51
|
Ramezanpour A, Karami K, Kharaziha M, Bayat P, Jamshidian N. Smart poly(amidoamine) dendron-functionalized magnetic graphene oxide for cancer therapy. NEW J CHEM 2022. [DOI: 10.1039/d1nj03845a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel multicomponent magnetic nanocomposite whose drug release behavior is pH and temperature dependent.
Collapse
Affiliation(s)
- Azar Ramezanpour
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Kazem Karami
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Parvaneh Bayat
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Nasrin Jamshidian
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
52
|
Hamid A, Zafar A, Liaqat I, Afzal MS, Peng L, Rauf MK, ul Haq I, ur-Rehman A, Ali S, Aftab MN. Effective utilization of magnetic nano-coupled cloned β-xylanase in saccharification process. RSC Adv 2022; 12:6463-6475. [PMID: 35424589 PMCID: PMC8982049 DOI: 10.1039/d1ra09275h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
The β-xylanase gene (DCE06_04615) with 1041 bp cloned from Thermotoga naphthophila was expressed into E. coli BL21 DE3. The cloned β-xylanase was covalently bound to iron oxide magnetic nanoparticles coated with silica utilizing carbodiimide. The size of the immobilized MNPs (50 nm) and their binding with β-xylanase were characterized by Fourier-transform electron microscopy (FTIR) (a change in shift particularly from C–O to C–N) and transmission electron microscopy (TEM) (spherical in shape and 50 nm in diameter). The results showed that enzyme activity (4.5 ± 0.23 U per mL), thermo-stability (90 °C after 4 hours, residual activity of enzyme calculated as 29.89% ± 0.72), pH stability (91% ± 1.91 at pH 7), metal ion stability (57% ± 1.08 increase with Ca2+), reusability (13 times) and storage stability (96 days storage at 4 °C) of the immobilized β-xylanase was effective and superior. The immobilized β-xylanase exhibited maximal enzyme activity at pH 7 and 90 °C. Repeated enzyme assay and saccharification of pretreated rice straw showed that the MNP-enzyme complex exhibited 56% ± 0.76 and 11% ± 0.56 residual activity after 8 times and 13 times repeated usage. The MNP-enzyme complex showed 17.32% and 15.52% saccharification percentage after 1st and 8th time usage respectively. Immobilized β-xylanase exhibited 96% residual activity on 96 days' storage at 4 °C that showed excellent stability. The β-xylanase gene (DCE06_04615) with 1041 bp cloned from Thermotoga naphthophila was expressed into E. coli BL21 DE3.![]()
Collapse
Affiliation(s)
- Attia Hamid
- Institute of Industrial Biotechnology, Government College University Lahore, Pakistan
| | - Asma Zafar
- Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Iram Liaqat
- Department of Zoology, Government College University Lahore, Pakistan
| | - Muhammad Sohail Afzal
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Liangcai Peng
- Biomass and Bioenergy Research Center, Huazhong Agriculture University, Wuhan, China
| | | | - Ikram ul Haq
- Institute of Industrial Biotechnology, Government College University Lahore, Pakistan
| | - Asad ur-Rehman
- Institute of Industrial Biotechnology, Government College University Lahore, Pakistan
| | - Sikander Ali
- Institute of Industrial Biotechnology, Government College University Lahore, Pakistan
| | - Muhammad Nauman Aftab
- Institute of Industrial Biotechnology, Government College University Lahore, Pakistan
| |
Collapse
|
53
|
Seo Y, Ghazanfari L, Master A, Vishwasrao HM, Wan X, Sokolsky-Papkov M, Kabanov AV. Poly(2-oxazoline)-magnetite NanoFerrogels: Magnetic field responsive theranostic platform for cancer drug delivery and imaging. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 39:102459. [PMID: 34530163 PMCID: PMC8665074 DOI: 10.1016/j.nano.2021.102459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/21/2021] [Accepted: 08/03/2021] [Indexed: 01/03/2023]
Abstract
Combining diagnosis and treatment approaches in one entity is the goal of theranostics for cancer therapy. Magnetic nanoparticles have been extensively used as contrast agents for nuclear magnetic resonance imaging as well as drug carriers and remote actuation agents. Poly(2-oxazoline)-based polymeric micelles, which have been shown to efficiently solubilize hydrophobic drugs and drug combinations, have high loading capacity (above 40% w/w) for paclitaxel. In this study, we report the development of novel theranostic system, NanoFerrogels, which is designed to capitalize on the magnetic nanoparticle properties as imaging agents and the poly(2-oxazoline)-based micelles as drug loading compartment. We developed six formulations with magnetic nanoparticle content of 0.3%-12% (w/w), with the z-average sizes of 85-130 nm and ξ-potential of 2.7-28.3 mV. The release profiles of paclitaxel from NanoFerrogels were notably dependent on the degree of dopamine grafting on poly(2-oxazoline)-based micelles. Paclitaxel loaded NanoFerrogels showed efficacy against three breast cancer lines which was comparable to free paclitaxel. They also showed improved tumor and lymph node accumulation and signal reduction in vivo (2.7% in tumor; 8.5% in lymph node) compared to clinically approved imaging agent ferumoxytol (FERAHEME®) 24 h after administration. NanoFerrogels responded to super-low frequency alternating current magnetic field (50 kA m-1, 50 Hz) which accelerated drug release from paclitaxel-loaded NanoFerrogels or caused death of cells loaded with NanoFerrogels. These proof-of-concept experiments demonstrate that NanoFerrogels have potential as remotely actuated theranostic platform for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Youngee Seo
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lida Ghazanfari
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alyssa Master
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Hemant M Vishwasrao
- Center for Drug Delivery and Nanomedicine and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Xiaomeng Wan
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Marina Sokolsky-Papkov
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
54
|
Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_18-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
55
|
Farinha P, Coelho JMP, Reis CP, Gaspar MM. A Comprehensive Updated Review on Magnetic Nanoparticles in Diagnostics. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3432. [PMID: 34947781 PMCID: PMC8706278 DOI: 10.3390/nano11123432] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Magnetic nanoparticles (MNPs) have been studied for diagnostic purposes for decades. Their high surface-to-volume ratio, dispersibility, ability to interact with various molecules and superparamagnetic properties are at the core of what makes MNPs so promising. They have been applied in a multitude of areas in medicine, particularly Magnetic Resonance Imaging (MRI). Iron oxide nanoparticles (IONPs) are the most well-accepted based on their excellent superparamagnetic properties and low toxicity. Nevertheless, IONPs are facing many challenges that make their entry into the market difficult. To overcome these challenges, research has focused on developing MNPs with better safety profiles and enhanced magnetic properties. One particularly important strategy includes doping MNPs (particularly IONPs) with other metallic elements, such as cobalt (Co) and manganese (Mn), to reduce the iron (Fe) content released into the body resulting in the creation of multimodal nanoparticles with unique properties. Another approach includes the development of MNPs using other metals besides Fe, that possess great magnetic or other imaging properties. The future of this field seems to be the production of MNPs which can be used as multipurpose platforms that can combine different uses of MRI or different imaging techniques to design more effective and complete diagnostic tests.
Collapse
Affiliation(s)
- Pedro Farinha
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - João M. P. Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
56
|
Nasir Z, Ali A, Alam MF, Shoeb M, Nusrat Jahan S. Immobilization of GOx Enzyme on SiO 2-Coated Ni-Co Ferrite Nanocomposites as Magnetic Support and Their Antimicrobial and Photocatalytic Activities. ACS OMEGA 2021; 6:33554-33567. [PMID: 34926904 PMCID: PMC8675013 DOI: 10.1021/acsomega.1c04360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/18/2021] [Indexed: 05/11/2023]
Abstract
The present study used a sol-gel auto-combustion approach to make silica (SiO2)-coated Ni-Co ferrite nanocomposites that would be used as a platform for enzyme immobilization. Using glutaraldehyde as a coupling agent, glucose oxidase (GOx) was covalently immobilized on this magnetic substrate. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), and fourier transform infrared spectroscopy (FTIR) was used to determine the structural analysis and morphology of Ni-Co ferrite/SiO2 nanocomposites. FTIR spectra confirmed the binding of GOx to Ni-Co ferrite/SiO2 nanocomposites, with a loading efficiency of around 85%. At alkaline pH and higher temperature, the immobilized GOx enzyme exhibited increased catalytic activity. After 10 times of reuses, it still had 69% catalytic activity. Overall, the immobilized GOx displayed higher operational stability than the free enzyme under severe circumstances and was easily recovered by magnetic separation. With increased doping concentration of the nanocomposites, the photocatalytic activity was assessed using a degradation process in the presence of methylene blue dye under UV light irradiation, which revealed that the surface area of the nanocomposites with increased doping concentration played a significant role in improving photocatalytic activity. The antibacterial activity of Ni-Co ferrite/SiO2 nanocomposites was assessed using the agar well diffusion method against Escherichia coli, a gram-negative bacteria (ATCC 25922). Consequently, it was revealed that doping of Ni2+ and Co2+ in Fe2O4/SiO2 nanocomposites at varied concentrations improved their antibacterial properties.
Collapse
Affiliation(s)
- Zeba Nasir
- Department
of Chemistry, Aligarh Muslim University, Aligarh, UP 202 002, India
| | - Abad Ali
- Department
of Chemistry, Aligarh Muslim University, Aligarh, UP 202 002, India
| | - Md. Fazle Alam
- Interdisciplinary
Biotechnology Unit, Aligarh Muslim University, Aligarh, UP 202 002, India
- Key
Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, People’s Republic
of China
| | - Mohd Shoeb
- Department
of Applied Chemistry, Z.H. College of Engg. & Tech., Aligarh Muslim University, Aligarh, UP 202
002, India
| | - Shaikh Nusrat Jahan
- Department
of Zoology, G.M. Momin Women’s College, University of Mumbai, Bhiwandi, Mumbai 421302, India
| |
Collapse
|
57
|
Caizer C. Computational Study Regarding Co xFe 3-xO 4 Ferrite Nanoparticles with Tunable Magnetic Properties in Superparamagnetic Hyperthermia for Effective Alternative Cancer Therapy. NANOMATERIALS 2021; 11:nano11123294. [PMID: 34947642 PMCID: PMC8708362 DOI: 10.3390/nano11123294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022]
Abstract
The efficacy in superparamagnetic hyperthermia (SPMHT) and its effectiveness in destroying tumors without affecting healthy tissues depend very much on the nanoparticles used. Considering the results previously obtained in SPMHT using magnetite and cobalt ferrite nanoparticles, in this paper we extend our study on CoxFe3−xO4 nanoparticles for x = 0–1 in order to be used in SPMHT due to the multiple benefits in alternative cancer therapy. Due to the possibility of tuning the basic observables/parameters in SPMHT in a wide range of values by changing the concentration of Co2+ ions in the range 0–1, the issue explored by us is a very good strategy for increasing the efficiency and effectiveness of magnetic hyperthermia of tumors and reducing the toxicity levels. In this paper we studied by computational simulation the influence of Co2+ ion concentration in a very wide range of values (x = 0–1) on the specific loss power (Ps) in SPMHT and the nanoparticle diameter (DM) which leads to the maximum specific loss power (PsM). We also determined the maximum specific loss power for the allowable biological limit (PsM)l which doesn’t affect healthy tissues, and how it influences the change in the concentration of Co2+ ions. Based on the results obtained, we established the values for concentrations (x), nanoparticle diameter (DM), amplitude (H) and frequency (f) of the magnetic field for which SPMHT with CoxFe3−xO4 nanoparticles can be applied under optimal conditions within the allowable biological range. The obtained results allow the obtaining a maximum efficacy in alternative and non-invasive tumor therapy for the practical implementation of SPMHT with CoxFe3−xO4 nanoparticles.
