the interactions between the physiological properties of the muscle, the stimulation regime imposed by the central nervous system and the details of the strain cycle, which are determined by the reciprocal interaction between the muscle properties and the environmental load. The physiological adaptations that enable a high power output to be achieved are those that allow the muscle to develop high stresses whilst shortening rapidly. These characteristics include a high myofibrillar density, rapid twitch contraction kinetics and a high maximum intrinsic velocity of shortening. In addition, several features of the strain cycle increase the power output of the quail pectoralis muscle. First, the muscle operates at a mean length shorter than the plateau of the length/force relationship. Second,the muscle length trajectory is asymmetrical, with 70 % of the cycle spent shortening. The asymmetrical cycle is expected to increase the power output substantially. Third, subtle deviations in the velocity profile improve power output compared with a simple asymmetrical cycle with constant lengthening and shortening rates. The high burst power outputs found in the flight muscles of quail and similar birds are limited to very brief efforts before fatigue occurs. This strong but short flight performance is well-suited to the rapid-response anti-predation strategy of these birds that involves a short flight coupled with a subsequent sustained escape by running. These considerations serve as a reminder that the maximum power-producing capacities of muscles need to be considered in the context of the in vivosituation within which the muscles operate.
Collapse
Affiliation(s)
- Graham N Askew
- School of Biology, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|
72
|
Medler S. Comparative trends in shortening velocity and force production in skeletal muscles. Am J Physiol Regul Integr Comp Physiol 2002; 283:R368-78. [PMID: 12121850 DOI: 10.1152/ajpregu.00689.2001] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscles are diverse in their properties, with specific contractile characteristics being matched to particular functions. In this study, published values of contractile properties for >130 diverse skeletal muscles were analyzed to detect common elements that account for variability in shortening velocity and force production. Body mass was found to be a significant predictor of shortening velocity in terrestrial and flying animals, with smaller animals possessing faster muscles. Although previous studies of terrestrial mammals revealed similar trends, the current study indicates that this pattern is more universal than previously appreciated. In contrast, shortening velocity in muscles used for swimming and nonlocomotory functions is not significantly affected by body size. Although force production is more uniform than shortening velocity, a significant correlation with shortening velocity was detected in muscles used for locomotion, with faster muscles tending to produce more force. Overall, the contractile properties of skeletal muscles are conserved among phylogenic groups, but have been significantly influenced by other factors such as body size and mode of locomotion.
Collapse
Affiliation(s)
- Scott Medler
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA.
| |
Collapse
|
73
|
Ahn AN, Full RJ. A motor and a brake: two leg extensor muscles acting at the same joint manage energy differently in a running insect. J Exp Biol 2002; 205:379-89. [PMID: 11854374 DOI: 10.1242/jeb.205.3.379] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe individual muscles of a multiple muscle group at a given joint are often assumed to function synergistically to share the load during locomotion. We examined two leg extensors of a running cockroach to test the hypothesis that leg muscles within an anatomical muscle group necessarily manage (i.e. produce, store, transmit or absorb) energy similarly during running. Using electromyographic and video motion-analysis techniques, we determined that muscles 177c and 179 are both active during the first half of the stance period during muscle shortening. Using the in vivo strain and stimulation patterns determined during running, we measured muscle power output. Although both muscles were stimulated during the first half of shortening, muscle 177c generated mechanical energy (28 W kg–1) like a motor, while muscle 179 absorbed energy (–19 W kg–1) like a brake. Both muscles exhibited nearly identical intrinsic characteristics including similar twitch kinetics and force–velocity relationships. Differences in the extrinsic factors of activation and relative shortening velocity caused the muscles to operate very differently during running. Presumed redundancy in a multiple muscle group may, therefore, represent diversity in muscle function. Discovering how muscles manage energy during behavior requires the measurement of a large number of dynamically interacting variables.
Collapse
Affiliation(s)
- A N Ahn
- Department of Integrative Biology, University of California at Berkeley, Berkeley, CA 94720-3140, USA.
