51
|
Guo Y, Yuan T, Xiao Z, Tang P, Xiao Y, Fan Y, Zhang X. Hydrogels of collagen/chondroitin sulfate/hyaluronan interpenetrating polymer network for cartilage tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2267-2279. [PMID: 22639153 DOI: 10.1007/s10856-012-4684-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/14/2012] [Indexed: 06/01/2023]
Abstract
The network structure of a three-dimensional hydrogel scaffold dominates its performance such as mechanical strength, mass transport capacity, degradation rate and subsequent cellular behavior. The hydrogels scaffolds with interpenetrating polymeric network (IPN) structure have an advantage over the individual component gels and could simulate partly the structure of native extracellular matrix of cartilage tissue. In this study, to develop perfect cartilage tissue engineering scaffolds, IPN hydrogels of collagen/chondroitin sulfate/hyaluronan were prepared via two simultaneous processes of collagen self-assembly and cross linking polymerization of chondroitin sulfate-methacrylate (CSMA) and hyaluronic acid-methacrylate. The degradation rate, swelling performance and compressive modulus of IPN hydrogels could be adjusted by varying the degree of methacrylation of CSMA. The results of proliferation and fluorescence staining of rabbit articular chondrocytes in vitro culture demonstrated that the IPN hydrogels possessed good cytocompatibility. Furthermore, the IPN hydrogels could upregulate cartilage-specific gene expression and promote the chondrocytes secreting glycosaminoglycan and collagen II. These results suggested that IPN hydrogels might serve as promising hydrogel scaffolds for cartilage tissue engineering.
Collapse
Affiliation(s)
- Yan Guo
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, 610064, China
| | | | | | | | | | | | | |
Collapse
|
52
|
Schwarz S, Koerber L, Elsaesser AF, Goldberg-Bockhorn E, Seitz AM, Dürselen L, Ignatius A, Walther P, Breiter R, Rotter N. Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications. Tissue Eng Part A 2012; 18:2195-209. [PMID: 22690787 DOI: 10.1089/ten.tea.2011.0705] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Damage of cartilage structures in the head and neck region as well as in orthopedic sites are frequently caused by trauma, tumor resection, or congenital defects. Despite a high demand in many clinical fields, until today, no adequate cartilage replacement matrix is available for these fields of application. Materials that are clinically applied for joint cartilage repair still need optimization due to difficult intraoperative handling and risk of early mechanical damage. We have developed and applied a novel chemical process to completely decellularize and sterilize human and porcine cartilage tissues (meniscus cartilage and nasal septum) to generate a new type of bioimplant matrix. To characterize this matrix and to determine the effect of the decellularization process, the content of denatured collagen (w(D)) and the content of glycosaminoglycans (GAGs) (w(G)) were determined. Possible cytotoxic effects and cellular compatibility of the matrix in vitro have been examined by seeding processed cartilage biomatrices with human primary chondrocytes as well as murine fibroblasts (L929). Vitality and state of metabolism of cells were measured using MTS assays. Both cell types adhered to scaffold surfaces and proliferated. No areas of growth inhibition or cytotoxic effects were detected. New synthesis of cartilage-specific extracellular matrix was observed. By histological staining, electron microscopy, and μCT analysis, an increase of matrix porosity, complete cell elimination, and high GAG removal were demonstrated. Being from natural-origin, processed xenogenic and allogeneic cartilage biomatrices are highly versatile with regard to shape, size, and biomechanics, making them promising candidates for various biomedical applications.
Collapse
Affiliation(s)
- Silke Schwarz
- Department of Otorhinolaryngology, Ulm University Medical Center, Ulm, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
|
54
|
|
55
|
Emans PJ, Jansen EJP, van Iersel D, Welting TJM, Woodfield TBF, Bulstra SK, Riesle J, van Rhijn LW, Kuijer R. Tissue-engineered constructs: the effect of scaffold architecture in osteochondral repair. J Tissue Eng Regen Med 2012; 7:751-6. [PMID: 22438217 DOI: 10.1002/term.1477] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/17/2011] [Accepted: 01/17/2012] [Indexed: 11/08/2022]
Abstract
Cartilage has a poor regenerative capacity. Tissue-engineering approaches using porous scaffolds seeded with chondrocytes may improve cartilage repair. The aim of this study was to examine the effect of pore size and pore interconnectivity on cartilage repair in osteochondral defects treated with different scaffolds seeded with allogenic chondrocytes. Scaffolds consisting of 55 wt% poly(ethylene oxide terephthalate) and 45 wt% poly(butylene terephthalate) (PEOT/PBT) with different pore sizes and interconnectivities were made, using a compression moulding (CM) and a three-dimensional fibre (3DF) deposition technique. In these scaffolds, allogenic chondrocytes were seeded, cultured for 3 weeks and implanted in osteochondral defects of skeletally mature rabbits. At 3 weeks no difference in cartilage repair between an empty osteochondral defect, CM or 3DF scaffolds was found. Three months post-implantation, cartilage repair was significantly improved after implantation of a 3DF scaffold compared to a CM scaffold. Although not significant, Mankin scores for osteoarthritis (OA) indicated less OA in the 3DF scaffold group compared to empty defects and CM-treated defects. It is concluded that scaffold pore size and pore interconnectivity influences osteochondral repair and a decreased pore interconnectivity seems to impair osteochondral repair.
Collapse
Affiliation(s)
- P J Emans
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Nebelung S, Gavenis K, Lüring C, Zhou B, Mueller-Rath R, Stoffel M, Tingart M, Rath B. Simultaneous anabolic and catabolic responses of human chondrocytes seeded in collagen hydrogels to long-term continuous dynamic compression. Ann Anat 2012; 194:351-8. [PMID: 22429869 DOI: 10.1016/j.aanat.2011.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 12/17/2011] [Accepted: 12/27/2011] [Indexed: 11/26/2022]
Abstract
Cartilage repair strategies increasingly focus on the in vitro development of cartilaginous tissues that mimic the biological and mechanical properties of native articular cartilage. However, current approaches still face problems in the reproducible and standardized generation of cartilaginous tissues that are both biomechanically adequate for joint integration and biochemically rich in extracellular matrix constituents. In this regard, the present study investigated whether long-term continuous compressive loading would enhance the mechanical and biological properties of such tissues. Human chondrocytes were harvested from 8 knee joints (n=8) of patients having undergone total knee replacement and seeded into a collagen type I hydrogel at low density of 2×10(5)cells/ml gel. Cell-seeded hydrogels were cut to disks and subjected to mechanical stimulation for 28 days with 10% continuous cyclic compressive loading at a frequency of 0.3 Hz. Histological and histomorphometric evaluation revealed long-term mechanical stimulation to significantly increase collagen type II and proteoglycan staining homogenously throughout the samples as compared to unstimulated controls. Gene expression analyses revealed a significant increase in collagen type II, collagen type I and MMP-13 gene expression under stimulation conditions, while aggrecan gene expression was decreased and no significant changes were observed in the collagen type II/collagen type I mRNA ratio. Mechanical propertywise, the average value of elastic stiffness increased in the stimulated samples. In conclusion, long-term mechanical preconditioning of human chondrocytes seeded in collagen type I hydrogels considerably improves biological and biomechanical properties of the constructs, corroborating the clinical potential of mechanical stimulation in matrix-associated autologous chondrocyte transplantation (MACT) procedures.
Collapse
Affiliation(s)
- Sven Nebelung
- Department of Orthopaedic Surgery, Aachen University Hospital, Germany
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Berendsen AD, Vonk LA, Zandieh-Doulabi B, Everts V, Bank RA. Contraction-induced Mmp13 and -14 expression by goat articular chondrocytes in collagen type I but not type II gels. J Tissue Eng Regen Med 2011; 6:721-30. [PMID: 21948715 DOI: 10.1002/term.477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 01/22/2011] [Accepted: 07/05/2011] [Indexed: 11/11/2022]
Abstract
Collagen gels are promising scaffolds to prepare an implant for cartilage repair but several parameters, such as collagen concentration and composition as well as cell density, should be carefully considered, as they are reported to affect phenotypic aspects of chondrocytes. In this study we investigated whether the presence of collagen type I or II in gel lattices affects matrix contraction and relative gene expression levels of matrix proteins, MMPs and the subsequent degradation of collagen by goat articular chondrocytes. Only floating collagen I gels, and not those attached or composed of type II collagen, contracted during a culture period of 12 days. This coincided with an upregulation of both Mmp13 and -14 gene expression, whereas Mmp1 expression was not affected. The release of hydroxyproline in the culture medium, indicating matrix degradation, was increased five-fold in contracted collagen I gels compared to collagen II gels without contraction. Furthermore, blocking contraction of collagen I gels by cytochalasin B inhibited Mmp13 and -14 expression and the release of hydroxyproline. The expression of cartilage-specific ECM genes was decreased in contracted collagen I gels, with increased numbers of cells with an elongated morphology, suggesting that matrix contraction induces dedifferentiation of chondrocytes into fibroblast-like cells. We conclude that the collagen composition of the gels affects matrix contraction by articular chondrocytes and that matrix contraction induces an increased Mmp13 and -14 expression as well as matrix degradation.