Collapse
Affiliation(s)
- Costica Caizer
- Department of Physics, West University of Timisoara, Bv. V. Pârvan No. 4, 300223 Timisoara, Romania
| |
Collapse
|
58
|
Alromi DA, Madani SY, Seifalian A. Emerging Application of Magnetic Nanoparticles for Diagnosis and Treatment of Cancer. Polymers (Basel) 2021; 13:4146. [PMID: 34883649 PMCID: PMC8659429 DOI: 10.3390/polym13234146] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer is a disease that has resulted in millions of deaths worldwide. The current conventional therapies utilized for the treatment of cancer have detrimental side effects. This led scientific researchers to explore new therapeutic avenues with an improved benefit to risk profile. Researchers have found nanoparticles, particles between the 1 and 100 nm range, to be encouraging tools in the area of cancer. Magnetic nanoparticles are one of many available nanoparticles at present. Magnetic nanoparticles have increasingly been receiving a considerable amount of attention in recent years owing to their unique magnetic properties, among many others. Magnetic nanoparticles can be controlled by an external magnetic field, signifying their ability to be site specific. The most popular approaches for the synthesis of magnetic nanoparticles are co-precipitation, thermal decomposition, hydrothermal, and polyol synthesis. The functionalization of magnetic nanoparticles is essential as it significantly increases their biocompatibility. The most utilized functionalization agents are comprised of polymers. The synthesis and functionalization of magnetic nanoparticles will be further explored in this review. The biomedical applications of magnetic nanoparticles investigated in this review are drug delivery, magnetic hyperthermia, and diagnosis. The diagnosis aspect focuses on the utilization of magnetic nanoparticles as contrast agents in magnetic resonance imaging. Clinical trials and toxicology studies relating to the application of magnetic nanoparticles for the diagnosis and treatment of cancer will also be discussed in this review.
Collapse
Affiliation(s)
- Dalal A. Alromi
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (D.A.A.); (S.Y.M.)
| | - Seyed Yazdan Madani
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (D.A.A.); (S.Y.M.)
- School of Pharmacy, University of Nottingham Malaysia, Semenyih 43500, Malaysia
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd.), London BioScience Innovation Centre, 2 Royal College Street, London NW1 0NH, UK
| |
Collapse
|
59
|
Sheikh A, Md S, Kesharwani P. RGD engineered dendrimer nanotherapeutic as an emerging targeted approach in cancer therapy. J Control Release 2021; 340:221-242. [PMID: 34757195 DOI: 10.1016/j.jconrel.2021.10.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022]
Abstract
A bird's eye view is now demanded in the area of cancer research to suppress the suffering of cancer patient and mediate the lack of treatment related to chemotherapy. Chemotherapy is always preferred over surgery or radiation therapy, but they never met the patient's demand of safe medication. Targeted therapy has now been in research that could hinder the unnecessary effect of drug on normal cells but could affect the tumor cells in much efficient manner. Angiogenesis is process involved in development of new blood vessel that nourishes tumor growth. Integrin receptors are over expressed on cancer cells that play vital role in angiogenesis for growth and metastasis of tumor cell. A delivery of RGD based peptide to integrin targeted site could help in its successful binding and liberation of drug in tumor vasculature. Dendrimers, in addition to its excellent pharmacokinetic properties also helps to carry targeting ligand to site of tumor by successfully conjugating with them. The aim of this review is to bring light upon the role of integrin in cancer progression, interaction of RGD to integrin receptor and more importantly the RGD-dendrimer based targeted therapy for the treatment of various cancers.
Collapse
Affiliation(s)
- Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
60
|
Chae J, Choi Y, Tanaka M, Choi J. Inhalable nanoparticles delivery targeting alveolar macrophages for the treatment of pulmonary tuberculosis. J Biosci Bioeng 2021; 132:543-551. [PMID: 34538591 DOI: 10.1016/j.jbiosc.2021.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/15/2022]
Abstract
Pulmonary tuberculosis is a highly prevalent respiratory disease that affects approximately a quarter of the world's population. The drug treatment protocol for tuberculosis is complex because the Mycobacterium tuberculosis (M. tuberculosis) invades macrophages and begins to infect. Thus treatment usually includes combination therapy with several drugs such as rifampicin, pyrazinamide, isoniazid, and ethambutol over a long dosing period. Therefore, drug-delivery technologies have been developed to improve patient compliance with medication, reduce adverse effects, and increase effectiveness of the treatment. In the present review, we have discussed recent inhalable nanopharmaceutical systems for the treatment of pulmonary tuberculosis and investigated their design and effectiveness. We examined the underlying processes and characteristics of spray-drying technology and studied the formulation of a dry carrier using spray-drying method. Moreover, we reviewed various research articles on pulmonary delivery of nanoparticles using these carriers, and studied their alveolar macrophage targeting ability and therapeutic effects. Further, we appraised the effectiveness of nanoparticle inhalation therapy for the treatment of pulmonary tuberculosis and its potential as a treatment strategy for lung diseases.
Collapse
Affiliation(s)
- Jayoung Chae
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-S1-24, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
61
|
Caizer C, Caizer IS. Study on Maximum Specific Loss Power in Fe 3O 4 Nanoparticles Decorated with Biocompatible Gamma-Cyclodextrins for Cancer Therapy with Superparamagnetic Hyperthermia. Int J Mol Sci 2021; 22:ijms221810071. [PMID: 34576233 PMCID: PMC8470897 DOI: 10.3390/ijms221810071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Different chemical agents are used for the biocompatibility and/or functionality of the nanoparticles used in magnetic hyperthermia to reduce or even eliminate cellular toxicity and to limit the interaction between them (van der Waals and magnetic dipolar interactions), with highly beneficial effects on the efficiency of magnetic hyperthermia in cancer therapy. In this paper we propose an innovative strategy for the biocompatibility of these nanoparticles using gamma-cyclodextrins (γ-CDs) to decorate the surface of magnetite (Fe3O4) nanoparticles. The influence of the biocompatible organic layer of cyclodextrins, from the surface of Fe3O4 ferrimagnetic nanoparticles, on the maximum specific loss power in superparamagnetic hyperthermia, is presented and analyzed in detail in this paper. Furthermore, our study shows the optimum conditions in which the magnetic nanoparticles covered with gamma-cyclodextrin (Fe3O4–γ-CDs) can be utilized in superparamagnetic hyperthermia for an alternative cancer therapy with higher efficiency in destroying tumoral cells and eliminating cellular toxicity.
Collapse
Affiliation(s)
- Costica Caizer
- Department of Physics, Faculty of Physics, West University of Timişoara, 300223 Timişoara, Romania;
- Correspondence:
| | - Isabela Simona Caizer
- Department of Physics, Faculty of Physics, West University of Timişoara, 300223 Timişoara, Romania;
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy of Timişoara, 300041 Timişoara, Romania
- Department of Clinical Practical Skills, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy of Timişoara, 300041 Timişoara, Romania
| |
Collapse
|
62
|
Shaumbwa VR, Liu D, Archer B, Li J, Su F. Preparation and application of magnetic chitosan in environmental remediation and other fields: A review. J Appl Polym Sci 2021. [DOI: 10.1002/app.51241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Veino Risto Shaumbwa
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering Nanjing University of Information Science & Technology Nanjing China
| | - Dagang Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering Nanjing University of Information Science & Technology Nanjing China
| | - Bright Archer
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering Nanjing University of Information Science & Technology Nanjing China
| | - Jinlei Li
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| | - Fan Su
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering Nanjing University of Information Science & Technology Nanjing China
| |
Collapse
|
63
|
|
64
|
Kumari S, Sharma N, Sahi SV. Advances in Cancer Therapeutics: Conventional Thermal Therapy to Nanotechnology-Based Photothermal Therapy. Pharmaceutics 2021; 13:1174. [PMID: 34452135 PMCID: PMC8398544 DOI: 10.3390/pharmaceutics13081174] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
In this review, advancement in cancer therapy that shows a transition from conventional thermal therapies to laser-based photothermal therapies is discussed. Laser-based photothermal therapies are gaining popularity in cancer therapeutics due to their overall outcomes. In photothermal therapy, light is converted into heat to destruct the various types of cancerous growth. The role of nanoparticles as a photothermal agent is emphasized in this review article. Magnetic, as well as non-magnetic, nanoparticles have been effectively used in the photothermal-based cancer therapies. The discussion includes a critical appraisal of in vitro and in vivo, as well as the latest clinical studies completed in this area. Plausible evidence suggests that photothermal therapy is a promising avenue in the treatment of cancer.
Collapse
Affiliation(s)
- Sangeeta Kumari
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA 19104-4495, USA
| | - Nilesh Sharma
- Department of Biology, Western Kentucky University, 1906 College Heights Boulevard, Bowling Green, KY 42101-1080, USA;
| | - Shivendra V. Sahi
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA 19104-4495, USA
| |
Collapse
|
65
|
Schneider-Futschik EK, Reyes-Ortega F. Advantages and Disadvantages of Using Magnetic Nanoparticles for the Treatment of Complicated Ocular Disorders. Pharmaceutics 2021; 13:1157. [PMID: 34452117 PMCID: PMC8400382 DOI: 10.3390/pharmaceutics13081157] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 01/01/2023] Open
Abstract
Nanomaterials provide enormous opportunities to overcome the limitations of conventional ocular delivery systems, such as low therapeutic efficacy, side effects due to the systemic exposure, or invasive surgery. Apart from the more common ocular disorders, there are some genetic diseases, such as cystic fibrosis, that develop ocular disorders as secondary effects as long as the disease progresses. These patients are more difficult to be pharmacologically treated using conventional drug routes (topically, systemic), since specific pharmacological formulations can be incompatible, display increased toxicity, or their therapeutic efficacy decreases with the administration of different kind of chemical molecules. Magnetic nanoparticles can be used as potent drug carriers and magnetic hyperthermia agents due to their response to an external magnetic field. Drugs can be concentrated in the target point, limiting the damage to other tissues. The other advantage of these magnetic nanoparticles is that they can act as magnetic resonance imaging agents, allowing the detection of the exact location of the disease. However, there are some drawbacks related to their use in drug delivery, such as the limitation to maintain efficacy in the target organ once the magnetic field is removed from outside. Another disadvantage is the difficulty in maintaining the therapeutic action in three dimensions inside the human body. This review summarizes all the application possibilities related to magnetic nanoparticles in ocular diseases.
