51
|
Segawa H, Onitsuka A, Furutani J, Kaneko I, Aranami F, Matsumoto N, Tomoe Y, Kuwahata M, Ito M, Matsumoto M, Li M, Amizuka N, Miyamoto KI. Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development. Am J Physiol Renal Physiol 2009; 297:F671-8. [PMID: 19570882 DOI: 10.1152/ajprenal.00156.2009] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare autosomal recessively inherited disorder, characterized by hypophosphatemia, short stature, rickets and/or osteomalacia, and secondary absorptive hypercalciuria. HHRH is caused by a defect in the sodium-dependent phosphate transporter (NaPi-IIc/Npt2c/NPT2c), which was thought to have only a minor role in renal phosphate (P(i)) reabsorption in adult mice. In fact, mice that are null for Npt2c (Npt2c(-/-)) show no evidence for renal phosphate wasting when maintained on a diet with a normal phosphate content. To obtain insights and the relative importance of Npt2a and Npt2c, we now studied Npt2a(-/-)Npt2c(+/+), Npt2a(+/-)Npt2c(-/-), and Npt2a(-/-)Npt2c(-/-) double-knockout (DKO). DKO mice exhibited severe hypophosphatemia, hypercalciuria, and rickets. These findings are different from those in Npt2a KO mice that show only a mild phosphate and bone phenotype that improve over time and from the findings in Npt2c KO mice that show no apparent abnormality in the regulation of phosphate homeostasis. Because of the nonredundant roles of Npt2a and Npt2c, DKO animals showed a more pronounced reduction in P(i) transport activity in the brush-border membrane of renal tubular cells than that in the mice with the single-gene ablations. A high-P(i) diet after weaning rescued plasma phosphate levels and the bone phenotype in DKO mice. Our findings thus showed in mice that Npt2a and Npt2c have independent roles in the regulation of plasma P(i) and bone mineralization.
Collapse
Affiliation(s)
- Hiroko Segawa
- Dept. of Molecular Nutrition Institution of Health Bioscience, The Univ. of Tokushima Graduate School Kuramoto-Cho 3, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Adventitia: the vital wall of conduit arteries. ACTA ACUST UNITED AC 2009; 3:166-83. [DOI: 10.1016/j.jash.2009.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 03/05/2009] [Accepted: 03/06/2009] [Indexed: 01/12/2023]
|
53
|
Abstract
The kidney is a key player in phosphate balance. Inappropriate renal phosphate transport may alter serum phosphate concentration and bone mineralization, and increase the risk of renal lithiasis or soft tissue calcifications. The recent identification of fibroblast growth factor 23 (FGF23) as a hormone regulating phosphate and calcitriol metabolism and of klotho has changed the understanding of phosphate homeostasis; and a bone-kidney axis has emerged. In this review, we present recent findings regarding the consequences of mutations affecting several human genes encoding renal phosphate transporters or proteins regulating phosphate transport activity. We also describe the role played by the FGF23-klotho axis in phosphate homeostasis and its involvement in the pathophysiology of phosphate disturbances in chronic kidney disease.