Collapse
Affiliation(s)
- Agnes D Berendsen
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Amsterdam, The Netherlands
| | - Lucienne A Vonk
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Amsterdam, The Netherlands
| | | | - Vincent Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Amsterdam, The Netherlands
| | - Ruud A Bank
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Amsterdam, The Netherlands.,Stem Cell and Tissue Engineering Research Group, Medical Biology Section, University Medical Centre Groningen, The Netherlands
| |
Collapse
|
58
|
Mimura T, Imai S, Okumura N, Li L, Nishizawa K, Araki S, Ueba H, Kubo M, Mori K, Matsusue Y. Spatiotemporal control of proliferation and differentiation of bone marrow-derived mesenchymal stem cells recruited using collagen hydrogel for repair of articular cartilage defects. J Biomed Mater Res B Appl Biomater 2011; 98:360-8. [PMID: 21648062 DOI: 10.1002/jbm.b.31859] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 01/03/2011] [Accepted: 03/13/2011] [Indexed: 11/10/2022]
Abstract
Articular cartilage has a poor healing capacity, and cartilage regeneration is not always warranted to achieve healing. On the other hand, collagen scaffolds have been shown to support regeneration of articular cartilage defects in animal models, whereas bone morphogenetic protein-2 (BMP-2) is known to cause chondrogenic differentiation of marrow-derived mesenchymal stem cells (MSCs). The purpose of this study was to evaluate the effectiveness of intra-articular administration of BMP-2 into bone marrow-derived MSCs recruited to defects using original collagen hydrogel in rabbits at various time points. Full-thickness defects were created in both knees, then collagen hydrogels were transplanted, and BMP-2 was supplied for 1-week periods, as follows. BMP-2 was administered immediately after the operation for 1 week (BMP0-1 group), and BMP-2 was administered between weeks 1 and 2 after the operation (BMP1-2 group). BMP2 was administered between weeks 2 and 3 (BMP2-3 group). Specimens were then obtained, and bromodeoxyuridine (BrdU)-positive cells were enumerated and histologic grading was also performed. In addition, the gene expression analysis was performed using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) assays. Enumeration of BrdU-positive cells showed a significant increase in the BMP0-1 group compared with the other groups. Similarly, histologic scores in the BMP0-1 group were superior for up to 8 weeks. Finally, RT-PCR findings revealed that immediate BMP-2 administration enhanced chondrogenic differentiation.
Collapse
Affiliation(s)
- Tomohiro Mimura
- Department of Orthopedic Surgery, Shiga University of Medical Science, Tsukinowa-Cho, Seta, Otsu, Shiga, 520-2192, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Yuan T, Zhang L, Feng L, Fan H, Zhang X. Chondrogenic differentiation and immunological properties of mesenchymal stem cells in collagen type I hydrogel. Biotechnol Prog 2011; 26:1749-58. [PMID: 20865774 DOI: 10.1002/btpr.484] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Allogeneic mesenchymal stem cells (MSCs) are regarded as promising seed cells for engineering cartilage. However, few researches have covered the immune properties of seeded MSCs. Collagen has been considered as good scaffold, whether it has inherent chondrogenic inducibility for MSCs is still in debate. In this study, engineering grafts are constructed by neonatal rabbit MSCs and collagen Type I hydrogel. After periods of culture, the appearance of chondroid tissue in the grafts and the cartilage matrix-specific genes expressions of seeded cells prove the inducibility of collagen hydrogel, even if the growth factors are absence. With the differentiation, immunological properties of MSCs are changing. The expressions of main histocompatibility complex (MHC) molecules increase and the ability to inhibit the proliferation of activated lymphocytes may be declined. But to a large extent, it keeps the low stimulating to allogeneic lymphocytes and the small absolute value of MHCs. The changes are adverse for avoiding inflammation and rejection. Therefore, suitable scaffold and engineering strategies should be selected. For the grafts based on Collagen I hydrogel and MSCs, a longer culture period might not be necessary. To maintain the immune regulation, a higher initial MSCs density in engineering grafts may be more meaningful.
Collapse
Affiliation(s)
- Tun Yuan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | | | | | | | | |
Collapse
|
60
|
Wakitani S, Okabe T, Horibe S, Mitsuoka T, Saito M, Koyama T, Nawata M, Tensho K, Kato H, Uematsu K, Kuroda R, Kurosaka M, Yoshiya S, Hattori K, Ohgushi H. Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. J Tissue Eng Regen Med 2011; 5:146-50. [PMID: 20603892 DOI: 10.1002/term.299] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Among autologous somatic stem cells, bone marrow-derived mesenchymal stem cells (BMSCs) are the most widely used worldwide to repair not only mesenchymal tissues (bone, cartilage) but also many other kinds of tissues, including heart, skin, and liver. Autologous BMSCs are thought to be safe because of the absence of immunological reaction and disease transmission. However, it is possible that they will form tumours during long-term follow-up. In 1988, we transplanted autologous BMSCs to repair articular cartilage, which was the first such trial ever reported. Subsequently we performed this procedure in about 40 patients. Demonstration that neither partial infections nor tumours appeared in these patients provided strong evidence for the safety of autologous BMSC transplantation. Thus, in this study we checked these patients for tumour development and infections. Between January 1998 and November 2008, 41 patients received 45 transplantations. We checked their records until their last visit. We telephoned or mailed the patients who had not visited the clinics recently to establish whether there were any abnormalities in the operated joints. Neither tumours nor infections were observed between 5 and 137 (mean 75) months of follow-up. Autologous BMSC transplantation is a safe procedure and will be widely used around the world.
Collapse
Affiliation(s)
- Shigeyuki Wakitani
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Hermida-Gómez T, Fuentes-Boquete I, Gimeno-Longas MJ, Muiños-López E, Díaz-Prado S, de Toro FJ, Blanco FJ. Bone Marrow Cells Immunomagnetically Selected For CD271+ Antigen PromoteIn Vitrothe Repair of Articular Cartilage Defects. Tissue Eng Part A 2011; 17:1169-79. [DOI: 10.1089/ten.tea.2010.0346] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Tamara Hermida-Gómez
- Osteoarticular and Aging Research Laboratory, Biomedical Research Center, INIBIC-Hospital Universitario A Coruña, A Coruña, Spain
- Cathedra BIOIBERICA of Cell Therapy, University of A Coruña, A Coruña, Spain
- CIBER-BBN, Centro de Investigación Biomédica, CH Universitario A Coruña, A Coruña, Spain
| | - Isaac Fuentes-Boquete
- Cathedra BIOIBERICA of Cell Therapy, University of A Coruña, A Coruña, Spain
- CIBER-BBN, Centro de Investigación Biomédica, CH Universitario A Coruña, A Coruña, Spain
- Department of Medicine, University of A Coruña, A Coruña, Spain
| | - Maria José Gimeno-Longas
- Osteoarticular and Aging Research Laboratory, Biomedical Research Center, INIBIC-Hospital Universitario A Coruña, A Coruña, Spain
- Cathedra BIOIBERICA of Cell Therapy, University of A Coruña, A Coruña, Spain
| | - Emma Muiños-López
- Osteoarticular and Aging Research Laboratory, Biomedical Research Center, INIBIC-Hospital Universitario A Coruña, A Coruña, Spain
- Cathedra BIOIBERICA of Cell Therapy, University of A Coruña, A Coruña, Spain
- CIBER-BBN, Centro de Investigación Biomédica, CH Universitario A Coruña, A Coruña, Spain
| | - Silvia Díaz-Prado
- Cathedra BIOIBERICA of Cell Therapy, University of A Coruña, A Coruña, Spain
- CIBER-BBN, Centro de Investigación Biomédica, CH Universitario A Coruña, A Coruña, Spain
- Department of Medicine, University of A Coruña, A Coruña, Spain
| | - Franscisco Javier de Toro
- Cathedra BIOIBERICA of Cell Therapy, University of A Coruña, A Coruña, Spain
- CIBER-BBN, Centro de Investigación Biomédica, CH Universitario A Coruña, A Coruña, Spain
- Department of Medicine, University of A Coruña, A Coruña, Spain
| | - Francisco Javier Blanco
- Osteoarticular and Aging Research Laboratory, Biomedical Research Center, INIBIC-Hospital Universitario A Coruña, A Coruña, Spain
- Cathedra BIOIBERICA of Cell Therapy, University of A Coruña, A Coruña, Spain
- CIBER-BBN, Centro de Investigación Biomédica, CH Universitario A Coruña, A Coruña, Spain
| |
Collapse
|
62
|
Balakrishnan B, Banerjee R. Biopolymer-Based Hydrogels for Cartilage Tissue Engineering. Chem Rev 2011; 111:4453-74. [DOI: 10.1021/cr100123h] [Citation(s) in RCA: 376] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Biji Balakrishnan
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Bombay, Mumbai-400076, Maharashtra, India
| | - R. Banerjee
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Bombay, Mumbai-400076, Maharashtra, India
| |
Collapse
|
63
|
Sun H, Liu W, Zhou G, Zhang W, Cui L, Cao Y. Tissue engineering of cartilage, tendon and bone. Front Med 2011; 5:61-9. [PMID: 21681676 DOI: 10.1007/s11684-011-0122-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 01/27/2011] [Indexed: 12/18/2022]
Abstract
Tissue engineering aims to produce a functional tissue replacement to repair defects. Tissue reconstruction is an essential step toward the clinical application of engineered tissues. Significant progress has recently been achieved in this field. In our laboratory, we focus on construction of cartilage, tendon and bone. The purpose of this review was to summarize the advances in the engineering of these three tissues, particularly focusing on tissue regeneration and defect repair in our laboratory. In cartilage engineering, articular cartilage was reconstructed and defects were repaired in animal models. More sophisticated tissues, such as cartilage in the ear and trachea, were reconstructed both in vitro and in vivo with specific shapes and sizes. Engineered tendon was generated in vitro and in vivo in many animal models with tenocytes or dermal fibroblasts in combination with appropriate mechanical loading. Cranial and limb bone defects were also successfully regenerated and repaired in large animals. Based on sophisticated animal studies, several clinical trials of engineered bone have been launched with promising preliminary results, displaying the high potential for clinical application.