Collapse
Affiliation(s)
- Elena K. Schneider-Futschik
- Department of Biochemistry & Pharmacology, Faculty of Medicine, School of Biomedical Sciences, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Felisa Reyes-Ortega
- Visual Quality Research Group, Department of Ophthalmology, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital and University of Cordoba, 14004 Cordoba, Spain
| |
Collapse
|
66
|
Soda N, Gonzaga ZJ, Chen S, Koo KM, Nguyen NT, Shiddiky MJA, Rehm BHA. Bioengineered Polymer Nanobeads for Isolation and Electrochemical Detection of Cancer Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31418-31430. [PMID: 34185493 DOI: 10.1021/acsami.1c05355] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Early sensitive diagnosis of cancer is critical for enhancing treatment success. We previously bioengineered multifunctional core-shell structures composed of a poly-3-hydroxybutyrate (PHB) core densely coated with protein functions for uses in bioseparation and immunodiagnostic applications. Here, we report bioengineering of Escherichia coli to self-assemble PHB inclusions that codisplay a ferritin-derived iron-binding peptide and the protein A-derived antibody-binding Z domain. The iron-binding peptide mediated surface coating with a ferrofluid imparting superparamagnetic properties, while the Z domain remained accessible for binding of cancer biomarker-specific antibodies. We demonstrated that these nanobeads can specifically bind biomarkers in complex mixtures, enabling efficient magnetic separation toward enhanced electrochemical detection of cancer biomarkers such as methylated DNA and exosomes from cancer cells. Our study revealed that superparamagnetic core-shell structures can be derived from biological self-assembly systems for uses in sensitive and specific electrochemical detection of cancer biomarkers, laying the foundation for engineering advanced nanomaterials for diverse diagnostic approaches.
Collapse
Affiliation(s)
- Narshone Soda
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan, Queensland 4111, Australia
| | - Zennia Jean Gonzaga
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Shuxiong Chen
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Kevin M Koo
- The University of Queensland Centre for Clinical Research (UQCCR), Herston, Queensland 4029, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan, Queensland 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan, Queensland 4111, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
- Menzies Health Institute Queensland (MHIQ), Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
67
|
Sivanesan I, Gopal J, Muthu M, Shin J, Mari S, Oh J. Green Synthesized Chitosan/Chitosan Nanoforms/Nanocomposites for Drug Delivery Applications. Polymers (Basel) 2021; 13:2256. [PMID: 34301013 PMCID: PMC8309384 DOI: 10.3390/polym13142256] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan has become a highlighted polymer, gaining paramount importance and research attention. The fact that this valuable polymer can be extracted from food industry-generated shell waste gives it immense value. Chitosan, owing to its biological and physicochemical properties, has become an attractive option for biomedical applications. This review briefly runs through the various methods involved in the preparation of chitosan and chitosan nanoforms. For the first time, we consolidate the available scattered reports on the various attempts towards greens synthesis of chitosan, chitosan nanomaterials, and chitosan nanocomposites. The drug delivery applications of chitosan and its nanoforms have been reviewed. This review points to the lack of systematic research in the area of green synthesis of chitosan. Researchers have been concentrating more on recovering chitosan from marine shell waste through chemical and synthetic processes that generate toxic wastes, rather than working on eco-friendly green processes-this is projected in this review. This review draws the attention of researchers to turn to novel and innovative green processes. More so, there are scarce reports on the application of green synthesized chitosan nanoforms and nanocomposites towards drug delivery applications. This is another area that deserves research focus. These have been speculated and highlighted as future perspectives in this review.
Collapse
Affiliation(s)
- Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| | - Judy Gopal
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India
| | - Manikandan Muthu
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Selvaraj Mari
- Department of Chemistry, Guru Nanak College, Chennai 600 042, India
| | - Jaewook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
68
|
İspirli Doğaç Y, Teke M. Urease immobilized core–shell magnetic Fe[NiFe]O4/alginate and Fe3O4/alginate composite beads with improved enzymatic stability properties: removal of artificial blood serum urea. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02219-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
69
|
Chaudhary R, Morris RJ, Steinson E. The multifactorial roles of microglia and macrophages in the maintenance and progression of glioblastoma. J Neuroimmunol 2021; 357:577633. [PMID: 34153803 DOI: 10.1016/j.jneuroim.2021.577633] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 01/18/2023]
Abstract
The functional characteristics of glial cells, in particular microglia, have attained considerable importance in several diseases, including glioblastoma, the most hostile and malignant type of intracranial tumor. Microglia performs a highly significant role in the brain's inflammatory response mechanism. They exhibit anti-tumor properties via phagocytosis and the activation of a number of different cytotoxic substances. Some tumor-derived factors, however, transform these microglial cells into immunosuppressive and tumor-supportive, facilitating survival and progression of tumorigenic cells. Glioma-associated microglia and/or macrophages (GAMs) accounts for a large proportion of glioma infiltrating cells. Once within the tumor, GAMs exhibit a distinct phenotype of initiation that subsequently supports the growth and development of tumorigenic cells, angiogenesis and stimulates the infiltration of healthy brain regions. Interventions that suppress or prohibit the induction of GAMs at the tumor site or attenuate their immunological activities accommodating anti-tumor actions are likely to exert positive impact on glioblastoma treatment. In the present paper, we aim to summarize the most recent knowledge of microglia and its physiology, as well as include a very brief description of different molecular factors involved in microglia and glioblastoma interplay. We further address some of the major signaling pathways that regulate the baseline motility of glioblastoma progression. Finally, we discussed a number of therapeutic approaches regarding glioblastoma treatment.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, India.
| | - Rhianna J Morris
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Emma Steinson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
70
|
Xue Y, Liu S, An Z, Li JX, Zhang NN, Wang CY, Wang X, Sun T, Liu K. θ-Solvent-Mediated Double-Shell Polyethylene Glycol Brushes on Nanoparticles for Improved Stealth Properties and Delivery Efficiency. J Phys Chem Lett 2021; 12:5363-5370. [PMID: 34076431 DOI: 10.1021/acs.jpclett.1c01291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Antifouling polymer brushes are widely used to inhibit the formation of protein corona on nanoparticles (NPs) and subsequent accumulation in the liver and spleen. Herein, we demonstrate a θ-solvent-mediated method for the preparation of gold nanoparticles with a high polyethylene glycol (PEG) grafting density. Reaching the θ-solvent by adding salt (e.g., Na2SO4) can significantly increase the grafting density of the PEG brush to 2.08 chains/nm2. The PEG polymer brush prepared in the θ-solvent possesses a double-shell structure consisting of a concentrated polymer brush (CPB) and a semidilute polymer brush (SDPB), denoted as NP@CPB@SDPB, while those prepared in a good solvent have only a SDPB shell, i.e., NP@SDPB. Compared to the NP@SDPB structure, the NP@CPB@SDPB structure decreases the liver accumulation from 34.0%ID/g to 23.1%ID/g, leading to an increase in tumor accumulation from 8.5%ID/g to 12.8%ID/g. This work provides new insights from the perspective of polymer physical chemistry into the improved stealth properties and delivery efficiency of NPs, which will accelerate the clinical translation of nanomedicine.
Collapse
Affiliation(s)
- Yao Xue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shuhan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun 130012, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun 130012, China
| | - Zixin An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jia-Xuan Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun 130012, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun 130012, China
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Chun-Yu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaosong Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun 130012, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun 130012, China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
71
|
Sanati M, Aminyavari S, Khodagholi F, Hajipour MJ, Sadeghi P, Noruzi M, Moshtagh A, Behmadi H, Sharifzadeh M. PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) ameliorate learning and memory deficit in a rat model of Alzheimer's disease: Potential participation of STIMs. Neurotoxicology 2021; 85:145-159. [PMID: 34058247 DOI: 10.1016/j.neuro.2021.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
The amyloid-beta (Aβ) fibrillation process seems to execute a principal role in the neuropathology of Alzheimer's disease (AD). Accordingly, novel therapeutic plans have concentrated on the inhibition or degradation of Aβ oligomers and fibrils. Biocompatible nanoparticles (NPs), e.g., gold and iron oxide NPs, take a unique capacity in redirecting Aβ fibrillation kinetics; nevertheless, their impacts on AD-related memory impairment have not been adequately evaluated in vivo. Here, we examined the effect of commercial PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) on the learning and memory of an AD-animal model. The outcomes demonstrated the dose-dependent effect of SPIONs on Aβ fibrillation and learning and memory processes. In vitro and in vivo findings revealed that Low doses of SPIONs inhibited Aβ aggregation and ameliorated learning and memory deficit in the AD model, respectively. Enhanced level of hippocampal proteins, including brain-derived neurotrophic factor, BDNF, phosphorylated-cAMP response element-binding protein, p-CREB, and stromal interaction molecules, e.g., STIM1 and STIM2, were also observed. However, at high doses, SPIONs did not improve the detrimental impacts of Aβ fibrillation on spatial memory and hippocampal proteins expression. Overall, we revealed the potential capacity of SPIONs on retrieval of behavioral and molecular manifestations of AD in vivo, which needs further investigations to determine the mechanistic effect of SPIONs in the AD conundrum.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Hajipour
- The Persian Gulf Biomedical Sciences Research Institute, Persian Gulf Marine Biotechnology Research Center, Bushehr University of Medical Sciences, Bushehr, 47263, Iran; Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Payam Sadeghi
- Department of Plastic Surgery, Cleveland Clinic, OH, USA
| | - Marzieh Noruzi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Aynaz Moshtagh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Homayoon Behmadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1416753955, Iran.