Collapse
|
54
|
Segawa H, Onitsuka A, Kuwahata M, Hanabusa E, Furutani J, Kaneko I, Tomoe Y, Aranami F, Matsumoto N, Ito M, Matsumoto M, Li M, Amizuka N, Miyamoto KI. Type IIc sodium-dependent phosphate transporter regulates calcium metabolism. J Am Soc Nephrol 2008; 20:104-13. [PMID: 19056871 DOI: 10.1681/asn.2008020177] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Primary renal inorganic phosphate (Pi) wasting leads to hypophosphatemia, which is associated with skeletal mineralization defects. In humans, mutations in the gene encoding the type IIc sodium-dependent phosphate transporter lead to hereditary hypophophatemic rickets with hypercalciuria, but whether Pi wasting directly causes the bone disorder is unknown. Here, we generated Npt2c-null mice to define the contribution of Npt2c to Pi homeostasis and to bone abnormalities. Homozygous mutants (Npt2c(-/-)) exhibited hypercalcemia, hypercalciuria, and elevated plasma 1,25-dihydroxyvitamin D(3) levels, but they did not develop hypophosphatemia, hyperphosphaturia, renal calcification, rickets, or osteomalacia. The increased levels of 1,25-dihydroxyvitamin D(3) in Npt2c(-/-) mice compared with age-matched Npt2c(+/+) mice may be the result of reduced catabolism, because we observed significantly reduced expression of renal 25-hydroxyvitamin D-24-hydroxylase mRNA but no change in 1alpha-hydroxylase mRNA levels. Enhanced intestinal absorption of calcium (Ca) contributed to the hypercalcemia and increased urinary Ca excretion. Furthermore, plasma levels of the phosphaturic protein fibroblast growth factor 23 were significantly decreased in Npt2c(-/-) mice. Sodium-dependent Pi co-transport at the renal brush border membrane, however, was not different among Npt2c(+/+), Npt2c(+/-), and Npt2c(-/-) mice. In summary, these data suggest that Npt2c maintains normal Ca metabolism, in part by modulating the vitamin D/fibroblast growth factor 23 axis.
Collapse
Affiliation(s)
- Hiroko Segawa
- Department of Molecular Nutrition, Institution of Health Bioscience, University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Iwaki T, Sandoval-Cooper MJ, Tenenhouse HS, Castellino FJ. A missense mutation in the sodium phosphate co-transporter Slc34a1 impairs phosphate homeostasis. J Am Soc Nephrol 2008; 19:1753-62. [PMID: 18550648 DOI: 10.1681/asn.2007121360] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The sodium phosphate co-transporters Npt2a and Npt2c play important roles in the regulation of phosphate homeostasis. Slc34a1, the gene encoding Npt2a, resides downstream of the gene encoding coagulation factor XII (f12) and was inadvertently modified while generating f12(-/-) mice. In this report, the renal consequences of this modification are described. The combined single allelic mutant Slc34a1m contains two point mutations in exon 13: A499V is located in intracellular loop 5, and V528M is located in transmembrane domain 11. In addition to the expected coagulopathy of the f12(-/-) phenotype, mice homozygous for the double allelic modification (f12(-/-)/slc34a1(m/m)) displayed hypophosphatemia, hypercalcemia, elevated levels of alkaline phosphatase, urolithiasis, and hydronephrosis. Strategic cross-breedings demonstrated that the kidney-related pathology was associated only with autosomal recessive transmission of the slc34a1(m) gene and was not influenced by the simultaneous inactivation of f12. Npt2a[V528M] could be properly expressed in opossum kidney cells, but Npt2a[A499V] could not. These results suggest that a single amino acid substitution in Npt2a can lead to improper translocation of the protein to the cell membrane, disturbance of phosphate homeostasis, and renal calcification. Whether point mutations in the SLC34A1 gene can lead to hypophosphatemia and nephrolithiasis in humans remains unknown.
Collapse
Affiliation(s)
- Takayuki Iwaki
- W.M. Keck Center for Transgene Research and the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | |
Collapse
|
56
|
Marengo SR, Romani AMP. Oxalate in renal stone disease: the terminal metabolite that just won't go away. ACTA ACUST UNITED AC 2008; 4:368-77. [PMID: 18523430 DOI: 10.1038/ncpneph0845] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 04/09/2008] [Indexed: 01/15/2023]
Abstract
The incidence of calcium oxalate nephrolithiasis in the US has been increasing throughout the past three decades. Biopsy studies show that both calcium oxalate nephrolithiasis and nephrocalcinosis probably occur by different mechanisms in different subsets of patients. Before more-effective medical therapies can be developed for these conditions, we must understand the mechanisms governing the transport and excretion of oxalate and the interactions of the ion in general and renal physiology. Blood oxalate derives from diet, degradation of ascorbate, and production by the liver and erythrocytes. In mammals, oxalate is a terminal metabolite that must be excreted or sequestered. The kidneys are the primary route of excretion and the site of oxalate's only known function. Oxalate stimulates the uptake of chloride, water, and sodium by the proximal tubule through the exchange of oxalate for sulfate or chloride via the solute carrier SLC26A6. Fecal excretion of oxalate is stimulated by hyperoxalemia in rodents, but no similar phenomenon has been observed in humans. Studies in which rats were treated with (14)C-oxalate have shown that less than 2% of a chronic oxalate load accumulates in the internal organs, plasma, and skeleton. These studies have also demonstrated that there is interindividual variability in the accumulation of oxalate, especially by the kidney. This Review summarizes the transport and function of oxalate in mammalian physiology and the ion's potential roles in nephrolithiasis and nephrocalcinosis.