Collapse
Affiliation(s)
- Hengyun Sun
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, 200011, China
| | | | | | | | | | | |
Collapse
|
64
|
Díaz-Prado S, Muiños-López E, Hermida-Gómez T, Cicione C, Rendal-Vázquez ME, Fuentes-Boquete I, de Toro FJ, Blanco FJ. Human amniotic membrane as an alternative source of stem cells for regenerative medicine. Differentiation 2011; 81:162-71. [PMID: 21339039 DOI: 10.1016/j.diff.2011.01.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/28/2010] [Accepted: 01/11/2011] [Indexed: 12/18/2022]
Abstract
The human amniotic membrane (HAM) is a highly abundant and readily available tissue. This amniotic tissue has considerable advantageous characteristics to be considered as an attractive material in the field of regenerative medicine. It has low immunogenicity, anti-inflammatory properties and their cells can be isolated without the sacrifice of human embryos. Since it is discarded post-partum it may be useful for regenerative medicine and cell therapy. Amniotic membranes have already been used extensively as biologic dressings in ophthalmic, abdominal and plastic surgery. HAM contains two cell types, from different embryological origins, which display some characteristic properties of stem cells. Human amnion epithelial cells (hAECs) are derived from the embryonic ectoderm, while human amnion mesenchymal stromal cells (hAMSCs) are derived from the embryonic mesoderm. Both populations have similar immunophenotype and multipotential for in vitro differentiation into the major mesodermal lineages, however they differ in cell yield. Therefore, HAM has been proposed as a good candidate to be used in cell therapy or regenerative medicine to treat damaged or diseased tissues.
Collapse
Affiliation(s)
- Silvia Díaz-Prado
- Department of Medicine, INIBIC-University of A Coruña, Spain; CIBER-BBN-Cellular Therapy Area, Spain
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Zurita M, Otero L, Aguayo C, Bonilla C, Ferreira E, Parajón A, Vaquero J. Cell therapy for spinal cord repair: optimization of biologic scaffolds for survival and neural differentiation of human bone marrow stromal cells. Cytotherapy 2011; 12:522-37. [PMID: 20465485 DOI: 10.3109/14653241003615164] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND AIMS The suppression of cell apoptosis using a biodegradable scaffold to replace the missing or altered extracellular matrix (ECM) could increase the survival of transplanted cells and thus increase the effectiveness of cell therapy. METHODS We studied the best conditions for the proliferation and differentiation of human bone marrow stromal cells (hBMSC) when cultured on different biologic scaffolds derived from fibrin and blood plasma, and analyzed the best concentrations of fibrinogen, thrombin and calcium chloride for favoring cell survival. The induction of neural differentiation of hBMSC was done by adding to these scaffolds different growth factors, such as nerve growth factor (NGF), brain-derived-neurotrophic factor (BDNF) and retinoic acid (RA), at concentrations of 100 ng/mL (NGF and BDNF) and 1 micro/mL (RA), over 7 days. RESULTS Although both types of scaffold allowed survival and neural differentiation of hBMSC, the results showed a clear superiority of platelet-rich plasma (PRP) scaffolds, mainly after BDNF administration, allowing most of the hBMSC to survive and differentiate into a neural phenotype. CONCLUSIONS Given that clinical trials for spinal cord injury using hBMSC are starting, these findings may have important clinical applications.
Collapse
Affiliation(s)
- Mercedes Zurita
- Neuroscience Research Unit of Surgical Research Service, Hospital Puerta de Hierro-Majadahonda, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
66
|
Solchaga LA, Penick KJ, Welter JF. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells: tips and tricks. Methods Mol Biol 2011; 698:253-78. [PMID: 21431525 PMCID: PMC3106977 DOI: 10.1007/978-1-60761-999-4_20] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It is well known that adult cartilage lacks the ability to repair itself; this makes articular cartilage a very attractive target for tissue engineering. The majority of articular cartilage repair models attempt to deliver or recruit reparative cells to the site of injury. A number of efforts are directed to the characterization of progenitor cells and the understanding of the mechanisms involved in their chondrogenic differentiation. Our laboratory has focused on cartilage repair using mesenchymal stem cells and studied their differentiation into cartilage. Mesenchymal stem cells are attractive candidates for cartilage repair due to their osteogenic and chondrogenic potential, ease of harvest, and ease of expansion in culture. However, the need for chondrogenic differentiation is superposed on other technical issues associated with cartilage repair; this adds a level of complexity over using mature chondrocytes. This chapter will focus on the methods involved in the isolation and expansion of human mesenchymal stem cells, their differentiation along the chondrogenic lineage, and the qualitative and quantitative assessment of chondrogenic differentiation.
Collapse
Affiliation(s)
- Luis A Solchaga
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| | | | | |
Collapse
|
67
|
Becerra J, Andrades JA, Guerado E, Zamora-Navas P, López-Puertas JM, Reddi AH. Articular cartilage: structure and regeneration. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:617-27. [PMID: 20836752 DOI: 10.1089/ten.teb.2010.0191] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Articular cartilage (AC) has no or very low ability of self-repair, and untreated lesions may lead to the development of osteoarthritis. One method that has been proven to result in long-term repair or isolated lesions is autologous chondrocyte transplantation. However, first generation of these cells' implantation has limitations, and introducing new effective cell sources can improve cartilage repair. AC provides a resilient and compliant articulating surface to the bones in diarthrodial joints. It protects the joint by distributing loads applied to it, so preventing potentially damaging stress concentrations on the bone. At the same time it provides a low-friction-bearing surface to enable free movement of the joint. AC may be considered as a visco- or poro-elastic fiber-composite material. Fibrils of predominantly type II collagen provide tensile reinforcing to a highly hydrated proteoglycan gel. The tissue typically comprises 70% water and it is the structuring and retention of this water by the proteoglycans and collagen that is largely responsible for the remarkable ability of the tissue to support compressive loads.
Collapse
Affiliation(s)
- José Becerra
- Laboratory of Bioengineering and Tissue Regeneration (LABRET-UMA), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Málaga, Spain
| | | | | | | | | | | |
Collapse
|
68
|
Relation of low-intensity pulsed ultrasound to the cell density of scaffold-free cartilage in a high-density static semi-open culture system. J Orthop Sci 2010; 15:816-24. [PMID: 21116901 DOI: 10.1007/s00776-010-1544-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 08/10/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND A scaffold-free cartilage construct, analogous to those found during embryonic precartilage condensation, has received much attention as a novel modality for tissue-engineered cartilage. In the present study, we developed an uncomplicated culture system by which scaffold-free cartilage-like tissues are produced using cell-cell interactions. With this system, we attempted to prevent dedifferentiation and reverse the phenotypic modulations by adjusting the cell density. We investigated whether low-intensity pulsed ultrasound (LIPUS) enhances matrix synthesis of the scaffold-free cartilage construct. METHODS Rat articular chondrocytes multiplied in monolayers were seeded onto the synthetic porous membrane at stepwise cell densities (i.e., 1.0, 2.0, and 4.0 × 10(7) cells/cm(2)) to allow formation of a scaffold-free cartilage construct via cell-cell interaction. The cartilage constructs were then stimulated by LIPUS for 20 min/day. To investigate the effect of LIPUS stimulation on matrix synthesis, expression of mRNA for cartilage matrix molecules was quantified by a real-time reverse transcription-polymerase chain reaction. Synthesis of type II collagen, type I collagen, and proteoglycan was also assessed histologically. RESULTS Only the chondrocytes cultured at high cell densities in the 2.0 × 10(7)cells/cm(2) group became concentrated and formed a plate-like construct similar to native articular cartilage by macroscopic and histological assessments. Statistical analysis on the matrix gene expression demonstrated that the levels of type II collagen and aggrecan mRNA of the 2.0 × 10(7)cells/cm(2) group were significantly higher than with the other two cell-density groups. Interestingly, the LIPUS application led to a statistically significant enhancement of aggrecan gene expression only in the 2.0 × 10(7) cells/cm(2) group. CONCLUSIONS The current study presents a semi-open static culture system that facilitates production of the scaffold-free constructs from monolayer-cultured chondrocytes. It suggests that the LIPUS application enhances matrix production in the construct, and its combination with the scaffold-free construct might become a feasible tool for production of implantable constructs of better quality.