| | | |
Collapse
|
74
|
Askew GN, Marsh RL. The mechanical power output of the pectoralis muscle of blue-breasted quail (Coturnix chinensis): thein vivolength cycle and its implications for muscle performance. J Exp Biol 2001; 204:3587-600. [PMID: 11719526 DOI: 10.1242/jeb.204.21.3587] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYSonomicrometry and electromyographic (EMG) recordings were made for the pectoralis muscle of blue-breasted quail (Coturnix chinensis) during take-off and horizontal flight. In both modes of flight, the pectoralis strain trajectory was asymmetrical, with 70 % of the total cycle time spent shortening. EMG activity was found to start just before mid-upstroke and continued into the downstroke. The wingbeat frequency was 23 Hz, and the total strain was 23 % of the mean resting length.Bundles of fibres were dissected from the pectoralis and subjected in vitro to the in vivo length and activity patterns, whilst measuring force. The net power output was only 80 W kg–1 because of a large artefact in the force record during lengthening. For more realistic estimates of the pectoralis power output, we ignored the power absorbed by the muscle bundles during lengthening. The net power output during shortening averaged over the entire cycle was approximately 350 W kg–1, and in several preparations over 400 W kg–1. Sawtooth cycles were also examined for comparison with the simulation cycles, which were identical in all respects apart from the velocity profile. The power output during these cycles was found to be 14 % lower than during the in vivo strain trajectory. This difference was due to a higher velocity of stretch, which resulted in greater activation and higher power output throughout the later part of shortening, and the increase in shortening velocity towards the end of shortening, which facilitated deactivation.The muscle was found to operate at a mean length shorter than the plateau of the length/force relationship, which resulted in the isometric stress measured at the mean resting length being lower than is typically reported for striated muscle.
Collapse
Affiliation(s)
- G N Askew
- Department of Zoology, Downing Street, University of Cambridge, Cambridge CB2 3EJ, UK.
| | | |
Collapse
|
75
|
Askew GN, Marsh RL, Ellington CP. The mechanical power output of the flight muscles of blue-breasted quail (Coturnix chinensis) during take-off. J Exp Biol 2001; 204:3601-19. [PMID: 11719527 DOI: 10.1242/jeb.204.21.3601] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYBlue-breasted quail (Coturnix chinensis) were filmed during take-off flights. By tracking the position of the centre of mass of the bird in three dimensions, we were able to calculate the power required to increase the potential and kinetic energy. In addition, high-speed video recordings of the position of the wings over the course of the wing stroke, and morphological measurements, allowed us to calculate the aerodynamic and inertial power requirements. The total power output required from the pectoralis muscle was, on average, 390 W kg–1, which was similar to the highest measurements made on bundles of muscle fibres in vitro (433 W kg–1), although for one individual a power output of 530 W kg–1 was calculated. The majority of the power was required to increase the potential energy of the body. The power output of these muscles is the highest yet found for any muscle in repetitive contractions.We also calculated the power requirements during take-off flights in four other species in the family Phasianidae. Power output was found to be independent of body mass in this family. However, the precise scaling of burst power output within this group must await a better assessment of whether similar levels of performance were measured across the group. We extended our analysis to one species of hawk, several species of hummingbird and two species of bee. Remarkably, we concluded that, over a broad range of body size (0.0002–5 kg) and contractile frequency (5–186 Hz), the myofibrillar power output of flight muscles during short maximal bursts is very high (360–460 W kg–1) and shows very little scaling with body mass. The approximate constancy of power output means that the work output varies inversely with wingbeat frequency and reaches values of approximately 30–60 J kg–1 in the largest species.
Collapse
Affiliation(s)
- G N Askew
- Department of Zoology, Downing Street, University of Cambridge, Cambridge CB2 3EJ, UK.
| | | | | |
Collapse
|
76
|
Nelson FE, Jayne BC. The effects of speed on thein vivoactivity and length of a limb muscle during the locomotion of the iguanian lizardDipsosaurus dorsalis. J Exp Biol 2001; 204:3507-22. [PMID: 11707500 DOI: 10.1242/jeb.204.20.3507] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe caudofemoralis muscle is the largest muscle that inserts onto the hindlimb of most ectothermic tetrapods, and previous studies hypothesize that it causes several movements that characterize the locomotion of vertebrates with a sprawling limb posture. Predicting caudofemoralis function is complicated because the muscle spans multiple joints with movements that vary with speed. Furthermore, depending on when any muscle is active relative to its change in length, its function can change from actively generating mechanical work to absorbing externally applied forces. We used synchronized electromyography, sonomicrometry and three-dimensional kinematics to determine in vivo caudofemoralis function in the desert iguana Dipsosaurus dorsalis for a wide range of speeds of locomotion from a walk to nearly maximal sprinting (50–350 cm s–1). Strain of the caudofemoralis increased with increasing tail elevation and long-axis rotation and protraction of the femur. However, knee extension only increased caudofemoralis strain when the femur was protracted. The maximum and minimum length of the caudofemoralis muscle and its average shortening velocity increased from the slowest speed up to the walk–run transition, but changed little with further increases in speed. The times of muscle shortening and lengthening were often not equal at higher locomotor speeds. Some (20–25 ms) activity occurred during lengthening of the caudofemoralis muscle before footfall. However, most caudofemoralis activity was consistent with performing positive mechanical work to flex the knee shortly after foot contact and to retract and rotate the femur throughout the propulsive phase.