| |
Collapse
|
72
|
Yu Z, Gao L, Chen K, Zhang W, Zhang Q, Li Q, Hu K. Nanoparticles: A New Approach to Upgrade Cancer Diagnosis and Treatment. NANOSCALE RESEARCH LETTERS 2021; 16:88. [PMID: 34014432 PMCID: PMC8137776 DOI: 10.1186/s11671-021-03489-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/27/2021] [Indexed: 05/07/2023]
Abstract
Traditional cancer therapeutics have been criticized due to various adverse effects and insufficient damage to targeted tumors. The breakthrough of nanoparticles provides a novel approach for upgrading traditional treatments and diagnosis. Actually, nanoparticles can not only solve the shortcomings of traditional cancer diagnosis and treatment, but also create brand-new perspectives and cutting-edge devices for tumor diagnosis and treatment. However, most of the research about nanoparticles stays in vivo and in vitro stage, and only few clinical researches about nanoparticles have been reported. In this review, we first summarize the current applications of nanoparticles in cancer diagnosis and treatment. After that, we propose the challenges that hinder the clinical applications of NPs and provide feasible solutions in combination with the updated literature in the last two years. At the end, we will provide our opinions on the future developments of NPs in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Zhongyang Yu
- Beijing University of Chinese Medicine, 11 North Third Ring East Road, Chaoyang District, Beijing, 100029, China
| | - Lei Gao
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Fangguyuan Rd, Fengtai District, Beijing, 100078, China
| | - Kehan Chen
- College of Engineering, China Agricultural University, Tsinghua East Rd, Haidian District, Beijing, 100083, China
| | - Wenqiang Zhang
- College of Engineering, China Agricultural University, Tsinghua East Rd, Haidian District, Beijing, 100083, China
| | - Qihang Zhang
- Department of Management, Fredericton Campus, University of New Brunswick, 3 Bailey Drive, Fredericton, NB, E3B 5A3, Canada
| | - Quanwang Li
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Fangguyuan Rd, Fengtai District, Beijing, 100078, China
| | - Kaiwen Hu
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Fangguyuan Rd, Fengtai District, Beijing, 100078, China.
| |
Collapse
|
73
|
Ghanbarei S, Sattarahmady N, Zarghampoor F, Azarpira N, Hossein-Aghdaie M. Effects of labeling human mesenchymal stem cells with superparamagnetic zinc-nickel ferrite nanoparticles on cellular characteristics and adipogenesis/osteogenesis differentiation. Biotechnol Lett 2021; 43:1659-1673. [PMID: 33934256 DOI: 10.1007/s10529-021-03134-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/15/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVE An attractive cell source for stem cell-based therapy are WJ-MSCs. Hence, tracking WJ-MSCs using non-invasive imaging procedures (such as MRI) and contrast agents (Zn0.5Ni0.5Fe2O4, NFNPs) are required to evaluate cell distribution, migration, and differentiation. RESULTS Results showed that the bare and dextrin-coated NFNPs were internalized inside the WJ-MSCs and had no effect on the cell viability, proliferation, apoptosis, karyotyping, and morphology of WJ-MSCs up to 125 µg/mL. Besides, treated WJ-MSCs were differentiated into osteo/adipocyte-like cells. The expression of RUNX 2, SPP 1 (P < 0.05), and OCN (P > 0.05) genes in the WJ-MSCs treated with dextrin-coated NFNPs was higher than the untreated WJ-MSCs; and the expression of CFD, LPL, and PPAR-γ genes was reduced in WJ-MSCs treated with both NFNPs in comparison with the untreated WJ-MSCs (P > 0.05). CONCLUSION Overall, results showed that dextrin-coated NFNPs had no adverse effect on the cellular characteristics, proliferation, and differentiation of WJ-MSCs, and suggesting their potential clinical efficacy.
Collapse
Affiliation(s)
- Solaleh Ghanbarei
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran.,Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Naghmeh Sattarahmady
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,The Nanobiology and Nanomedicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Zarghampoor
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. .,Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Khalili St, Mohamad Rasoolalah Research Tower, 7th floor, Shiraz, Iran.
| | - Negar Azarpira
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. .,Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Khalili St, Mohamad Rasoolalah Research Tower, 7th floor, Shiraz, Iran.
| | | |
Collapse
|
74
|
Ocakoglu K, Dizge N, Colak SG, Ozay Y, Bilici Z, Yalcin MS, Ozdemir S, Yatmaz HC. Polyethersulfone membranes modified with CZTS nanoparticles for protein and dye separation: Improvement of antifouling and self-cleaning performance. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
75
|
Akbarzadeh H, Mehrjouei E, Abbaspour M, Shamkhali AN. Melting Behavior of Bimetallic and Trimetallic Nanoparticles: A Review of MD Simulation Studies. Top Curr Chem (Cham) 2021; 379:22. [PMID: 33890199 DOI: 10.1007/s41061-021-00332-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
In recent years, bimetallic and trimetallic nanoparticles (NPs) have become attractive materials for many researchers especially in the field of catalysis due to their interesting physical and chemical properties. These unique properties arise mainly from simultaneous effects of two different metal atoms in their structure. In this review, recent theoretical studies on these NPs using molecular dynamics simulation are presented. Since investigation of thermodynamic stabilities of metallic NPs is a critical factor in their construction for catalytic applications, our focus in this review is on the thermal stability of bimetallic and trimetallic NPs. The melting behavior of these materials with different atomic arrangements including core-shell, three-shell, crown-jewel, ordered and disordered alloy, and Janus materials are discussed. Other factors including stress, strain, atomic radius, thermal expansion coefficient, cohesive energy, surface energy, size, composition, and morphology are described in detail, because these properties lead to complexity in the melting behavior of bimetallic and trimetallic NPs.
Collapse
Affiliation(s)
- Hamed Akbarzadeh
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, 96179-76487, Sabzevar, Iran.
| | - Esmat Mehrjouei
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, 96179-76487, Sabzevar, Iran
| | - Mohsen Abbaspour
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, 96179-76487, Sabzevar, Iran
| | - Amir Nasser Shamkhali
- Department of Chemistry, Faculty of Basic Sciences, University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran
| |
Collapse
|
76
|
Abstract
Cardiovascular diseases (CVDs) are the world’s leading cause of mortality and represent a large contributor to the costs of medical care. Although tremendous progress has been made for the diagnosis of CVDs, there is an important need for more effective early diagnosis and the design of novel diagnostic methods. The diagnosis of CVDs generally relies on signs and symptoms depending on molecular imaging (MI) or on CVD-associated biomarkers. For early-stage CVDs, however, the reliability, specificity, and accuracy of the analysis is still problematic. Because of their unique chemical and physical properties, nanomaterial systems have been recognized as potential candidates to enhance the functional use of diagnostic instruments. Nanomaterials such as gold nanoparticles, carbon nanotubes, quantum dots, lipids, and polymeric nanoparticles represent novel sources to target CVDs. The special properties of nanomaterials including surface energy and topographies actively enhance the cellular response within CVDs. The availability of newly advanced techniques in nanomaterial science opens new avenues for the targeting of CVDs. The successful application of nanomaterials for CVDs needs a detailed understanding of both the disease and targeting moieties.
Collapse
|
77
|
Gerosa M, Grande MD, Busato A, Vurro F, Cisterna B, Forlin E, Gherlinzoni F, Morana G, Gottardi M, Matteazzi P, Speghini A, Marzola P. Nanoparticles exhibiting self-regulating temperature as innovative agents for Magnetic Fluid Hyperthermia. Nanotheranostics 2021; 5:333-347. [PMID: 33732604 PMCID: PMC7961124 DOI: 10.7150/ntno.55695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
During the last few years, for therapeutic purposes in oncology, considerable attention has been focused on a method called magnetic fluid hyperthermia (MFH) based on local heating of tumor cells. In this paper, an innovative, promising nanomaterial, M48 composed of iron oxide-based phases has been tested. M48 shows self-regulating temperature due to the observable second order magnetic phase transition from ferromagnetic to paramagnetic state. A specific hydrophilic coating based on both citrate ions and glucose molecules allows high biocompatibility of the nanomaterial in biological matrices and its use in vivo. MFH mediator efficiency is demonstrated in vitro and in vivo in breast cancer cells and tumors, confirming excellent features for biomedical application. The temperature increase, up to the Curie temperature, gives rise to a phase transition from ferromagnetic to paramagnetic state, promoting a shortage of the r2 transversal relaxivity that allows a switch in the contrast in Magnetic Resonance Imaging (MRI). Combining this feature with a competitive high transversal (spin-spin) relaxivity, M48 paves the way for a new class of temperature sensitive T2 relaxing contrast agents. Overall, the results obtained in this study prepare for a more affordable and tunable heating mechanism preventing the damages of the surrounding healthy tissues and, at the same time, allowing monitoring of the temperature reached.
Collapse
Affiliation(s)
- Marco Gerosa
- Department of Diagnostics and Public Health, University of Verona, Piazzale L.A. Scuro, 37134 Verona, Italy
| | - Marco Dal Grande
- Nanomaterials Research Group, Department of Biotechnology, University of Verona and INSTM, RU Verona, Strada Le Grazie 15, I-37134 Verona, Italy
| | - Alice Busato
- Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Federica Vurro
- Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Enrico Forlin
- MBN Nanomaterialia S.p.A., Via Giacomo Bortolan, 42, 31050 Carbonera Treviso, Italy
| | - Filippo Gherlinzoni
- Foundation for Nanotheranostics Research in Cancer Therapy, RNC, Treviso, Italy
| | - Giovanni Morana
- Foundation for Nanotheranostics Research in Cancer Therapy, RNC, Treviso, Italy
| | - Michele Gottardi
- Foundation for Nanotheranostics Research in Cancer Therapy, RNC, Treviso, Italy
| | - Paolo Matteazzi
- MBN Nanomaterialia S.p.A., Via Giacomo Bortolan, 42, 31050 Carbonera Treviso, Italy.,Foundation for Nanotheranostics Research in Cancer Therapy, RNC, Treviso, Italy
| | - Adolfo Speghini
- Nanomaterials Research Group, Department of Biotechnology, University of Verona and INSTM, RU Verona, Strada Le Grazie 15, I-37134 Verona, Italy
| | - Pasquina Marzola
- Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
78
|
García-Merino B, Bringas E, Ortiz I. Synthesis and applications of surface-modified magnetic nanoparticles: progress and future prospects. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
The growing use of magnetic nanoparticles (MNPs) demands cost-effective methods for their synthesis that allow proper control of particle size and size distribution. The unique properties of MNPs include high specific surface area, ease of functionalization, chemical stability and superparamagnetic behavior, with applications in catalysis, data and energy storage, environmental remediation and biomedicine. This review highlights breakthroughs in the use of MNPs since their initial introduction in biomedicine to the latest challenging applications; special attention is paid to the importance of proper coating and functionalization of the particle surface, which dictates the specific properties for each application. Starting from the first report following LaMer’s theory in 1950, this review discusses and analyzes methods of synthesizing MNPs, with an emphasis on functionality and applications. However, several hurdles, such as the design of reactors with suitable geometries, appropriate control of operating conditions and, in particular, reproducibility and scalability, continue to prevent many applications from reaching the market. The most recent strategy, the use of microfluidics to achieve continuous and controlled synthesis of MNPs, is therefore thoroughly analyzed. This review is the first to survey continuous microfluidic coating or functionalization of particles, including challenging properties and applications.