Collapse
|
69
|
Xie J, Han Z, Naito M, Maeyama A, Kim SH, Kim YH, Matsuda T. Articular cartilage tissue engineering based on a mechano-active scaffold made of poly(L-lactide-co-epsilon-caprolactone): In vivo performance in adult rabbits. J Biomed Mater Res B Appl Biomater 2010; 94:80-8. [PMID: 20336738 DOI: 10.1002/jbm.b.31627] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Our previous studies showed that a mechano-active scaffold made of poly(L-lactide-co-epsilon-caprolactone) (PLCL) exhibited a high potential to realize the formation of a functional, engineered cartilage in vitro. This animal study therefore was designed to investigate the feasibility of repairing on osteochondral defect with the use of bone marrow-derived mesenchymal stem cells (BMSCs) incorporated with a PLCL scaffold. Rabbit BMSCs, isolated and subsequently cultured in monolayer, were seeded into a porous PLCL scaffold sponge following an implantation onto a full-thickness osteochondral defect (diameter of 4.5 mm, depth of 5 mm) that was artificially created on the medial femoral condyles at a high load-bearing site on a rabbit's knee joint. Time-dependent healing of the defect was evaluated by macroscopic, histological examinations at both 3- and 6-month-implantations, respectively. A PLCL sponge incorporated with BMSCs exhibited sufficient structural support, resulting in new osteochondral tissue regeneration: a physiologically well-integrated subchondral bone formation, a hyaline cartilage-like morphology containing chondrocytes surrounded by abundant cartilaginous matrices. In addition, quantitative biochemical assays also demonstrated high potential for the synthesis of sulfated glycosaminoglycan and collagen, both of which are biomolecules essential to extracelluar matrix in normal cartilage tissue. In contrast, defects filled with cell-free PLCL scaffold or left empty showed a very limited potential for regeneration. Our findings suggest that a composite of PLCL-based sponge scaffold and BMSCs promote the repair of osteochondral defects at high load-bearing sites in adult rabbits.
Collapse
Affiliation(s)
- Jun Xie
- Department of Orthopaedic Surgery, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jyonan-ku, Fukuoka 814-0180, Japan.
| | | | | | | | | | | | | |
Collapse
|
70
|
In-advance trans-medullary stimulation of bone marrow enhances spontaneous repair of full-thickness articular cartilage defects in rabbits. Cell Tissue Res 2010; 341:371-9. [DOI: 10.1007/s00441-010-1020-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 07/11/2010] [Indexed: 12/16/2022]
|
71
|
Pei M, Yan Z, Shoukry M, Boyce BM. Failure of xenoimplantation using porcine synovium-derived stem cell-based cartilage tissue constructs for the repair of rabbit osteochondral defects. J Orthop Res 2010; 28:1064-1070. [PMID: 20140938 DOI: 10.1002/jor.21096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 12/01/2009] [Indexed: 02/04/2023]
Abstract
The use of xenogeneic tissues offers many advantages with respect to availability, quality control, and timing of tissue harvest. Our previous study indicated that implantation of premature tissue constructs from allogeneic synovium-derived stem cells (SDSCs) facilitated cartilage tissue regeneration. The present study investigated the feasibility of xenoimplantation of SDSC-based premature tissue constructs for the repair of osteochondral defects. Porcine SDSCs were mixed with fibrin gel, seeded in polyglycolic acid (PGA) scaffolds, and cultured in a rotating bioreactor system supplemented for 1 month with growth factor cocktails. The engineered porcine premature tissues were implanted to repair surgically induced osteochondral defects in the medial femoral condyles of 12 rabbits. Three weeks after surgery, the xenoimplantation group exhibited a smooth, whitish surface while the untreated control remained empty. Surprisingly, 6 months after surgery, the xenoimplantation group displayed some tissue loss while the untreated control group was overgrown with fibrocartilage tissue. In the xenoimplantation group, chronic inflammation was observed in synovial tissue where porcine major histocompatibility complex (MHC) class II antigen positively stained in the engulfed foreign bodies. In addition, porcine source cells also migrated from the implantation site and may have been responsible for the observed loss of glycosaminoglycans (GAGs) underneath surrounding articular cartilage. The histological score was much worse in the xenoimplanted group than in the untreated control. Our study suggested that SDSC-based xenogeneic tissue constructs might cause delayed immune rejection. Xenotransplantation may not be an appropriate approach to repair osteochondral defects.
Collapse
Affiliation(s)
- Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, P.O. Box 9196, One Medical Center Drive, Morgantown, West Virginia 26506-9196, USA.
| | | | | | | |
Collapse
|
72
|
Ho STB, Hutmacher DW, Ekaputra AK, Hitendra D, Hui JH. The evaluation of a biphasic osteochondral implant coupled with an electrospun membrane in a large animal model. Tissue Eng Part A 2010; 16:1123-41. [PMID: 19863255 DOI: 10.1089/ten.tea.2009.0471] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Conventional clinical therapies are unable to resolve osteochondral defects adequately; hence, tissue engineering solutions are sought to address the challenge. A biphasic implant that was seeded with mesenchymal stem cells (MSCs) and coupled with an electrospun membrane was evaluated as an alternative. This dual phase construct comprised of a polycaprolactone (PCL) cartilage scaffold and a PCL-tricalcium phosphate osseous matrix. Autologous MSCs were seeded into the entire implant via fibrin and the construct was inserted into critically sized osteochondral defects located at the medial condyle and patellar groove of pigs. The defect was resurfaced with a PCL-collagen electrospun mesh, which served as a substitute for periosteal flap in preventing cell leakage. Controls without either implanted MSCs or resurfacing membrane were included. After 6 months, cartilaginous repair was observed with a low occurrence of fibrocartilage at the medial condyle. Osteochondral repair was promoted and host cartilage degeneration was arrested as shown by superior glycosaminoglycan maintenance. This positive morphological outcome was supported by a higher relative Young's modulus, which indicated functional cartilage restoration. Bone ingrowth and remodeling occurred in all groups, with a higher degree of mineralization in the experimental group. Tissue repair was compromised in the absence of the implanted cells or the resurfacing membrane. Moreover, healing was inferior at the patellar groove when compared with the medial condyle and this was attributed to the native biomechanical features.
Collapse
|
73
|
Kim M, Foo LF, Uggen C, Lyman S, Ryaby JT, Moynihan DP, Grande DA, Potter HG, Pleshko N. Evaluation of early osteochondral defect repair in a rabbit model utilizing fourier transform-infrared imaging spectroscopy, magnetic resonance imaging, and quantitative T2 mapping. Tissue Eng Part C Methods 2010; 16:355-64. [PMID: 19586313 PMCID: PMC2945312 DOI: 10.1089/ten.tec.2009.0020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 07/07/2009] [Indexed: 02/03/2023] Open
Abstract
CONTEXT Evaluation of the morphology and matrix composition of repair cartilage is a critical step toward understanding the natural history of cartilage repair and efficacy of potential therapeutics. In the current study, short-term articular cartilage repair (3 and 6 weeks) was evaluated in a rabbit osteochondral defect model treated with thrombin peptide (TP-508) using magnetic resonance imaging (MRI), quantitative T2 mapping, and Fourier transform-infrared imaging spectroscopy (FT-IRIS). METHODS Three-mm-diameter osteochondral defects were made in the rabbit trochlear groove and filled with either TP-508 plus poly-lactoglycolidic acid microspheres or poly-lactoglycolidic acid microspheres alone (placebo). Repair tissue and adjacent normal cartilage were evaluated at 3 and 6 weeks postdefect creation. Intact knees were evaluated by magnetic resonance imaging for repair morphology, and with quantitative T2 mapping to assess collagen orientation. Histological sections were evaluated by FT-IRIS for parameters that reflect collagen quantity and quality, as well as proteoglycan (PG) content. RESULTS AND CONCLUSION There was no significant difference in volume of repair tissue at either time point. At 6 weeks, placebo repair tissue demonstrated longer T2 values (p < 0.01) than TP-508 did. Although both placebo and TP-508 repair tissue demonstrated longer T2 values than adjacent normal cartilage did, the 6-week T2 values of the TP-508 specimens were closer to those of the adjacent normal cartilage than were the placebo values. FT-IRIS analysis demonstrated a significant increase in collagen content, integrity, and PG content of the TP-508 repair tissue from 3 to 6 weeks (p < or = 0.05). In addition, the collagen and PG content of the TP-508 samples were closer to normal cartilage at 3 weeks than were the placebo samples. Further, there was a significant inverse correlation between the T2 relaxation values and collagen orientation in the normal cartilage. However, there were no significant correlations between T2 relaxation values and any FT-IRIS parameter in the repair tissue. Together, the data demonstrate that MRI and FT-IRIS assessment of cartilage repair tissue provide molecular information that furthers understanding of the cartilage repair process.