Collapse
Affiliation(s)
- Susan R Marengo
- Department of Physiology and Biophysics at Case Western Reserve University School of Medicine, Cleveland, OH 44106-4970, USA.
| | | |
Collapse
|
57
|
Jungers P, Joly D, Blanchard A, Courbebaisse M, Knebelmann B, Daudon M. [Inherited monogenic kidney stone diseases: recent diagnostic and therapeutic advances]. Nephrol Ther 2008; 4:231-55. [PMID: 18499551 DOI: 10.1016/j.nephro.2007.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Accepted: 12/20/2007] [Indexed: 11/24/2022]
Abstract
Hereditary monogenic kidney stone diseases are rare diseases, since they account for nearly 2% of nephrolithiasis cases in adults and 10% in children. Most of them are severe, because they frequently are associated with nephrocalcinosis and lead to progressive impairment of renal function unless an early and appropriate etiologic treatment is instituted. Unfortunately, treatment is often lacking or started too late since they are often misdiagnosed or overlooked. The present review reports the genotypic and phenotypic characteristics of monogenic nephrolithiases, with special emphasis on the recent advances in the field of diagnosis and therapeutics. Monogenic stone diseases will be classified into three groups according to their mechanism: (1) inborn errors of the metabolism of oxalate (primary hyperoxalurias), uric acid (hereditary hyperuricemias) or other purines (2,8-dihydroxyadeninuria), which, in addition to stone formation, result in crystal deposition in the renal parenchyma; (2) congenital tubulopathies affecting the convoluted proximal tubule (such as Dent's disease, Lowe syndrome or hypophosphatemic rickets), the thick ascending limb of Henlé's loop (such as familial hypomagnesemia and Bartter's syndromes) or the distal past of the nephron (congenital distal tubular acidosis with or without hearing loss), which are frequently associated with nephrocalcinosis, phosphatic stones and extensive tubulointerstitial fibrosis; (3) cystinuria, an isolated defect in tubular reabsorption of cystine and dibasic aminoacids, which results only in the formation of stones but requires a cumbersome treatment. Analysis of stones appears of crucial value for the early diagnosis of these diseases, as in several of them the morphology and composition of stones is specific. In other cases, especially if nephrocalcinosis, phosphatic stones or proteinuria are present, the evaluation of blood and urine chemistry, especially with regard to calcium, phosphate and magnesium, is the key of diagnosis. Search for mutations is now increasingly performed in as much as genetic counselling is important for the detection of heterozygotes in autosomic recessive diseases and of carrier women in X-linked diseases. In conclusion, better awareness to the rare monogenic forms of nephrolithiasis and/or nephrocalcinosis should allow early diagnosis and treatment which are needed to prevent or substantially delay progression of end-stage renal disease. Analysis of every first stone both in children and in adults should never be neglected, in order to early detect unusual forms of nephrolithiasis requiring laboratory evaluation and deep etiologic treatment.