Collapse
Affiliation(s)
- F E Nelson
- Department of Biological Sciences, PO Box 210006, University of Cincinnati, Cincinnati, OH 45221-0006, USA.
| | | |
Collapse
|
77
|
Neptune RR, Kautz SA. Muscle activation and deactivation dynamics: the governing properties in fast cyclical human movement performance? Exerc Sport Sci Rev 2001; 29:76-80. [PMID: 11337827 DOI: 10.1097/00003677-200104000-00007] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Repetitive cyclical motion and intrinsic muscle properties each impose constraints on the nervous systems to produce well-coordinated movements. We suggest that as cycle frequency increases, activation and deactivation dynamics strongly influence the neural control strategy used and may be the governing muscle property that limits performance. Pedaling and animal studies provide supporting data.
Collapse
Affiliation(s)
- R R Neptune
- Rehabilitation R & D Center (153), Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA.
| | | |
Collapse
|
78
|
Neptune RR, Kautz SA. Muscle Activation and Deactivation Dynamics: The Governing Properties in Fast Cyclical Human Movement Performance? Exerc Sport Sci Rev 2001. [DOI: 10.1249/00003677-200104000-00007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
79
|
Tobalske BW, Dial KP. Effects of body size on take-off flight performance in the Phasianidae (Aves). J Exp Biol 2000; 203:3319-32. [PMID: 11023852 DOI: 10.1242/jeb.203.21.3319] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To evaluate the mechanisms responsible for relationships between body mass and maximum take-off performance in birds, we studied four species in the Phasianidae: northern bobwhite (Colinus virginianus), chukar (Alectoris chukar), ring-necked pheasant (Phasianus colchicus) and wild turkey (Meleagris gallopavo). These species vary in body mass from 0.2 to 5.3 kg, and they use flight almost solely to escape predators. During take-off, all the species used a similar wingbeat style that appeared to be a vortex-ring gait with a tip reversal during the upstroke. The tip reversal is unusual for birds with rounded wings; it may offer an aerodynamic advantage during rapid acceleration. Flight anatomy generally scaled geometrically, except for average wing chord and wing area, which increased more than expected as body mass (m) increased. Pectoralis strain varied from 19.1 to 35.2 % and scaled in proportion to m(0.23). This positive scaling is not consistent with the widely held assumption that muscle strain is independent of body mass among geometrically similar species. The anatomy of the species precluded measurements of in vivo pectoralis force using the strain-gauge technique that has been employed successfully in other bird species, so we could not directly test in vivo pectoralis force-velocity relationships. However, whole-body kinematics revealed that take-off power (P(ta)), the excess power available for climbing and accelerating in flight, scaled in proportion to m(0.75) and that pectoralis mass-specific P(ta) decreased in proportion to m(−)(0.26) and was directly proportional to wingbeat frequency. These trends suggest that mass-specific pectoralis work did not vary with body mass and that pectoralis stress and strain were inversely proportional, as expected from classical force-velocity models for skeletal muscle. Our observations of P(ta) were consistent with evidence from other species engaged in escape flight and, therefore, appear to contradict evidence from studies of take-off or hovering with an added payload.
Collapse
Affiliation(s)
- B W Tobalske
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
| | | |
Collapse
|
80
|
Alexander RM. Energy-minimizing choices of muscles and patterns of movement. Motor Control 2000; 4:45-7; discussion 97-116. [PMID: 10675808 DOI: 10.1123/mcj.4.1.45] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Prilutsky (1999, target paper) reports that Crowninshield and Brand's (1981) criterion, minimization of the sum of the cubes of muscle stresses, works well as a predictor of the division of labor between muscles, for various tasks. However, no direct benefit from minimizing this particular sum is apparent, and it seems likely that it is merely a correlate of the criterion that actually drives muscle choice. In many tasks, there would be a clear, direct benefit from minimizing metabolic energy costs, as Prilutsky (1999) points out. Alexander (1997a, 1997b) and Minetti and Alexander (1997) have shown how the metabolic energy costs of muscle contraction can be estimated, and used to predict optimum muscle properties or optimal patterns of movement. This article explores the feasibility of using the same approach to predict optimum division of labor between one- and two-joint muscles.