Collapse
Affiliation(s)
- Minwook Kim
- Musculoskeletal Imaging & Spectroscopy Laboratory, Hospital for Special Surgery, New York, New York
| | - Li F. Foo
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
| | | | - Steven Lyman
- Outcomes Research, Hospital for Special Surgery, New York, New York
| | | | | | | | - Hollis G. Potter
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
| | - Nancy Pleshko
- Musculoskeletal Imaging & Spectroscopy Laboratory, Hospital for Special Surgery, New York, New York
| |
Collapse
|
74
|
Kim MK, Choi SW, Kim SR, Oh IS, Won MH. Autologous chondrocyte implantation in the knee using fibrin. Knee Surg Sports Traumatol Arthrosc 2010; 18:528-34. [PMID: 19763540 DOI: 10.1007/s00167-009-0905-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 08/15/2009] [Indexed: 01/02/2023]
Abstract
Autologous chondrocyte implantation (ACI) is widely used to treat symptomatic articular cartilage injury of the knee. Fibrin ACI is a new tissue-engineering technique for the treatment of full-thickness articular cartilage defects, in which autologous chondrocytes are inserted into a three-dimensional scaffold provided by fibrin gel. The objective of this study is to document and compare mean changes in overall clinical scores at both baseline and follow-up. Fibrin ACI was used to treat deep cartilage defects of the femoral condyle in 30 patients. There were 24 men and 6 women with a median age of 35 years (range 15-55) and with a mean defect size of 5.8 cm(2) (range 2.3-12). Clinical and functional knee evaluations were performed using different scoring systems, MRI was performed 24 months postoperatively, and arthroscopy was performed 12 months postoperatively. All patients achieved clinical and functional status improvements following surgery (P < 0.01). The mean scores of the Henderson classification (MRI evaluation) significantly improved from 14.4 to 7 (P = 0.001), and no graft-associated complications were noted. Arthroscopic assessments performed 12 months postoperatively produced nearly normal (grade II) International Cartilage Repair Society scores in 8 of the 10 study patients. Fibrin ACI offers the advantages of technical simplicity, minimal invasiveness, a short surgery time, and easier access to difficult sites than classical ACI. Based on the findings of this clinical pilot study, we conclude that fibrin ACI offers a reliable means of treating articular cartilage defects of the knee.
Collapse
Affiliation(s)
- Myung Ku Kim
- Department of Orthopaedic Surgery, Inha University Hospital, Incheon, Korea
| | | | | | | | | |
Collapse
|
75
|
Construction of tissue-engineered cartilage using human placenta-derived stem cells. SCIENCE CHINA-LIFE SCIENCES 2010; 53:207-14. [DOI: 10.1007/s11427-010-0016-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 06/28/2009] [Indexed: 01/06/2023]
|
76
|
Williams GM, Chan EF, Temple-Wong MM, Bae WC, Masuda K, Bugbee WD, Sah RL. Shape, loading, and motion in the bioengineering design, fabrication, and testing of personalized synovial joints. J Biomech 2010; 43:156-65. [PMID: 19815214 PMCID: PMC2813363 DOI: 10.1016/j.jbiomech.2009.09.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
Abstract
With continued development and improvement of tissue engineering therapies for small articular lesions, increased attention is being focused on the challenge of engineering partial or whole synovial joints. Joint-scale constructs could have applications in the treatment of large areas of articular damage or in biological arthroplasty of severely degenerate joints. This review considers the roles of shape, loading and motion in synovial joint mechanobiology and their incorporation into the design, fabrication, and testing of engineered partial or whole joints. Incidence of degeneration, degree of impairment, and efficacy of current treatments are critical factors in choosing a target for joint bioengineering. The form and function of native joints may guide the design of engineered joint-scale constructs with respect to size, shape, and maturity. Fabrication challenges for joint-scale engineering include controlling chemo-mechano-biological microenvironments to promote the development and growth of multiple tissues with integrated interfaces or lubricated surfaces into anatomical shapes, and developing joint-scale bioreactors which nurture and stimulate the tissue with loading and motion. Finally, evaluation of load-bearing and tribological properties can range from tissue to joint scale and can focus on biological structure at present or after adaptation.
Collapse
Affiliation(s)
- Gregory M. Williams
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Elaine F. Chan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | - Won C. Bae
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Koichi Masuda
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - William D. Bugbee
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, CA, USA
- Division of Orthopaedic Surgery, Scripps Clinic, La Jolla, CA, USA
| | - Robert L. Sah
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
77
|
Adkisson H, Milliman C, Zhang X, Mauch K, Maziarz R, Streeter P. Immune evasion by neocartilage-derived chondrocytes: Implications for biologic repair of joint articular cartilage. Stem Cell Res 2010; 4:57-68. [DOI: 10.1016/j.scr.2009.09.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 08/28/2009] [Accepted: 09/18/2009] [Indexed: 10/20/2022] Open
|
78
|
Tan SL, Sulaiman S, Pingguan-Murphy B, Selvaratnam L, Tai CC, Kamarul T. Human amnion as a novel cell delivery vehicle for chondrogenic mesenchymal stem cells. Cell Tissue Bank 2009; 12:59-70. [PMID: 19953328 DOI: 10.1007/s10561-009-9164-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 11/17/2009] [Indexed: 11/28/2022]
Abstract
This study investigates the feasibility of processed human amnion (HAM) as a substrate for chondrogenic differentiation of mesenchymal stem cells (MSCs). HAM preparations processed by air drying (AD) and freeze drying (FD) underwent histological examination and MSC seeding in chondrogenic medium for 15 days. Monolayer cultures were used as control for chondrogenic differentiation and HAMs without cell seeding were used as negative control. Qualitative observations were made using scanning electron microscopy analysis and quantitative analyses were based on the sulfated glycosaminoglycans (GAG) assays performed on day 1 and day 15. Histological examination of HAM substrates before seeding revealed a smooth surface in AD substrates, while the FD substrates exhibited a porous surface. Cell attachment to AD and FD substrates on day 15 was qualitatively comparable. GAG were significantly highly expressed in cells seeded on FD HAM substrates. This study indicates that processed HAM is a potentially valuable material as a cell-carrier for MSC differentiation.
Collapse
Affiliation(s)
- Sik-Loo Tan
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | | | | | |
Collapse
|
79
|
Jin RL, Park SR, Choi BH, Min BH. Scaffold-Free Cartilage Fabrication System Using Passaged Porcine Chondrocytes and Basic Fibroblast Growth Factor. Tissue Eng Part A 2009; 15:1887-95. [DOI: 10.1089/ten.tea.2008.0349] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ri Long Jin
- Department of Orthopaedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - So Ra Park
- Department of Physiology, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Byung Hyune Choi
- Division of Biomedical and Bioengineering Sciences, Inha University College of Medicine, Incheon, Republic of Korea
| | - Byoung-Hyun Min
- Department of Orthopaedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea
- Departmant of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
- Cell Theraphy Center, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
80
|
Yan J, Qi N, Zhang Q. Rabbit Articular Chondrocytes Seeded on Collagen-Chitosan-GAG Scaffold for Cartilage Tissue Engineering In Vivo. ACTA ACUST UNITED AC 2009; 35:333-44. [PMID: 17701481 DOI: 10.1080/10731190701460200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this study, we prepared a tri-copolymer porous matrices by natural polymer, collagen (Col), Chitosan (Chi) and Chondroitin (CS). Rabbit articular chondrocytes were isolated from the shoulder articular joints of a rabbit, seeded in Col-Chi-CS scaffold, and implanted subcutaneously in the dorsum of athymic nude mice to tissue engineer articular cartilage in vivo. In vitro studies show that Chondrocytes adhered to the scaffold, where they proliferated and secreted extracellular matrices with time, filling the space within the scaffold. The results of hematoxylin and eosin staining scanning electron microscopy revealed that most of the chondrocytes maintained their typically rounded morphology. After 28 days of culture within Col-Chi-CS scaffold in vitro, the results of histological staining showed forming of cartilage-specific morphological appearance and structural characteristics such as lacunae. Subcutaneous implantation studies in nude mice demonstrated that a homogeneous cartilaginous tissue, which was similar to those of natural cartilage, formed when chondrocytes were seeded in Col-Chi-CS matrix after implant 12 weeks. The tri-copolymer matrix could therefore have potential applications as a three-dimensional scaffold for cartilage tissue engineering.