Collapse
Affiliation(s)
- Belén García-Merino
- Department of Chemical and Biomolecular Engineering , ETSIIT, University of Cantabria , Avda. Los Castros s/n , 39005 Santander , Spain
| | - Eugenio Bringas
- Department of Chemical and Biomolecular Engineering , ETSIIT, University of Cantabria , Avda. Los Castros s/n , 39005 Santander , Spain
| | - Inmaculada Ortiz
- Department of Chemical and Biomolecular Engineering , ETSIIT, University of Cantabria , Avda. Los Castros s/n , 39005 Santander , Spain
| |
Collapse
|
79
|
The iron oxide/polymer nanocomposites for targeted drug delivery and toxicity investigation on zebra fish (Danio rerio). INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
80
|
Doswald S, Stark WJ. Preparation of Functionalized Carbon-Coated Cobalt Nanoparticles with Sulfonated Arene Derivatives, a Study on Surface Functionalization and Stability. Chemistry 2021; 27:4108-4114. [PMID: 33350514 DOI: 10.1002/chem.202004631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/18/2020] [Indexed: 11/10/2022]
Abstract
The functionalization of magnetic nanoparticles has been an important field in the last decade due to the versatile applications in catalysis and biomedicine. Generally, a high degree of functionalities on the surface of the nanoparticles is desired. In this study, covalent functionalization of various aromatic sulfonic acids on carbon-coated cobalt nanoparticles are investigated on surface functionalization yield and stability. The nanoparticles are prepared via covalent linkage of an in situ generated diazonium on the graphene-like surface. Adsorption and wash experiments were performed to confirm a covalent bonding of the naphthalene derivatives on the nanoparticle surface. With an increased number of sulfonic acid groups on the aromatic compound a significantly lower loading is observed on the corresponding functionalized nanoparticles. This can be counteracted by a change of nitrite species. With this method, nanoparticles with a high number of sulfonic acid groups can be produced.
Collapse
Affiliation(s)
- Simon Doswald
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Wendelin J Stark
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| |
Collapse
|
81
|
Yang Y, Han Y, Sun Q, Cheng J, Yue C, Liu Y, Song J, Jin W, Ding X, de la Fuente JM, Ni J, Wang X, Cui D. Au-siRNA@ aptamer nanocages as a high-efficiency drug and gene delivery system for targeted lung cancer therapy. J Nanobiotechnology 2021; 19:54. [PMID: 33627152 PMCID: PMC7905599 DOI: 10.1186/s12951-020-00759-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Gene and chemical therapy has become one of the rising stars in the field of molecular medicine during the last two decades. However, there are still numerous challenges in the development of efficient, targeted, and safe delivery systems that can avoid siRNA degradation and reduce the toxicity and adverse effects of chemotherapy medicine. RESULTS In this paper, a highly efficient AS1411 aptamer modified, dsDNA and MMP-2 cleavable peptide-fabricated gold nanocage vehicle, which could load doxorubicin hydrochloride (DOX) and siRNAs to achieve a combination of tumor responsive genetic therapy, chemotherapy, and photothermal treatment is presented. Our results show that this combined treatment achieved targeted gene silencing and tumor inhibition. After nearly one month of treatment with DOX-loaded Au-siRNA-PAA-AS1411 nanoparticles with one dose every three days in mice, a synergistic effect promoting the eradication of long-lived tumors was observed along with an increased survival rate of mice. The combined genetic, chemotherapeutic, and photothermal treatment group exhibited more than 90% tumor inhibition ratio (tumor signal) and a ~ 67% survival rate compared with a 30% tumor inhibition ratio and a 0% survival rate in the passive genetic treatment group. CONCLUSIONS The development of nanocarriers with double-stranded DNA and MMP-2 cleavable peptides provides a new strategy for the combined delivery of gene and chemotherapy medicine. Au-siRNA-PAA-AS1411 exerts high anticancer activities on lung cancer, indicating immense potentials for clinical application.
Collapse
Affiliation(s)
- Yuming Yang
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
- National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
| | - Yu Han
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Qiuyang Sun
- Pediatric Neurological Disease Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Number 1665, Kongjiang Road, Shanghai, 200092, People's Republic of China
| | - Jin Cheng
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Caixia Yue
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China
| | - Yanlei Liu
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
- National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
| | - Weilin Jin
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
- National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
| | - Xianting Ding
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China
| | - Jesús M de la Fuente
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
- Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - Jian Ni
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Xiaoqiang Wang
- Pediatric Neurological Disease Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Number 1665, Kongjiang Road, Shanghai, 200092, People's Republic of China.
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
- National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
82
|
Balousis A, Maniotis N, Samaras T. Improvement of Magnetic Particle Hyperthermia: Healthy Tissues Sparing by Reduction in Eddy Currents. NANOMATERIALS 2021; 11:nano11020556. [PMID: 33672340 PMCID: PMC7926340 DOI: 10.3390/nano11020556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/05/2021] [Accepted: 02/20/2021] [Indexed: 01/30/2023]
Abstract
Attenuation of the unwanted heating of normal tissues due to eddy currents presents a major challenge in magnetic particle hyperthermia for cancer treatment. Eddy currents are a direct consequence of the applied alternating magnetic field, which is used to excite the nanoparticles in the tumor and have been shown to limit treatment efficacy in clinical trials. To overcome these challenges, this paper presents simple, clinically applicable, numerical approaches which reduce the temperature increase due to eddy currents in normal tissue and simultaneously retain magnetic nanoparticles heating efficiency within the tumor. More specifically, two protocols are examined which involve moving the heating source, an electromagnetic coil, relative to a tumor-bearing phantom tissue during the exposure. In the first protocol, the linear motion of the coil on one side with respect to the hypothesized tumor location inside the phantom is simulated. The estimated maximum temperature increase in the healthy tissue and tumor is reduced by 12% and 9%, respectively, compared to a non-moving coil, which is the control protocol. The second technique involves a symmetrical variation of the first one, where the coil is moving left and right of the phantom in a bidirectional fashion. This protocol is considered as the optimum one, since the estimated maximum temperature rise of the healthy tissue and tumor is reduced by 25% and 1%, respectively, compared to the control protocol. Thus, the advantages of a linearly moving coil are assessed through tissue sparing, rendering this technique suitable for magnetic particle hyperthermia treatment.
Collapse
Affiliation(s)
- Alexandros Balousis
- Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.B.); (T.S.)
| | - Nikolaos Maniotis
- Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.B.); (T.S.)
- Correspondence: ; Tel.: +30-6955-118-490
| | - Theodoros Samaras
- Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.B.); (T.S.)
- Department of Physics, University of Malta, 2080 Msida, Malta
| |
Collapse
|
83
|
Wang X, Du H, Wang Z, Mu W, Han X. Versatile Phospholipid Assemblies for Functional Synthetic Cells and Artificial Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002635. [PMID: 32830387 DOI: 10.1002/adma.202002635] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/09/2020] [Indexed: 06/11/2023]
Abstract
The bottom-up construction of a synthetic cell from nonliving building blocks capable of mimicking cellular properties and behaviors helps to understand the particular biophysical properties and working mechanisms of a cell. A synthetic cell built in this way possesses defined chemical composition and structure. Since phospholipids are native biomembrane components, their assemblies are widely used to mimic cellular structures. Here, recent developments in the formation of versatile phospholipid assemblies are described, together with the applications of these assemblies for functional membranes (protein reconstituted giant unilamellar vesicles), spherical and nonspherical protoorganelles, and functional synthetic cells, as well as the high-order hierarchical structures of artificial tissues. Their biomedical applications are also briefly summarized. Finally, the challenges and future directions in the field of synthetic cells and artificial tissues based on phospholipid assemblies are proposed.
Collapse
Affiliation(s)
- Xuejing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hang Du
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Marine Antifouling Engineering Technology Center of Shangdong Province, Harbin Institute of Technology, Weihai, 264209, China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Wei Mu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
84
|
Amiri M, Khazaeli P, Salehabadi A, Salavati-Niasari M. Hydrogel beads-based nanocomposites in novel drug delivery platforms: Recent trends and developments. Adv Colloid Interface Sci 2021; 288:102316. [PMID: 33387892 DOI: 10.1016/j.cis.2020.102316] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 10/23/2022]
Abstract
The present article evaluates the composition and synthesis of hydrogel beads. Hydrogels, owing to their known biocompatibility, are widely used in drug delivery as a host (or drug carrier). Hydrogels, owing to their physical, chemical and biological properties, are popular in many aspects. Hydrogels are crosslinked-hydrophilic polymers and commercialized/synthesized in both natural and synthetic forms. These polymers are compatible with human tissues, therefore can be potentially used for biomedical treatments. Hydrogels in drug delivery offer several points of interest such as sustainability, and sensitivity without any side-effects as compared to traditional methods in this field. Drugs can encapsulate and release continuously into the targets when hydrogels are activated/modified magnetically or by fluorescent materials. It is crucial to develop new crosslinked polymers in terms of "biocompatibility" and "biodegradability" for novel drug delivery platforms. In the event that the accomplishments of the past can be used into the longer terms, it is exceedingly likely that hydrogels with a wide cluster of alluring properties can be synthesized. The current review, offers an updated summary of latest developments in the nanomedicines field as well as nanobased drug delivery systems over broad study of the discovery/ application of nanomaterials in improving both the efficacy of drugs and targeted delivery of them. The challenges/opportunities of nanomedicine in drug delivery also discussed. SCOPE OF THE RESEARCH: Although several reviews have been published in the field of hydrogels, however many of them have just centralized on the general overviews in terms of "synthesis" and "properties". The utilization of hydrogels and hydrogel-based composites in vital applications have been achieved a great interest. In this review, our aim is to recap of the key points in the field of hydrogels such as; a) hydrogel nanocomposites, b) magnetic beads, c) biomedical applications, and d) drug delivery. In the same vein, these outlines will be expanded with emphasizing on the boon of magnetic beads and recent developments in this area.