Collapse
Affiliation(s)
- Paul Jungers
- Service de Néphrologie, Hôpital Necker, AP-HP, Paris Cedex, France
| | | | | | | | | | | |
Collapse
|
58
|
Khan SR, Glenton PA. Calcium oxalate crystal deposition in kidneys of hypercalciuric mice with disrupted type IIa sodium-phosphate cotransporter. Am J Physiol Renal Physiol 2008; 294:F1109-15. [PMID: 18337544 DOI: 10.1152/ajprenal.00620.2007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The most common theories about the pathogenesis of idiopathic kidney stones consider precipitation of calcium phosphate (CaP) within the kidneys critical for the development of the disease. We decided to test the hypothesis that a CaP substrate can promote the deposition of calcium oxalate (CaOx) in the kidneys. Experimental hyperoxaluria was induced by feeding glyoxylate to male mice with knockout (KO) of NaP(i) IIa (Npt2a), a sodium-phosphate cotransporter. Npt2a KO mice are hypercalciuric and produce CaP deposits in their renal tubules. Experimental hyperoxaluria led to CaOx crystalluria in both the hypercalciuric KO mice and the normocalciuric control B6 mice. Only the KO mice produced CaOx crystal deposits in their kidneys, but the CaOx crystals deposited separately from the CaP deposits. Perhaps CaP deposits were not available for a CaOx overgrowth. These results also validate earlier animal model observations that showed that CaP substrate is not required for renal deposition of CaOx and that other factors, such as local supersaturation, may be involved. The absence of CaOx deposition in the B6 mice despite extreme hyperoxaluria also signifies the importance of both calcium and oxalate in the development of CaOx nephrolithiasis.
Collapse
Affiliation(s)
- Saeed R Khan
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA.
| | | |
Collapse
|
59
|
Miyamoto KI, Ito M, Tatsumi S, Kuwahata M, Segawa H. New aspect of renal phosphate reabsorption: the type IIc sodium-dependent phosphate transporter. Am J Nephrol 2007; 27:503-15. [PMID: 17687185 DOI: 10.1159/000107069] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 06/30/2007] [Indexed: 12/14/2022]
Abstract
Abnormalities of the inorganic phosphate (Pi) reabsorption in the kidney result in various metabolic disorders. Na+-dependent Pi (Na/Pi) transporters in the brush border membrane of proximal tubular cells mediate the rate-limiting step in the overall Pi-reabsorptive process. Type IIa and type IIc Na/Pi cotransporters are expressed in the apical membrane of proximal tubular cells and mediate Na/Pi cotransport; the extent of Pi reabsorption in the proximal tubules is determined largely by the abundance of the type IIa Na/Pi cotransporter. However, several studies suggest that the type IIc cotransporter in Pi reabsorption may also play a role in this process. For example, mutation of the type IIc Na/Pi cotransporter gene results in hereditary hypophosphatemic rickets with hypercalciuria, suggesting that the type IIc transporter plays an important role in renal Pi reabsorption in humans and may be a key determinant of the plasma Pi concentration. The type IIc Na/Pi transporter is regulated by parathyroid hormone, dietary Pi, and fibroblast growth factor 23, and studies suggest a differential regulation of the IIa and IIc transporters. Indeed, differences in temporal and/or spatial expression of the type IIa and type IIc Na/Pi transporters may be required for normal phosphate homeostasis and bone development. This review will briefly summarize the regulation of renal Pi transporters in various Pi-wasting disorders and highlight the role of a relatively new member of the Na/Pi cotransporter family: the type IIc Na/Pi transporter/SLC34A3.
Collapse
Affiliation(s)
- Ken-ichi Miyamoto
- Department of Molecular Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan.
| | | | | | | | | |
Collapse
|
60
|
Razzaque MS, Lanske B. The emerging role of the fibroblast growth factor-23-klotho axis in renal regulation of phosphate homeostasis. J Endocrinol 2007; 194:1-10. [PMID: 17592015 PMCID: PMC2900827 DOI: 10.1677/joe-07-0095] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Normal mineral ion homeostasis is tightly controlled by numerous endocrine factors that coordinately exert effects on intestine, kidney, and bone to maintain physiological balance. The importance of the fibroblast growth factor (FGF)-23-klotho axis in regulating mineral ion homeostasis has been proposed from recent research observations. Experimental studies suggest that 1) FGF23 is an important in vivo regulator of phosphate homeostasis, 2) FGF23 acts as a counter regulatory hormone to modulate the renal 1alpha-hydroxylase and sodium-phosphate cotransporter activities, 3) there is a trend of interrelationship between FGF23 and parathyroid hormone activities, 4) most of the FGF23 functions are conducted through the activation of FGF receptors, and 5) such receptor activation needs klotho, as a cofactor to generate downstream signaling events. These observations clearly suggest the emerging roles of the FGF23-klotho axis in maintaining mineral ion homeostasis. In this brief article, we will summarize how the FGF23-klotho axis might coordinately regulate normal mineral ion homeostasis, and how their abnormal regulation could severely disrupt such homeostasis to induce disease pathology.