Collapse
Affiliation(s)
- Jihong Yan
- Institute of Biotechnology, Shang Hai Jiao Tong University, Shanghai, PR China.
| | | | | |
Collapse
|
81
|
Dattena M, Pilichi S, Rocca S, Mara L, Casu S, Masala G, Manunta L, Manunta A, Passino ES, Pool RR, Cappai P. Sheep embryonic stem-like cells transplanted in full-thickness cartilage defects. J Tissue Eng Regen Med 2009; 3:175-87. [PMID: 19226519 DOI: 10.1002/term.151] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Articular cartilage regeneration is limited. Embryonic stem (ES) cell lines provide a source of totipotent cells for regenerating cartilage. Anatomical, biomechanical, physiological and immunological similarities between humans and sheep make this animal an optimal experimental model. This study examines the repair process of articular cartilage in sheep after transplantation of ES-like cells isolated from inner cell masses (ICMs) derived from in vitro-produced (IVP) vitrified embryos. Thirty-five ES-like colonies from 40 IVP embryos, positive for stage-specific embryonic antigens (SSEAs), were pooled in groups of two or three, embedded in fibrin glue and transplanted into osteochondral defects in the medial femoral condyles of 14 ewes. Empty defect (ED) and cell-free glue (G) in the controlateral stifle joint served as controls. The Y gene sequence was used to detect ES-like cells in the repair tissue by in situ hybridization (ISH). Two ewes were euthanized at 1 month post-operatively, three each at 2 and 6 months and four at 12 months. Repairing tissue was examined by biomechanical, macroscopic, histological, immunohistochemical (collagen type II) and ISH assays. Scores of all treatments showed no statistical significant differences among treatment groups at a given time period, although ES-like grafts showed a tendency toward a better healing process. ISH was positive in all ES-like specimens. This study demonstrates that ES-like cells transplanted into cartilage defects stimulate the repair process to promote better organization and tissue bulk. However, the small number of cells applied and the short interval between surgery and euthanasia might have negatively affected the results.
Collapse
Affiliation(s)
- Maria Dattena
- AGRIS Sardegna, Laboratory of Biotechnology of Animal Reproduction, Department of Research in Animal Production, Sassari, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Clinical application of scaffolds for cartilage tissue engineering. Knee Surg Sports Traumatol Arthrosc 2009; 17:561-77. [PMID: 19020862 PMCID: PMC2688024 DOI: 10.1007/s00167-008-0663-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 10/24/2008] [Indexed: 02/06/2023]
Abstract
The purpose of this paper is to review the basic science and clinical literature on scaffolds clinically available for the treatment of articular cartilage injuries. The use of tissue-engineered grafts based on scaffolds seems to be as effective as conventional ACI clinically. However, there is limited evidence that scaffold techniques result in homogeneous distribution of cells. Similarly, few studies exist on the maintenance of the chondrocyte phenotype in scaffolds. Both of which would be potential advantages over the first generation ACI. The mean clinical score in all of the clinical literature on scaffold techniques significantly improved compared with preoperative values. More than 80% of patients had an excellent or good outcome. None of the short- or mid-term clinical and histological results of these tissue-engineering techniques with scaffolds were reported to be better than conventional ACI. However, some studies suggest that these methods may reduce surgical time, morbidity, and risks of periosteal hypertrophy and post-operative adhesions. Based on the available literature, we were not able to rank the scaffolds available for clinical use. Firm recommendations on which cartilage repair procedure is to be preferred is currently not known on the basis of these studies. Randomized clinical trials and longer follow-up periods are needed for more widespread information regarding the clinical effectiveness of scaffold-based, tissue-engineered cartilage repair.
Collapse
|
83
|
Vinatier C, Gauthier O, Masson M, Malard O, Moreau A, Fellah BH, Bilban M, Spaethe R, Daculsi G, Guicheux J. Nasal chondrocytes and fibrin sealant for cartilage tissue engineering. J Biomed Mater Res A 2009; 89:176-85. [PMID: 18431767 DOI: 10.1002/jbm.a.31988] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hybrid constructs associating a biodegradable matrix and autologous chondrocytes hold promise for the treatment of articular cartilage defects. In this context, our objective was to investigate the potential use of nasal chondrocytes associated with a fibrin sealant for the treatment of articular cartilage defects. The phenotype of primary nasal chondrocytes (NC) from human (HNC) and rabbit (RNC) origin were characterized by RT-PCR. The ability of constructs associating fibrin sealant and NC to form a cartilaginous tissue in vivo was investigated, firstly in a subcutaneous site in nude mice and secondly in an articular cartilage defect in rabbit. HNC express type II collagen and aggrecan, the two major hallmarks of a chondrocytic phenotype. Furthermore, when injected subcutaneously into nude mice within a fibrin sealant, these chondrocytes were able to form a cartilage-like tissue. Our data indicate that RNC also express type II collagen and aggrecan and maintained their phenotype in three-dimensional culture within a fibrin sealant. Moreover, treatment of rabbit articular cartilage defects with autologous RNC embedded in a fibrin sealant led to the formation of a hyalin-like repair tissue. The use of fibrin sealant containing hybrid autologous NC therefore appears as a promising approach for cell-based therapy of articular cartilage.
Collapse
Affiliation(s)
- C Vinatier
- INSERM, U 791, Laboratory for Osteo-articular and Dental Tissue Engineering, University of Nantes, 1 place Alexis Ricordeau, Nantes, 44042, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Revell CM, Athanasiou KA. Success rates and immunologic responses of autogenic, allogenic, and xenogenic treatments to repair articular cartilage defects. TISSUE ENGINEERING. PART B, REVIEWS 2009; 15:1-15. [PMID: 19063664 PMCID: PMC2760376 DOI: 10.1089/ten.teb.2008.0189] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Accepted: 10/01/2008] [Indexed: 01/09/2023]
Abstract
This review examines current approaches available for articular cartilage repair, not only in terms of their regeneration potential, but also as a function of immunologic response. Autogenic repair techniques, including osteochondral plug transplantation, chondrocyte implantation, and microfracture, are the most widely accepted clinical treatment options due to the lack of immunogenic reactions, but only moderate graft success rates have been reported. Although suspended allogenic chondrocytes are shown to evoke an immune response upon implantation, allogenic osteochondral plugs and tissue-engineered grafts using allogenic chondrocytes exhibit a tolerable immunogenic response. Additionally, these repair techniques produce neotissue with success rates approaching those of currently available autogenic repair techniques, while simultaneously obviating their major hindrance of donor tissue scarcity. To date, limited research has been performed with xenogenic tissue, although several studies demonstrate the potential for its long-term success. This article focuses on the various treatment options for cartilage repair and their associated success rates and immunologic responses.
Collapse
|
85
|
Gomez-Camarillo MA, Almonte-Becerril M, Vasquez Tort M, Tapia-Ramirez J, Kouri Flores JB. Chondrocyte proliferation in a new culture system. Cell Prolif 2009; 42:207-18. [PMID: 19236380 DOI: 10.1111/j.1365-2184.2008.00580.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE This study has aimed to study different culture systems that might stimulate an increase in cell proliferation of normal and osteoarthritis chondrocytes from articular cartilage in rat model. MATERIAL AND METHODS Three culture systems using chondrocytes embedded in alginate beads were tested: chondrocytes cultured in Dulbecco's modified Eagle's medium (DMEM) as control, a co-culture system consisting of a monolayer of de-differentiated chondrocytes as a source of mitotic factors, and an enriched medium containing culture medium obtained from a monolayer of chondrocytes and DMEM. Normal and osteoarthritis chondrocytes were stained with 5-carboxyfluorescein diacetate succinimidyl ester and were cultured in each of the three systems. After 5 days of culture cell, proliferation was detected by flow cytometry. Chondrocyte phenotype was confirmed by collagen type II and MMP-3 expression. To determine possible molecules released into the medium by the cultured chondrocyte monolayer and which would probably be involved in cell proliferation, a study of mRNA and expression of transforming growth factor-beta1 (TGF-beta1), fibroblastic growth factor-2 (FGF-2), epidermal growth factor (EGF), platelet derived growth factor-A (PDGF-A) and insulin-like growth factor-1 (IGF-1) proteins was conducted. RESULTS AND CONCLUSIONS Chondrocytes in the co-culture system or in enriched medium showed an increase in proliferation; only when osteoarthritis chondrocytes were cultured in enriched medium would they display a statistically significant increase in their proliferation rate and in their viability. When chondrocytes from the monolayer were analysed, differential mRNA expression of TGF-beta1 and IGF-1 was found during all passages, which suggests that these two growth factors might be involved in chondrocyte proliferation.