Collapse
|
85
|
Moghadam SMM, Alibolandi M, Babaei M, Mosafer J, Saljooghi AS, Ramezani M. Fabrication of deferasirox-decorated aptamer-targeted superparamagnetic iron oxide nanoparticles (SPION) as a therapeutic and magnetic resonance imaging agent in cancer therapy. J Biol Inorg Chem 2021; 26:29-41. [PMID: 33156416 DOI: 10.1007/s00775-020-01834-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
In the current study, the synthesis of a theranostic platform composed of superparamagnetic iron oxide nanoparticles (SPION)-deferasirox conjugates targeted with AS1411 DNA aptamer was reported. In this regard, SPION was amine-functionalized by (3-aminopropyl)trimethoxysilane (ATPMS), and then deferasirox was covalently conjugated onto its surface. Finally, to provide guided drug delivery to cancerous tissue, AS1411 aptamer was conjugated to the complex of SPION-deferasirox. The cellular toxicity assay on CHO, C-26 and AGS cell lines verified higher cellular toxicity of targeted complex in comparison with non-targeted one. The evaluation of in vivo tumor growth inhibitory effect in C26 tumor-bearing mice illustrated that the aptamer-targeted complex significantly enhanced the therapeutic outcome in comparison with both non-targeted complex and free drug. The diagnostic capability of the prepared platform was also evaluated implementing C26-tumor-bearing mice. Obtained data confirmed higher tumor accumulation and higher tumor residence time for targeted complex through MRI imaging due to the existence of SPION as a contrast agent in the core of the prepared complex. The prepared multimodal theranostic system provides a safe and effective platform for fighting against cancer.
Collapse
Affiliation(s)
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Babaei
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jafar Mosafer
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Radiology, 9 Day Educational Hospital, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 91775-1436, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Biotechnology, Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
86
|
Harris M, Ceulemans M, Verstraete C, Bloemen M, Manshian B, Soenen SJ, Himmelreich U, Verbiest T, De Borggraeve WM, Parac‐Vogt TN. Ultrasmall iron oxide nanoparticles functionalized with BODIPY derivatives as potential bimodal probes for MRI and optical imaging. NANO SELECT 2021. [DOI: 10.1002/nano.202000022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Michael Harris
- Department of Chemistry KU Leuven Celestijnenlaan 200F, Box 2404 Leuven 3001 Belgium
| | - Matthias Ceulemans
- Department of Chemistry KU Leuven Celestijnenlaan 200F, Box 2404 Leuven 3001 Belgium
| | - Charlotte Verstraete
- Department of Chemistry KU Leuven Celestijnenlaan 200D, Box 2425 Leuven 3001 Belgium
- Biomedical MRI KU Leuven O&N I Herestraat 49 ‐ box 505 Leuven 3000 Belgium
| | - Maarten Bloemen
- Department of Chemistry KU Leuven Celestijnenlaan 200D, Box 2425 Leuven 3001 Belgium
- Biomedical MRI KU Leuven O&N I Herestraat 49 ‐ box 505 Leuven 3000 Belgium
| | - Bella Manshian
- Biomedical MRI KU Leuven O&N I Herestraat 49 ‐ box 505 Leuven 3000 Belgium
| | - Stefaan J. Soenen
- Biomedical MRI KU Leuven O&N I Herestraat 49 ‐ box 505 Leuven 3000 Belgium
| | - Uwe Himmelreich
- Biomedical MRI KU Leuven O&N I Herestraat 49 ‐ box 505 Leuven 3000 Belgium
| | - Thierry Verbiest
- Department of Chemistry KU Leuven Celestijnenlaan 200D, Box 2425 Leuven 3001 Belgium
| | - Wim M. De Borggraeve
- Department of Chemistry KU Leuven Celestijnenlaan 200F, Box 2404 Leuven 3001 Belgium
| | - Tatjana N. Parac‐Vogt
- Department of Chemistry KU Leuven Celestijnenlaan 200F, Box 2404 Leuven 3001 Belgium
| |
Collapse
|
87
|
de Lima NRB, de Souza Junior FG, Roullin VG, Pal K, da Silva ND. Head and Neck Cancer Treatments from Chemotherapy to Magnetic Systems: Perspectives and Challenges. Curr Radiopharm 2021; 15:2-20. [PMID: 33511961 DOI: 10.2174/1874471014999210128183231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is one of the diseases causing society's fears as a stigma of death and pain. Head and Neck Squamous Cell Carcinoma (HNSCC) is a group of malignant neoplasms of different locations in this region of the human body. It is one of the leading causes of morbidity and mortality in Brazil, because these malignant neoplasias, in most cases, are diagnosed in late phases. Surgical excision, chemotherapy and radiotherapy encompass the forefront of antineoplastic therapy; however, the numerous side effects associated with these therapeutic modalities are well known. Some treatments present enough potential to help or replace conventional treatments, such as Magnetic Hyperthermia and Photodynamic Therapy. Such approaches require the development of new materials at the nanoscale, able to carry out the loading of their active components while presenting characteristics of biocompatibility mandatory for biomedical applications. OBJECTIVE This work aims to make a bibliographical review of HNSCC treatments. Recent techniques proven effective in other types of cancer were highlighted and raised discussion and reflections on current methods and possibilities of enhancing the treatment of HNSCC. METHOD The study was based on a bibliometric research between the years 2008 and 2019 using the following keywords: Cancer, Head and Neck Cancer, Chemotherapy, Radiotherapy, Photodynamic Therapy, and Hyperthermia. RESULTS A total of 5.151.725 articles were found, 3.712.670 about cancer, 175.470 on Head and Neck Cancer, 398.736 on Radiotherapy, 760.497 on Chemotherapy, 53.830 on Hyperthermia, and 50.522 on Photodynamic Therapy. CONCLUSION The analysis shows that there is still much room for expanding research, especially for alternative therapies since most of the studies still focus on conventional treatments and on the quest to overcome their side effects. The scientific community needs to keep looking for more effective therapies generating fewer side effects for the patient. Currently, the so-called alternative therapies are being used in combination with the conventional ones, but the association of these new therapies shows great potential, in other types of cancer, to improve the treatment efficacy.
Collapse
Affiliation(s)
- Nathali R B de Lima
- Biopolymer & Sensors Lab. - Instituto de Macromoléculas Professora Eloisa Mano, Centro de Tecnologia-Cidade Universitária, Av. Horacio Macedo, 2030, bloco J. Universidade Federal de Rio de Janeiro, Zip code 21941-909,. Brazil
| | - Fernando G de Souza Junior
- Biopolymer & Sensors Lab. - Instituto de Macromoléculas Professora Eloisa Mano, Centro de Tecnologia-Cidade Universitária, Av. Horacio Macedo, 2030, bloco J. Universidade Federal de Rio de Janeiro, Zip code 21941-909,. Brazil
| | - Valérie G Roullin
- Faculté de Pharmacie Université de Montréal, Pavillon Jean-Coutu, 2940 chemin de la polytechnique Montreal QC, H3T 1J4,. Canada
| | - Kaushik Pal
- Wuhan University, Hubei Province, 8 East Lake South Road. Wuchang 430072,. China
| | - Nathalia D da Silva
- Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Av. Horacio Macedo, 2030, bloco I. Universidade Federal de Rio de Janeiro,. Brazil
| |
Collapse
|
88
|
Anik MI, Hossain MK, Hossain I, Mahfuz AMUB, Rahman MT, Ahmed I. Recent progress of magnetic nanoparticles in biomedical applications: A review. NANO SELECT 2021. [DOI: 10.1002/nano.202000162] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Muzahidul I. Anik
- Chemical Engineering University of Rhode Island Kingston Rhode Island 02881 USA
| | - M. Khalid Hossain
- Interdisciplinary Graduate School of Engineering Science Kyushu University Fukuoka 816–8580 Japan
- Atomic Energy Research Establishment Bangladesh Atomic Energy Commission Dhaka 1349 Bangladesh
| | - Imran Hossain
- Institute for Micromanufacturing Louisiana Tech University Ruston Louisiana 71270 USA
| | - A. M. U. B. Mahfuz
- Biotechnology and Genetic Engineering University of Development Alternative Dhaka 1209 Bangladesh
| | - M. Tayebur Rahman
- Materials Science and Engineering University of Rajshahi Rajshahi 6205 Bangladesh
| | - Isteaque Ahmed
- Chemical Engineering University of Cincinnati Cincinnati Ohio 45221 USA
| |
Collapse
|
89
|
Radeloff K, Ramos Tirado M, Haddad D, Breuer K, Müller J, Hochmuth S, Hackenberg S, Scherzad A, Kleinsasser N, Radeloff A. Superparamagnetic Iron Oxide Particles (VSOPs) Show Genotoxic Effects but No Functional Impact on Human Adipose Tissue-Derived Stromal Cells (ASCs). MATERIALS 2021; 14:ma14020263. [PMID: 33430323 PMCID: PMC7825809 DOI: 10.3390/ma14020263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022]
Abstract
Adipose tissue-derived stromal cells (ASCs) represent a capable source for cell-based therapeutic approaches. For monitoring a cell-based application in vivo, magnetic resonance imaging (MRI) of cells labeled with iron oxide particles is a common method. It is the aim of the present study to analyze potential DNA damage, cytotoxicity and impairment of functional properties of human (h)ASCs after labeling with citrate-coated very small superparamagnetic iron oxide particles (VSOPs). Cytotoxic as well as genotoxic effects of the labeling procedure were measured in labeled and unlabeled hASCs using the MTT assay, comet assay and chromosomal aberration test. Trilineage differentiation was performed to evaluate an impairment of the differentiation potential due to the particles. Proliferation as well as migration capability were analyzed after the labeling procedure. Furthermore, the labeling of the hASCs was confirmed by Prussian blue staining, transmission electron microscopy (TEM) and high-resolution MRI. Below the concentration of 0.6 mM, which was used for the procedure, no evidence of genotoxic effects was found. At 0.6 mM, 1 mM as well as 1.5 mM, an increase in the number of chromosomal aberrations was determined. Cytotoxic effects were not observed at any concentration. Proliferation, migration capability and differentiation potential were also not affected by the procedure. Labeling with VSOPs is a useful labeling method for hASCs that does not affect their proliferation, migration and differentiation potential. Despite the absence of cytotoxicity, however, indications of genotoxic effects have been demonstrated.
Collapse
Affiliation(s)
- Katrin Radeloff
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Oldenburg, 26122 Oldenburg, Germany; (J.M.); (S.H.); (A.R.)