Collapse
Affiliation(s)
- R M Alexander
- School of Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
81
|
Marsh RL. Contractile properties of muscles used in sound production and locomotion in two species of gray tree frog. J Exp Biol 1999; 202:3215-23. [PMID: 10539970 DOI: 10.1242/jeb.202.22.3215] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sound-producing muscles of frogs and toads are interesting because they have been selected to produce high-power outputs at high frequencies. The two North American species of gray tree frog, Hyla chrysoscelis and Hyla versicolor, are a diploid-tetraploid species pair. They are morphologically identical, but differ in the structure of their advertisement calls. H. chrysoscelis produces very loud pulsed calls by contracting its calling muscles at approximately 40 Hz at 20 degrees C, whereas, H. versicolor operates the homologous muscles at approximately 20 Hz at this temperature. This study examined the matching of the intrinsic contractile properties of the calling muscles to their frequency of use. I measured the isotonic and isometric contractile properties of two calling muscles, the laryngeal dilator, which presumably has a role in modulating call structure, and the external oblique, which is one of the muscles that provides the mechanical power for calling. I also examined the properties of the sartorius as a representative locomotor muscle. The calling muscles differ greatly in twitch kinetics between the two species. The calling muscles of H. chrysoscelis reach peak tension in a twitch after approximately 15 ms, compared with 25 ms for the same muscles in H. versicolor. The muscles also differ significantly in isotonic properties in the direction predicted from their calling frequencies. However, the maximum shortening velocities of the calling muscles of H. versicolor are only slightly lower than those of the comparable muscles of H. chrysoscelis. The calling muscles have similar maximum shortening velocities to the sartorius, but have much flatter force-velocity curves, which may be an adaptation to their role in cyclical power output. I conclude that twitch properties have been modified more by selection than have intrinsic shortening velocities. This difference corresponds to the differing roles of shortening velocity and twitch kinetics in determining power output at differing frequencies.
Collapse
Affiliation(s)
- R L Marsh
- Department of Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
82
|
Abstract
Active shortening of respiratory muscle L2B from the crab Carcinus maenas results in contractile deactivation, seen as (1) a decline of force during the course of isovelocity shortening, (2) a reduction in the rate of force redevelopment following shortening, (3) a depression of the level of isometric force reached following shortening, and (4) an accelerated relaxation at the end of stimulation. The degree of deactivation increases with increasing distance of shortening, decreases with increasing shortening velocity, and is approximately linearly related to the work done during shortening. Deactivation lasts many seconds if stimulation is maintained, but is largely although not completely removed if the stimulation is temporarily interrupted so that the force drops towards the resting level. Deactivation for a given distance and velocity of shortening increases with increasing muscle length above the optimum length for force production. Stimulating muscle L2B at suboptimal frequencies gives tetanic contractions that are fully fused but of less than maximal amplitude. The depression of force following shortening, relative to the force during an isometric contraction, is independent of the stimulus frequency used to activate the muscle, indicating that deactivation is not a function of the background level of stimulus-controlled muscle activation upon which it occurs. Deactivation reduces the work required to restretch a muscle after it has shortened, but it also lowers the force and therefore the work done during shortening. The net effect of deactivation on work output over a full shortening/lengthening cycle is unknown.