Collapse
Affiliation(s)
- M A Gomez-Camarillo
- Experimental Pathology Deparment, Center for Research and Advance Studies, Mexico City, Mexico
| | | | | | | | | |
Collapse
|
86
|
Kim MH, Kino-oka M, Morinaga Y, Sawada Y, Kawase M, Yagi K, Taya M. Morphological regulation and aggregate formation of rabbit chondrocytes on dendrimer-immobilized surfaces with d-glucose display. J Biosci Bioeng 2009; 107:196-205. [DOI: 10.1016/j.jbiosc.2008.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 10/07/2008] [Indexed: 10/20/2022]
|
87
|
Bayat M, Kamali F, Dadpay M. Effect of Low-Level Infrared Laser Therapy on Large Surgical Osteochondral Defect in Rabbit: A Histological Study. Photomed Laser Surg 2009; 27:25-30. [DOI: 10.1089/pho.2008.2253] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Mohammad Bayat
- Cellular and Molecular Biology Research Center, and Anatomy Department, Medical Faculty, Shahid Beheshti University (M.C.), Tehran, Iran
| | - Fahimeh Kamali
- Physiotherapy Department, Rehabilitation Faculty, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoomeh Dadpay
- Pathology Department, Medical Faculty, Army University of Medicine, Tehran, Iran
| |
Collapse
|
88
|
Miyata S, Tateishi T, Ushida T. Influence of cartilaginous matrix accumulation on viscoelastic response of chondrocyte/agarose constructs under dynamic compressive and shear loading. J Biomech Eng 2009; 130:051016. [PMID: 19045523 DOI: 10.1115/1.2970059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A method has been developed to restore cartilage defects by culturing autologous chondrocytes to create a three dimensional tissue and then implanting the cultured tissue. In this kind of approach, it is important to characterize the dynamic mechanical behavior of the regenerated cartilaginous tissue, because these tissues need to bear various dynamic loadings in daily life. The objectives of this study were to evaluate in detail the dynamic viscoelastic responses of chondrocyte-seeded agarose gel cultures in compression and torsion (shear) and to determine the relationships between these mechanical responses and biochemical composition. The results showed that both the dynamic compressive and shear stiffness of the cultured constructs increased during culture. The relative energy dissipation in dynamic compression decreased, whereas that in dynamic shear increased during culture. Furthermore, correlation analyses showed that the sulfated glycosaminoglycan (sGAG) content of the cultured construct showed significant correlations with the dynamic modulus in both compression and shear situations. On the other hand, the loss tangent in dynamic compression, which represents the relative energy dissipation capability of the constructs, showed a low correlation with the sGAG content, whereas this capability in shear exhibited moderate correlation. In conclusion, we explored the dynamic viscoelasticity of the tissue-engineered cartilage in dynamic compression and shear, and determined correlations between viscoelasticity and biochemical composition.
Collapse
Affiliation(s)
- Shogo Miyata
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| | | | | |
Collapse
|
89
|
|
90
|
Seeding density modulates migration and morphology of rabbit chondrocytes cultured in collagen gels. Biotechnol Bioeng 2009; 102:294-302. [DOI: 10.1002/bit.22029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
91
|
Katakai D, Imura M, Ando W, Tateishi K, Yoshikawa H, Nakamura N, Fujie H. Compressive properties of cartilage-like tissues repaired in vivo with scaffold-free, tissue engineered constructs. Clin Biomech (Bristol, Avon) 2009; 24:110-6. [PMID: 18990475 DOI: 10.1016/j.clinbiomech.2008.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 07/15/2008] [Accepted: 07/15/2008] [Indexed: 02/07/2023]
Abstract
BACKGROUND It is crucial to develop an effective methodology for restoring adequate compressive properties to osteoarthritic cartilage. We have developed a scaffold-free tissue engineered construct cultured from synovium-derived mesenchymal stem cells. However, the compressive properties of cartilage-like tissues repaired with the construct have not been fully determined. METHODS Synovium-derived mesenchymal stem cells were cultured in Dulbecco's modified Eagle's medium to produce the tissue engineered construct. Implantation of the construct into cylindrically-shaped partial defects in femoral cartilage in an experimental porcine model was performed. Six months after implantation, cartilage-like tissues repaired with the construct were subjected to static and cyclic compression tests using a micro-unconfined compression test apparatus developed in our laboratory. FINDINGS The developed apparatus was validated in preliminary examinations. The repaired tissues exhibited rate-dependent viscoelastic properties; the compressive modulus was slightly lower than that of normal cartilage at a rate of 4 microm/s, while no difference was observed at a rate of 100 microm/s. In contrast, the repaired tissue without the construct exhibited rate-independent, non-viscoelastic properties. In the cyclic compression test, however, the compressive strain was significantly larger in both repaired tissues as compared with normal cartilage. INTERPRETATION Although the quasi-static compressive properties of the repaired tissue with the construct, indicating rate-dependent and viscoelastic behaviors, are comparable to normal cartilage, the cyclic compressive strain increases more rapidly than in normal cartilage. It is suggested that the differences between the tissues and normal cartilage are attributable to the increased permeability of the extracellular matrix.
Collapse
Affiliation(s)
- D Katakai
- Biomechanics Laboratory, Department of Mechanical Engineering, Kogakuin University, 2665-1 Nakanomachi, Hachioji, Tokyo 192-0015, Japan
| | | | | | | | | | | | | |
Collapse
|
92
|
Roy R, Boskey AL, Bonassar LJ. Non-enzymatic glycation of chondrocyte-seeded collagen gels for cartilage tissue engineering. J Orthop Res 2008; 26:1434-9. [PMID: 18473383 DOI: 10.1002/jor.20662] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Collagen glycated with ribose (250 mM) in solution (pre-glycation) and as a gel (post-glycation) was seeded with chondrocytes and the effects of glycation on chondrocyte matrix assembly in culture were determined. Pre-glycation enhanced GAG accumulation significantly over controls at both 2 and 4 weeks (p < 0.05), although at both time points there were no statistical differences in cell number between pre-glycated and control gels. The increased proteoglycan accumulation was shown to be in part due to significantly increased GAG retention by the pre-glycated constructs (p < 0.05). Total collagen content in these pre-glycated gels was also significantly higher than unglycated gels at 4 weeks (p < 0.05). With post-glycation of collagen gels, chondrocyte number and GAG accumulation were all significantly lower than controls (p < 0.05). Post-glycation also inhibited GAG retention by the constructs (p < 0.05). Given these results, pre-glycation may be an improved processing method for collagen gels for tissue engineering techniques.
Collapse
Affiliation(s)
- Rani Roy
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 218 Upson Hall, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
93
|
Gotterbarm T, Breusch SJ, Schneider U, Jung M. The minipig model for experimental chondral and osteochondral defect repair in tissue engineering: retrospective analysis of 180 defects. Lab Anim 2008; 42:71-82. [PMID: 18348768 DOI: 10.1258/la.2007.06029e] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Articular cartilage repair is still a challenge in orthopaedic surgery. Although many treatment options have been developed in the last decade, true regeneration of hyaline articular cartilage is yet to be accomplished. In vitro experiments are useful for evaluating cell-matrix interactions under controlled parameters. When introducing new treatment options into clinical routine, adequate animal models are capable of closing the gap between in vitro experiments and the clinical use in human beings. We developed an animal model in the Göttingen minipig (GMP) to evaluate the healing of osteochondral or full-thickness cartilage defects. The defects were located in the middle third of the medial portion of the patellofemoral joint at both distal femurs. Chondral defects were 6.3 mm, osteochondral defects either 5.4 or 6.3 mm in diameter and 8 or 10 mm deep. In both defects the endogenous repair response showed incomplete repair tissue formation up to 12 months postoperatively. Based on its limited capability for endogenous repair of chondral and osteochondral defects, the GMP is a useful model for critical assessment of new treatment strategies in articular cartilage tissue engineering.