- Correspondence:
| | - Mario Ramos Tirado
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (M.R.T.); (S.H.); (A.S.); (N.K.)
| | - Daniel Haddad
- Fraunhofer Development Center X-ray Technology EZRT, Department Magnetic Resonance and X-ray Imaging, A Division of Fraunhofer Institute for Integrated Circuits IIS, 97074 Wuerzburg, Germany;
| | - Kathrin Breuer
- Department of Radiation Oncology, University of Wuerzburg, 97080 Wuerzburg, Germany;
| | - Jana Müller
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Oldenburg, 26122 Oldenburg, Germany; (J.M.); (S.H.); (A.R.)
| | - Sabine Hochmuth
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Oldenburg, 26122 Oldenburg, Germany; (J.M.); (S.H.); (A.R.)
| | - Stephan Hackenberg
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (M.R.T.); (S.H.); (A.S.); (N.K.)
| | - Agmal Scherzad
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (M.R.T.); (S.H.); (A.S.); (N.K.)
| | - Norbert Kleinsasser
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, 97080 Wuerzburg, Germany; (M.R.T.); (S.H.); (A.S.); (N.K.)
| | - Andreas Radeloff
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Oldenburg, 26122 Oldenburg, Germany; (J.M.); (S.H.); (A.R.)
| |
Collapse
|
90
|
Mylkie K, Nowak P, Rybczynski P, Ziegler-Borowska M. Polymer-Coated Magnetite Nanoparticles for Protein Immobilization. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E248. [PMID: 33419055 PMCID: PMC7825442 DOI: 10.3390/ma14020248] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 11/20/2022]
Abstract
Since their discovery, magnetic nanoparticles (MNPs) have become materials with great potential, especially considering the applications of biomedical sciences. A series of works on the preparation, characterization, and application of MNPs has shown that the biological activity of such materials depends on their size, shape, core, and shell nature. Some of the most commonly used MNPs are those based on a magnetite core. On the other hand, synthetic biopolymers are used as a protective surface coating for these nanoparticles. This review describes the advances in the field of polymer-coated MNPs for protein immobilization over the past decade. General methods of MNP preparation and protein immobilization are presented. The most extensive section of this article discusses the latest work on the use of polymer-coated MNPs for the physical and chemical immobilization of three types of proteins: enzymes, antibodies, and serum proteins. Where possible, the effectiveness of the immobilization and the activity and use of the immobilized protein are reported. Finally, the information available in the peer-reviewed literature and the application perspectives for the MNP-immobilized protein systems are summarized as well.
Collapse
Affiliation(s)
| | | | | | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.M.); (P.N.); (P.R.)
| |
Collapse
|
91
|
Siafaka PI, Okur NÜ, Karantas ID, Okur ME, Gündoğdu EA. Current update on nanoplatforms as therapeutic and diagnostic tools: A review for the materials used as nanotheranostics and imaging modalities. Asian J Pharm Sci 2021; 16:24-46. [PMID: 33613728 PMCID: PMC7878458 DOI: 10.1016/j.ajps.2020.03.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/21/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
In the last decade, the use of nanotheranostics as emerging diagnostic and therapeutic tools for various diseases, especially cancer, is held great attention. Up to date, several approaches have been employed in order to develop smart nanotheranostics, which combine bioactive targeting on specific tissues as well as diagnostic properties. The nanotheranostics can deliver therapeutic agents by concomitantly monitor the therapy response in real-time. Consequently, the possibility of over- or under-dosing is decreased. Various non-invasive imaging techniques have been used to quantitatively monitor the drug delivery processes. Radiolabeling of nanomaterials is widely used as powerful diagnostic approach on nuclear medicine imaging. In fact, various radiolabeled nanomaterials have been designed and developed for imaging tumors and other lesions due to their efficient characteristics. Inorganic nanoparticles as gold, silver, silica based nanomaterials or organic nanoparticles as polymers, carbon based nanomaterials, liposomes have been reported as multifunctional nanotheranostics. In this review, the imaging modalities according to their use in various diseases are summarized, providing special details for radiolabeling. In further, the most current nanotheranostics categorized via the used nanomaterials are also summed up. To conclude, this review can be beneficial for medical and pharmaceutical society as well as material scientists who work in the field of nanotheranostics since they can use this research as guide for producing newer and more efficient nanotheranostics.
Collapse
Affiliation(s)
- Panoraia I. Siafaka
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Neslihan Üstündağ Okur
- Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Health Sciences, Istanbul, Turkey
| | - Ioannis D. Karantas
- 2nd Clinic of Internal Medicine, Hippokration General Hospital, Thessaloniki, Greece
| | - Mehmet Evren Okur
- Faculty of Pharmacy, Department of Pharmacology, University of Health Sciences, Istanbul, Turkey
| | | |
Collapse
|
92
|
Chen F, Bian M, Nahmou M, Myung D, Goldberg JL. Fusogenic liposome-enhanced cytosolic delivery of magnetic nanoparticles. RSC Adv 2021; 11:35796-35805. [PMID: 35492766 PMCID: PMC9043121 DOI: 10.1039/d1ra03094a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022] Open
Abstract
Fusogenic liposomes facilitate MNPs passage into the cytosol and enable direct contact between MNPs and organelles other than endosomes.
Collapse
Affiliation(s)
- Fang Chen
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute at Stanford University, Palo Alto, CA, 94304, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Minjuan Bian
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute at Stanford University, Palo Alto, CA, 94304, USA
| | - Michael Nahmou
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute at Stanford University, Palo Alto, CA, 94304, USA
| | - David Myung
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute at Stanford University, Palo Alto, CA, 94304, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jeffrey L. Goldberg
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute at Stanford University, Palo Alto, CA, 94304, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| |
Collapse
|
93
|
Czajor J, Abuillan W, Nguyen DV, Heidebrecht C, Mondarte EA, Konovalov OV, Hayashi T, Felder-Flesch D, Kaufmann S, Tanaka M. Dendronized oligoethylene glycols with phosphonate tweezers for cell-repellent coating of oxide surfaces: coarse-scale and nanoscopic interfacial forces. RSC Adv 2021; 11:17727-17733. [PMID: 35480187 PMCID: PMC9033241 DOI: 10.1039/d1ra02571f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/10/2021] [Indexed: 11/21/2022] Open
Abstract
Coarse-scale and nanoscopic interfacial force measurements unraveled how dendronized oligoethylene glycols with phosphonate tweezers prevent non-specific cell adhesion to oxide surfaces.
Collapse
Affiliation(s)
- Julian Czajor
- Physical Chemistry of Biosystems
- Institute of Physical Chemistry
- Heidelberg University
- 69120 Heidelberg
- Germany
| | - Wasim Abuillan
- Physical Chemistry of Biosystems
- Institute of Physical Chemistry
- Heidelberg University
- 69120 Heidelberg
- Germany
| | - Dinh Vu Nguyen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)
- University of Strasbourg
- 67034 Strasbourg
- France
| | - Christopher Heidebrecht
- Physical Chemistry of Biosystems
- Institute of Physical Chemistry
- Heidelberg University
- 69120 Heidelberg
- Germany
| | - Evan A. Mondarte
- Department of Materials Science and Engineering
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Japan
| | | | - Tomohiro Hayashi
- Department of Materials Science and Engineering
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Japan
- JST-PRESTO
| | - Delphine Felder-Flesch
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS)
- University of Strasbourg
- 67034 Strasbourg
- France
- SUPERBRANCHE SAS
| | - Stefan Kaufmann
- Physical Chemistry of Biosystems
- Institute of Physical Chemistry
- Heidelberg University
- 69120 Heidelberg
- Germany
| | - Motomu Tanaka
- Physical Chemistry of Biosystems
- Institute of Physical Chemistry
- Heidelberg University
- 69120 Heidelberg
- Germany
| |
Collapse
|
94
|
Karvelas EG, Lampropoulos NK, Benos LT, Karakasidis T, Sarris IE. On the magnetic aggregation of Fe 3O 4 nanoparticles. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 198:105778. [PMID: 33039920 DOI: 10.1016/j.cmpb.2020.105778] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Background and objective In-vivo MRI-guided drug delivery concept is a personalized technique towards cancer treatment. A major bottleneck of this method, is the weak magnetic response of nanoparticles. A crucial improvement is the usage of paramagnetic nanoparticles aggregates since they can easier manipulated in human arteries than isolated particles. However its significance, not a comprehensive study to estimate the mean length and time to aggregate exists. Methods The present detailed numerical study includes all major discrete and continues forces and moments of the nanoscale in a global model. The effort is given in summarizing the effects of particle diameter and concentration, and magnetic field magnitude to comprehensive relations. Therefore, several cases with nanoparticles having various diameters and concentrations are simulated as magnetic field increases. Results It is found that aggregations with maximum length equal to 2000nm can be formed. In addition, the increase of the concentration leads to a decrease in the amount of the isolated particles. Consequently, 33% of the particles are isolated for the concentration of 2.25mg/ml while 13% for the concentration of 10mg/ml. Moreover, the increase of the permanent magnetic field and diameter of particles gives rise to an asymptotic behavior in the number of isolated particles. Furthermore, the mean length of aggregates scales linear with diameter and magnetic field, however, concentration increase results in a weaker effect. The larger aggregation that is formed is composed by 21 particles. Smaller time is needed for the completion of the aggregation process with larger particles. Additionally, the increase of the magnitude of the magnetic field leads to a decrease in the aggregation time process. Therefore, 8.5ms are needed for the completion of the aggregation process for particles of 100nm at B0=0.1T while 7ms at B0=0.9T. Surprisedly, the mean time to aggregate is of the same order as in microparticles, although, with an opposite trend. Conclusions In this study, the evolution of the mean length of aggregations as well as the completion time of the aggregation process in the nano and micro range is evaluated. The present results could be useful to improve the magnetic nanoparticles assisted drug delivery method in order to minimize the side effects from the convectional cancer treatments like radiation and chemotherapy.