Collapse
Affiliation(s)
- Mohammed S Razzaque
- Department of Developmental Biology, Harvard School of Dental Medicine, Research and Education Building, Room # 304, 190 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
61
|
Abstract
Inorganic phosphate (Pi) is fundamental to cellular metabolism and skeletal mineralization. Ingested Pi is absorbed by the small intestine, deposited in bone, and filtered by the kidney where it is reabsorbed and excreted in amounts determined by the specific needs of the organism. Two distinct renal Na-dependent Pi transporters, type IIa (NPT2a, SLC34A1) and type IIc (NPT2c, SLC34A3), are expressed in brush border membrane of proximal tubular cells where the bulk of filtered Pi is reabsorbed. Both are regulated by dietary Pi intake and parathyroid hormone. Regulation is achieved by changes in transporter protein abundance in the brush border membrane and requires the interaction of the transporter with scaffolding and signaling proteins. The demonstration of hypophosphatemia secondary to decreased renal Pi reabsorption in mice homozygous for the disrupted type IIa gene underscores its crucial role in the maintenance of Pi homeostasis. Moreover, the recent identification of mutations in the type IIc gene in patients with hereditary hypophosphatemic rickets with hypercalciuria attests to the importance of this transporter in Pi conservation and subsequent skeletal mineralization. Two novel Pi regulating genes, PHEX and FGF23, play a role in the pathophysiology of inherited and acquired hypophosphatemic skeletal disorders and studies are underway to define their mechanism of action on renal Pi handling in health and disease.
Collapse
|
62
|
Ozono K, Michigami T, Namba N, Nakajima S, Yamamoto T. Molecular bases of diseases characterized by hypophosphatemia and phosphaturia: new understanding. Clin Pediatr Endocrinol 2006; 15:129-35. [PMID: 24790333 PMCID: PMC4004864 DOI: 10.1297/cpe.15.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Accepted: 06/05/2006] [Indexed: 12/13/2022] Open
Abstract
Serum phosphate levels are regulated in both calcium-dependent and -independent fashions. Active vitamin D increases while PTH decreases serum phosphate levels in association with the elevation of serum calcium. On the other hand, a calcium-independent phosphaturic factor, historically called phosphatonin is believed to exert a physiological function based on findings in hereditary and tumor-induced diseases characterized by hypophosphatemia with normocalcemia. Among them, autosomal dominant hypophosphatemic rickets (ADHR) has contributed greatly to its elucidation because the gene responsible for ADHR encodes fibroblast growth factor 23 (FGF23) that has been found to have a phosphaturic effect. In addition, FGF23 has been proved to be involved in most cases of oncogenic osteomalacia and X-linked hypophosphatemic rickets that are also characterized by hypophosphatemia and normocalcemia. Moreover, familial tumoral calcinosis, which represents the metabolic mirror image of hypophosphatemic conditions, is caused by a loss-of-function mutation in the FGF23 gene in some patients. Very recently, hereditary hypophosphatemic rickets with hypercalciuria has been found to be caused by mutations in the SLC34A1 gene which encodes a type of sodium phosphate cotransporter. These findings may provide new strategies for treating patients with abnormal phosphate metabolism.