Collapse
Affiliation(s)
- T Gotterbarm
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
94
|
Ramaswamy S, Gurkan I, Sharma B, Cascio B, Fishbein KW, Spencer RG. Assessment of tissue repair in full thickness chondral defects in the rabbit using magnetic resonance imaging transverse relaxation measurements. J Biomed Mater Res B Appl Biomater 2008; 86:375-80. [DOI: 10.1002/jbm.b.31030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
95
|
Kino-Oka M, Takezawa Y, Taya M. Quality control of cultured tissues requires tools for quantitative analyses of heterogeneous features developed in manufacturing process. Cell Tissue Bank 2008; 10:63-74. [DOI: 10.1007/s10561-008-9103-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Accepted: 06/23/2008] [Indexed: 10/21/2022]
|
96
|
Abstract
Managing articular cartilage injury continues to be a difficult challenge for the clinician. Although the short- and intermediate-term results of autologous chondrocyte implantation appear to be favorable, resources are being directed toward research to improve the technology. One promising area of investigation is the combination of cultured chondrocytes with scaffolds. Clinicians desire techniques that may be implanted easily, reduce surgical morbidity, do not require harvesting of other tissues, exhibit enhanced cell proliferation and maturation, have easier phenotype maintenance, and allow for efficient and complete integration with surrounding articular cartilage. The characteristics that make scaffolds optimal for clinical use are that they be biocompatible, biodegradable, permeable, reproducible, mechanically stable, noncytotoxic, and capable of serving as a temporary support for the cells while allowing for eventual replacement by matrix components synthesized by the implanted cells. Clinical experience is growing with three scaffold-based cartilage repair techniques, each using a different type of scaffold material: matrix-induced autologous chondrocyte implantation, a hyaluronic acid-based scaffold, and a composite polylactic/polyglycolic acid polymer fleece. Clinical results are encouraging. Future directions in scaffold-based cartilage repair include bioactive and spatially oriented scaffolds.
Collapse
|
97
|
Muller-Rath R, Gavénis K, Andereya S, Mumme T, Schmidt-Rohlfing B, Schneider U. A novel rat tail collagen type-I gel for the cultivation of human articular chondrocytes in low cell density. Int J Artif Organs 2008; 30:1057-67. [PMID: 18203067 DOI: 10.1177/039139880703001205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Collagen type-I matrix systems have gained growing importance as a cartilage repair device. However, most of the established matrix systems use collagen type-I of bovine origin seeded in high cell densities. Here we present a novel collagen type-I gel system made of rat tail collagen for the cultivation of human chondrocytes in low cell densities. Rat tail collagen type-I gel (CaReS, Arthro Kinetics, Esslingen, Germany) was seeded with human passage 2 chondrocytes in different cell densities to evaluate the optimal cell number. In vitro, the proliferation factor of low density cultures was more than threefold higher compared with high density cultures. After 6 weeks of in vitro cultivation, freshly prepared chondrocytes with an initial cell density of 2x10(5) cells/mL showed a proliferation factor of 33. A cell density of 2x10(5) cells/mL was chosen for in vitro and in vivo cultivation using the common nude mouse model as an in vivo system. Chondrocytes stayed viable as a Live/Dead fluorescence assay and TUNEL staining revealed. During in vitro cultivation, passage 0 cells partly dedifferentiated morphologically. In vivo, passage 0 cells maintained the chondrocyte phenotype and demonstrated an increased synthesis of collagen type-II protein and gene expression compared to passage 2 cells. Passage 2 cells did not redifferentiate in vivo. Cultivating a cell-seeded collagen gel of bovine origin as a control (AtelocollagenTM, Koken, Tokyo, Japan) did not lead to superior results with regard to cell morphology, col-II protein production and col-II gene expression. With the CaReS collagen gel system the best quality of repair tissue was obtained by seeding freshly isolated chondrocytes.
Collapse
Affiliation(s)
- R Muller-Rath
- Aachen University Hospital, Department of Orthopaedic Surgery, Aachen, Germany
| | | | | | | | | | | |
Collapse
|
98
|
Hattori K, Uematsu K, Tanikake Y, Habata T, Tanaka Y, Yajima H, Takakura Y. Spectrocolorimetric assessment of cartilage plugs after autologous osteochondral grafting: correlations between color indices and histological findings in a rabbit model. Arthritis Res Ther 2008; 9:R88. [PMID: 17825111 PMCID: PMC2212560 DOI: 10.1186/ar2287] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 08/20/2007] [Accepted: 09/10/2007] [Indexed: 11/10/2022] Open
Abstract
We investigated the use of a commercial spectrocolorimeter and the application of two color models (L* a* b* colorimetric system and spectral reflectance distribution) to describe and quantify cartilage plugs in a rabbit model of osteochondral autografting. Osteochondral plugs were removed and then replaced in their original positions in Japanese white rabbits. The rabbits were sacrificed at 4 or 12 weeks after the operation and cartilage samples were assessed using a spectrocolorimeter. The samples were retrospectively divided into two groups on the basis of the histological findings (group H: hyaline cartilage, successful; group F: fibrous tissue or fibrocartilage, failure) and investigated for possible significant differences in the spectrocolorimetric analyses between the two groups. Moreover, the relationships between the spectrocolorimetric indices and the Mankin histological score were examined. In the L* a* b* colorimetric system, the L* values were significantly lower in group H than in group F (P = 0.02), whereas the a* values were significantly higher in group H than in group F (P = 0.006). Regarding the spectral reflectance distribution, the spectral reflectance percentage 470 (SRP470) values, as a coincidence index for the spectral reflectance distribution (400 to 470 nm in wavelength) of the cartilage plugs with respect to intact cartilage, were 99.8 +/- 6.7% in group H and 119.8 +/- 10.6% in group F, and the difference between these values was significant (P = 0.005). Furthermore, the a* values were significantly correlated with the histological score (P = 0.004, r = -0.76). The SRP470 values were also significantly correlated with the histological score (P = 0.01, r = 0.67). Our findings demonstrate the ability of spectrocolorimetric measurements to predict the histological findings of cartilage plugs after autologous osteochondral grafting. In particular, the a* values and SRP470 values can be used to judge the surface condition of an osteochondral plug on the basis of objective data. Therefore, spectrocolorimetry may contribute to orthopedics, rheumatology and related research in arthritis, and arthroscopic use of this method may potentially be preferable for in vivo assessment.
Collapse
Affiliation(s)
- Koji Hattori
- Department of DAIWA HOUSE Indoor Environmental Medicine, Nara Medical University, Kashihara, Nara, Japan
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kota Uematsu
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Yohei Tanikake
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Takashi Habata
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Yasuhito Tanaka
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Hiroshi Yajima
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Yoshinori Takakura
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
99
|
Suzuki D, Takahashi M, Abe M, Sarukawa J, Tamura H, Tokura S, Kurahashi Y, Nagano A. Comparison of various mixtures of beta-chitin and chitosan as a scaffold for three-dimensional culture of rabbit chondrocytes. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:1307-15. [PMID: 17851736 DOI: 10.1007/s10856-007-3245-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 07/26/2007] [Indexed: 05/17/2023]
Abstract
With the use of a recently created chitosan neutral hydrogel, we have been able to create various mixtures of chitin and chitosan without changing their characteristics even at room temperature. The aim of this study was the initial comparison of various mixtures of beta-chitin and chitosan as a scaffold for rabbit chondrocyte culture. We created five types of sponges: pure beta-chitin, pure chitosan, 3:1, 1:1, and 1:3 beta-chitin-chitosan. The absorption efficiencies of chondrocytes in all five types of sponges were found to be around 98%. The mean concentrations of chondroitin sulfate were statistically different neither at week 2 nor at week 4 postculture between the types of sponges. The content of hydroxyproline in the beta-chitin sponge was significantly greater than in other sponges at week 4 postculture. From the histochemical and immunohistochemical findings, the cartilage-like layer in the chondrocytes-sponge composites of all five types of sponges was similar to hyaline cartilage. However, only immunohistochemical staining of type II collagen in the pure beta-chitin sponge was closer to normal rabbit cartilage than other types of sponges. The pure beta-chitin sponge was superior to other sponges concerning the content of extracellular matrices of collagen.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, 1-20-1, Handayama, Hamamatsu, Shizuoka 431-3192, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Nakajima M, Wakitani S, Harada Y, Tanigami A, Tomita N. In vivo mechanical condition plays an important role for appearance of cartilage tissue in ES cell transplanted joint. J Orthop Res 2008; 26:10-7. [PMID: 17676607 DOI: 10.1002/jor.20462] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The objective of this study was to evaluate the effects of the mechanical environment on the formation of cartilage tissue in transplanted embryonic stem (ES) cells. Full-thickness osteochondral defects were created on the patella groove of SD rats, and ES cells (CCE ES cells obtained from 129/Sv/Ev mice and Green ES FM260 ES cells obtained from 129SV [D3] - Tg [NCAG-EGFP] CZ-001-FM260Osb mice) were transplanted into the defects embedded in collagen gel. The animals were randomly divided into either the joint-free group (JF group) or the joint-immobilized group (JI group) for 3 weeks after a week postoperatively. The results showed that cartilage-like tissue formed in the defects of the JF group whereas large teratomatous masses developed in the defects of the JI group. Some parts of the cartilage-like tissue and the teratomatous masses were positively stained with immunostain for GFP when the Green ES FM260 ES cells were transplanted. It is suggested that the environment plays an important role for ES cells in the process of repairing cartilage tissue in vivo.
Collapse
Affiliation(s)
- Masaaki Nakajima
- International Innovation Center, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|