Collapse
Affiliation(s)
- E G Karvelas
- Department of Mechanical Engineering, University of West Attica, Aigaleo, Greece
| | | | - L T Benos
- Institute for Bio-Economy and Agri-Technology (iBO), Centre for Research and Technology, Hellas (CERTH), Thessaloniki, Greece
| | - T Karakasidis
- Department of Civil Engineering, University of Thessaly, Volos, Greece; Department of Physics, University of Thessaly, Lamia, Greece
| | - I E Sarris
- Department of Mechanical Engineering, University of West Attica, Aigaleo, Greece.
| |
Collapse
|
95
|
Leitner NS, Schroffenegger M, Reimhult E. Polymer Brush-Grafted Nanoparticles Preferentially Interact with Opsonins and Albumin. ACS APPLIED BIO MATERIALS 2020; 4:795-806. [PMID: 33490885 PMCID: PMC7818653 DOI: 10.1021/acsabm.0c01355] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/13/2020] [Indexed: 12/18/2022]
Abstract
![]()
Nanoparticles
find increasing applications in life science and
biomedicine. The fate of nanoparticles in a biological system is determined
by their protein corona, as remodeling of their surface properties
through protein adsorption triggers specific recognition such as cell
uptake and immune system clearance and nonspecific processes such
as aggregation and precipitation. The corona is a result of nanoparticle–protein
and protein–protein interactions and is influenced by particle
design. The state-of-the-art design of biomedical nanoparticles is
the core–shell structure exemplified by superparamagnetic iron
oxide nanoparticles (SPIONs) grafted with dense, well-hydrated polymer
shells used for biomedical magnetic imaging and therapy. Densely grafted
polymer chains form a polymer brush, yielding a highly repulsive barrier
to the formation of a protein corona via nonspecific
particle–protein interactions. However, recent studies showed
that the abundant blood serum protein albumin interacts with dense
polymer brush-grafted SPIONs. Herein, we use isothermal titration
calorimetry to characterize the nonspecific interactions between human
serum albumin, human serum immunoglobulin G, human transferrin, and
hen egg lysozyme with monodisperse poly(2-alkyl-2-oxazoline)-grafted
SPIONs with different grafting densities and core sizes. These particles
show similar protein interactions despite their different “stealth”
capabilities in cell culture. The SPIONs resist attractive interactions
with lysozymes and transferrins, but they both show a significant
exothermic enthalpic and low exothermic entropic interaction with
low stoichiometry for albumin and immunoglobulin G. Our results highlight
that protein size, flexibility, and charge are important to predict
protein corona formation on polymer brush-stabilized nanoparticles.
Collapse
Affiliation(s)
- Nikolaus Simon Leitner
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna A-1190, Vienna, Austria
| | - Martina Schroffenegger
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna A-1190, Vienna, Austria
| | - Erik Reimhult
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna A-1190, Vienna, Austria
| |
Collapse
|
96
|
Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy. NANOMATERIALS 2020; 11:nano11010040. [PMID: 33375292 PMCID: PMC7823308 DOI: 10.3390/nano11010040] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/27/2022]
Abstract
The cancer therapy with the lowest possible toxicity is today an issue that raises major difficulties in treating malignant tumors because chemo- and radiotherapy currently used in this field have a high degree of toxicity and in many cases are ineffective. Therefore, alternative solutions are rapidly being sought in cancer therapy, in order to increase efficacy and a reduce or even eliminate toxicity to the body. One of the alternative methods that researchers believe may be the method of the future in cancer therapy is superparamagnetic hyperthermia (SPMHT), because it can be effective in completely destroying tumors while maintaining low toxicity or even without toxicity on the healthy tissues. Superparamagnetic hyperthermia uses the natural thermal effect in the destruction of cancer cells, obtained as a result of the phenomenon of superparamagnetic relaxation of the magnetic nanoparticles (SPMNPs) introduced into the tumor; SPMNPs can heat the cancer cells to 42-43 °C under the action of an external alternating magnetic field with frequency in the range of hundreds of kHz. However, the effectiveness of this alternative method depends very much on finding the optimal conditions in which this method must be applied during the treatment of cancer. In addition to the type of magnetic nanoparticles and the biocompatibility with the biological tissue or nanoparticles biofunctionalization that must be appropriate for the intended purpose a key parameter is the size of the nanoparticles. Also, establishing the appropriate parameters for the external alternating magnetic field (AMF), respectively the amplitude and frequency of the magnetic field are very important in the efficiency and effectiveness of the magnetic hyperthermia method. This paper presents a 3D computational study on specific loss power (Ps) and heating temperature (ΔT) which allows establishing the optimal conditions that lead to efficient heating of Fe3O4 nanoparticles, which were found to be the most suitable for use in superparamagnetic hyperthermia (SPMHT), as a non-invasive and alternative technique to chemo- and radiotherapy. The size (diameter) of the nanoparticles (D), the amplitude of the magnetic field (H) and the frequency (f) of AMF were established in order to obtain maximum efficiency in SPMHT and rapid heating of magnetic nanoparticles at the required temperature of 42-43 °C for irreversible destruction of tumors, without affecting healthy tissues. Also, an analysis on the amplitude of the AMF is presented, and how its amplitude influences the power loss and, implicitly, the heating temperature, observables necessary in SPMHT for the efficient destruction of tumor cells. Following our 3D study, we found for Fe3O4 nanoparticles the optimal diameter of ~16 nm, the optimal range for the amplitude of the magnetic field of 10-25 kA/m and the optimal frequency within the biologically permissible limit in the range of 200-500 kHz. Under the optimal conditions determined for the nanoparticle diameter of 16.3 nm, the magnetic field of 15 kA/m and the frequency of 334 kHz, the magnetite nanoparticles can be quickly heated to obtain the maximum hyperthermic effect on the tumor cells: in only 4.1-4.3 s the temperature reaches 42-43 °C, required in magnetic hyperthermia, with major benefits in practical application in vitro and in vivo, and later in clinical trials.
Collapse
|
97
|
Yoshioka K, Ito A, Arifuzzaman M, Yoshigai T, Fan F, Sato KI, Shimizu K, Kawabe Y, Kamihira M. Miniaturized skeletal muscle tissue fabrication for measuring contractile activity. J Biosci Bioeng 2020; 131:434-441. [PMID: 33358352 DOI: 10.1016/j.jbiosc.2020.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/13/2020] [Accepted: 11/29/2020] [Indexed: 12/17/2022]
Abstract
The contractile function of skeletal muscle is essential for maintaining the vital activity of life. Muscular diseases such as muscular dystrophy severely compromise the quality of life of patients and ultimately lead to death. There is therefore an urgent need to develop therapeutic agents for these diseases. In a previous study, we showed that three-dimensional skeletal muscle tissues fabricated using the magnetic force-based tissue engineering technique exhibited contractile activity, and that drug effects could be evaluated based on the contractile activity of the skeletal muscle tissues. However, the reported method requires a large number of cells and the tissue preparation procedure is complex. It is therefore necessary to improve the tissue preparation method. In this study, a miniature device made of polydimethylsiloxane was used to simplify the production of contracting skeletal muscle tissues applicable to high-throughput screening. The effects of model drugs on the contractile force generation of skeletal muscle tissues prepared from mouse C2C12 myoblast and human induced pluripotent stem cells were evaluated using the miniature muscle device. The results indicated that the muscle device system could provide a useful tool for drug screening.
Collapse
Affiliation(s)
- Kantaro Yoshioka
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akira Ito
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Md Arifuzzaman
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Taichi Yoshigai
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Fangming Fan
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kei-Ichiro Sato
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunori Shimizu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
98
|
Alabi OA, Silva AH, Rode MP, Pizzol CD, de Campos AM, Filippin-Monteiro FB, Bakare AA, Creczynski-Pasa TB. In vitro cytotoxicity of co-exposure to superparamagnetic iron oxide and solid lipid nanoparticles. Toxicol Ind Health 2020; 37:77-89. [PMID: 33308053 DOI: 10.1177/0748233720977383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Increased production and use of different types of nanoparticles (NPs) in the last decades has led to increased environmental release of these NPs with potential detrimental effects on both the environment and public health. Information is scarce in the literature on the cytotoxic effect of co-exposure to many NPs as this concern is relatively recent. Thus, in this study, we hypothesized scenarios of cell's co-exposure to two kinds of NPs, solid lipid nanoparticles (SLNs) and superparamagnetic iron oxide nanoparticles (SPIONs), to assess the potential cytotoxicity of exposure to NPs combination. Cytotoxicity of SPIONs, SLNs, and their 1:1 mixture (MIX) in six tumor and six non-tumor cell lines was investigated. The mechanisms underlining the induced cytotoxicity were studied through cell cycle analysis, detection of reactive oxygen species (ROS), and alterations in mitochondrial membrane potential (ΔΨM). Double staining with acridine orange and ethidium bromide was also used to confirm cell morphology alterations. The results showed that SPIONs induced low cytotoxicity compared to SLNs. However, the mixture of SPIONs and SLNs showed synergistic, antagonistic, and additive effects based on distinct tests such as viability assay, ROS generation, ΔΨM, and DNA damage, depending on the cell line. Apoptosis triggered by ROS and disturbances in ΔΨM are the most probable related mechanisms of action. As was postulated, there is possible cytotoxic interaction between the two kinds of NPs.
Collapse
Affiliation(s)
- Okunola A Alabi
- Department of Biology, Federal University of Technology, Akure, Ondo State, Nigeria.,Department of Pharmaceutical Sciences, 28117Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Adny H Silva
- Department of Biochemistry, 28117Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Michele P Rode
- Department of Pharmaceutical Sciences, 28117Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Carine Dal Pizzol
- Department of Pharmaceutical Sciences, 28117Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Angela Machado de Campos
- Department of Pharmaceutical Sciences, 28117Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Fabíola B Filippin-Monteiro
- Department of Clinical Analysis, 28117Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Adekunle A Bakare
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Tânia B Creczynski-Pasa
- Department of Pharmaceutical Sciences, 28117Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
99
|
Ganguly S, Margel S. Review: Remotely controlled magneto-regulation of therapeutics from magnetoelastic gel matrices. Biotechnol Adv 2020; 44:107611. [PMID: 32818552 DOI: 10.1016/j.biotechadv.2020.107611] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/14/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
|
100
|
Rashid Z, Shokri F, Abbasi A, Khoobi M, Zarnani AH. Surface modification and bioconjugation of anti-CD4 monoclonal antibody to magnetic nanoparticles as a highly efficient affinity adsorbent for positive selection of peripheral blood T CD4+ lymphocytes. Int J Biol Macromol 2020; 161:729-737. [PMID: 32497673 DOI: 10.1016/j.ijbiomac.2020.05.264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 01/29/2023]
Abstract
Magnetic activated cell sorting (MACS) is a straightforward and time-saving procedure for isolation of different healthy functional cells. The present study aimed for the developing of a new MACS-based platform for isolation of peripheral blood T CD4+ lymphocytes. For this goal, first: Fe3O4 magnetic nanoparticles (MNP) were prepared by co-precipitation of Fe (III) and Fe (II) ions and then coated by SiO2 shell, followed by the grafting of N-(phosphonomethyl) iminodiacetic acid (PMIDA) on the surface of fabricated MNP, Fe3O4@SiO2@PMIDA were formed. These MNP were further tested for their ability to bind CD4 T lymphocytes. Through conjugation of the anti-CD4 monoclonal antibody on the surface of Fe3O4@SiO2@PMIDA MNP. The newly developed immunomagnetic particles efficiently isolated T CD4+ lymphocytes from whole blood with high purity Therefore, our MNP afford an efficient tool for the cell separation process and further present the dramatic potential to be applied to other areas of biomedical application.
Collapse
Affiliation(s)
- Zahra Rashid
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Abbasi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mehdi Khoobi
- Department of Pharmaceutical Biomaterials, Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran; Immunology Research Center (IRC), Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|