Collapse
Affiliation(s)
- RK Josephson
- School of Biological Science, University of California, Irvine, CA 92697, USA and Department of Biology, Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|
83
|
Tobalske BW, Peacock WL, Dial KP. Kinematics of flap-bounding flight in the zebra finch over a wide range of speeds. J Exp Biol 1999; 202 (Pt 13):1725-39. [PMID: 10359676 DOI: 10.1242/jeb.202.13.1725] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been proposed elsewhere that flap-bounding, an intermittent flight style consisting of flapping phases interspersed with flexed-wing bounds, should offer no savings in average mechanical power relative to continuous flapping unless a bird flies 1.2 times faster than its maximum range speed (Vmr). Why do some species use intermittent bounds at speeds slower than 1.2Vmr? The ‘fixed-gear hypothesis’ suggests that flap-bounding is used to vary mean power output in small birds that are otherwise constrained by muscle physiology and wing anatomy to use a fixed muscle shortening velocity and pattern of wing motion at all flight speeds; the ‘body-lift hypothesis’ suggests that some weight support during bounds could make flap-bounding flight aerodynamically advantageous in comparison with continuous flapping over most forward flight speeds. To test these predictions, we studied high-speed film recordings (300 Hz) of wing and body motion in zebra finches (Taenopygia guttata, mean mass 13.2 g, N=4) taken as the birds flew in a variable-speed wind tunnel (0–14 m s-1). The zebra finches used flap-bounding flight at all speeds, so their flight style was unique compared with that of birds that facultatively shift from continuous flapping or flap-gliding at slow speeds to flap-bounding at fast speeds. There was a significant effect of flight speed on all measured aspects of wing motion except percentage of the wingbeat spent in downstroke. Changes in angular velocity of the wing indicated that contractile velocity in the pectoralis muscle changed with flight speed, which is not consistent with the fixed-gear hypothesis. Although variation in stroke-plane angle relative to the body, pronation angle of the wing and wing span at mid-upstroke showed that the zebra finch changed within-wingbeat geometries according to speed, a vortex-ring gait with a feathered upstroke appeared to be the only gait used during flapping. In contrast, two small species that use continuous flapping during slow flight (0–4 m s-1) either change wingbeat gait according to flight speed or exhibit more variation in stroke-plane and pronation angles relative to the body. Differences in kinematics among species appear to be related to wing design (aspect ratio, skeletal proportions) rather than to pectoralis muscle fiber composition, indicating that the fixed-gear hypothesis should perhaps be modified to exclude muscle physiology and to emphasize constraints due to wing anatomy. Body lift was produced during bounds at speeds from 4 to 14 m s-1. Maximum body lift was 0.0206 N (15.9 % of body weight) at 10 m s-1; body lift:drag ratio declined with increasing air speed. The aerodynamic function of bounds differed with increasing speed from an emphasis on lift production (4–10 m s-1) to an emphasis on drag reduction with a slight loss in lift (12 and 14 m s-1). From a mathematical model of aerodynamic costs, it appeared that flap-bounding offered the zebra finch an aerodynamic advantage relative to continuous flapping at moderate and fast flight speeds (6–14 m s-1), with body lift augmenting any savings offered solely by flap-bounding at speeds faster than 7.1 m s-1. The percentage of time spent flapping during an intermittent flight cycle decreased with increasing speed, so the mechanical cost of transport was likely to be lowest at faster flight speeds (10–14 m s-1).
Collapse
Affiliation(s)
- BW Tobalske
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
| | | | | |
Collapse
|
84
|
Josephson RK, Stokes DR. The force-velocity properties of a crustacean muscle during lengthening. J Exp Biol 1999; 202 (Pt 5):593-607. [PMID: 9929461 DOI: 10.1242/jeb.202.5.593] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Muscle force during active lengthening was characterized for scaphognathite levator muscle L2B from the crab Carcinus maenas. The muscle was tetanically stimulated and, during the peak of the contraction, stretched at constant velocity. The total strain was approximately 4 %, the strain rates ranged from 0.03 to 1.6 muscle lengths s-1 (L s-1), and the temperature was 15 degreesC. Force increased throughout stretch. During low-velocity stretch, up to approximately 0.3 L s-1, force rose during isovelocity stretch along an approximately exponential trajectory. The asymptotic force approached during the stretch increased and the time constant of the response decreased with increasing strain rate. With stretch at 0.6 L s-1 and greater, the force increased to a distinct yield point, reached after a strain of approximately 1 %, after which force continued to increase but with a slope approximately one-quarter as great as that before yield. Because force changes continuously during constant-velocity lengthening, the adequate descriptor for the force-velocity relationship in a lengthening crab muscle is not a two-dimensional force-velocity curve, but rather a three-dimensional force-velocity-time or force-velocity-strain surface. Stimulating muscle L2B at 20 Hz or 50 Hz gives a smoothly fused tetanic contraction in which muscle activation is only partial and the plateau force reached is less than that at the optimum stimulus frequency of approximately 100 Hz. The force-velocity relationships of a partially activated muscle are not simply those of a fully activated one scaled down in proportion to the reduction in the maximum isometric force. At low stretch velocities, the asymptotic force approached is larger in proportion to the pre-stretch isometric tension, and the time constant of the force increase is greater, in partially activated than in fully activated muscles. At high stretch velocities, the force at yield relative to the pre-stretch force, and the relative values of the slopes of the force increase before and after yield, are all greater in partially activated than in fully activated muscles, while the strain at yield is smaller.
Collapse
Affiliation(s)
- RK Josephson
- School of Biological Sciences, University of California, Irvine, CA 92697, USA and Department of Biology, Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|