Collapse
Affiliation(s)
- Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshimi Michigami
- Department of Environmental Medicine, Osaka Medical Center and Institute for Maternal and Child Health, Osaka, Japan
| | - Noriyuki Namba
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan ; First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shigeo Nakajima
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | | |
Collapse
|
63
|
Correction of the mineralization defect in hyp mice treated with protease inhibitors CA074 and pepstatin. Bone 2006; 39:773-86. [PMID: 16762607 DOI: 10.1016/j.bone.2006.04.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 03/23/2006] [Accepted: 04/04/2006] [Indexed: 12/15/2022]
Abstract
Increased expression of several osteoblastic proteases and MEPE (a bone matrix protein) occurs in X-linked hypophosphatemic rickets (hyp). This is associated with an increased release of a protease-resistant MEPE peptide (ASARM peptide), a potent inhibitor of mineralization. Cathepsin B cleaves MEPE releasing ASARM peptide and hyp osteoblast/osteocyte cells hypersecrete cathepsin D, an activator of cathepsin B. Our aims were to determine whether cathepsin inhibitors correct the mineralization defect in vivo and whether hyp-bone ASARM peptide levels are reduced after protease treatment. Normal littermates and hyp mice (n = 6) were injected intraperitoneally once a day for 4 weeks with pepstatin, CAO74 or vehicle. Animals were then sacrificed and bones plus serum removed for comprehensive analysis. All hyp mice groups (treated and untreated) remained hypophosphatemic with serum 1,25 vitamin D3 inappropriately normal. Serum PTH was significantly elevated in all hyp mice groups relative to normal mice (P = 0.0017). Untreated hyp mice had six-fold elevated levels of serum alkaline-phosphatase and two-fold elevated levels of ASARM peptides relative to normal mice (P < 0.001). In contrast, serum alkaline phosphatase and serum ASARM peptides were significantly reduced (normalized) in hyp mice treated with CA074 or pepstatin. Serum FGF23 levels remained high in all hyp animal groups (P < 0.0001). Hyp mice treated with protease inhibitors showed dramatic reductions in unmineralized osteoid (femurs) compared to control hyp mice (Goldner staining). Also, hyp animals treated with protease inhibitors showed marked and significant improvements in growth plate width (42%), osteoid thickness (40%) and cortical area (40%) (P < 0.002). The mineralization apposition rate, bone formation rate and mineralization surface were normalized by protease-treatment. High-resolution pQCT mineral histomorphometry measurements and uCT also confirmed a marked mineralization improvement. Finally, the growth plate and cortical bone of hyp femurs contained a massive accumulation of osteoblast-derived ASARM peptide(s) that was reduced in hyp animals treated with CA074 or pepstatin. This study confirms in vivo administration of cathepsin inhibitors improves bone mineralization in hyp mice. This may be due to a protease inhibitor mediated decrease in proteolytic degradation of the extracellular matrix and a reduced release of ASARM peptides (potent mineralization inhibitors).
Collapse
|
64
|
Liang L, Chen J, Vittal R, Selvanayagam ZE, McAteer JA, Deng L, Tischfield J, Chin KV, Sahota A. Expression Profiling of Crystal-Induced Injury in Human Kidney Epithelial Cells. ACTA ACUST UNITED AC 2006; 103:p53-62. [PMID: 16374038 DOI: 10.1159/000090503] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Accepted: 09/25/2005] [Indexed: 11/19/2022]
Abstract
BACKGROUND Deposition of crystals within tubular lumens is a feature of many kidney stone diseases, including crystals of calcium oxalate monohydrate (COM) in primary hyperoxaluria and of 2,8-dihydroxyadenine (DHA) in adenine phosphoribosyltransferase deficiency. Crystals are injurious to renal epithelial cells, but the molecular bases of cell injury have not been well characterized. METHODS We used a cDNA microarray to identify the time-dependent changes in gene expression associated with the interaction of COM or DHA crystals with primary cultures of normal human kidney cortical epithelial cells. RESULTS We observed gene expression changes that were common to both crystal types, as well as a number of crystal-specific responses. A subset of genes known to be aberrantly expressed in kidney tissue from stone formers also showed an altered expression in COM- or DHA-treated normal human kidney cortical epithelial cells. CONCLUSIONS Our results show that cultured epithelial cells exposed to COM or DHA crystals demonstrate cellular responses that may be physiologically relevant, thus suggesting that this experimental system may be useful for elucidating the mechanisms of crystal-induced renal cell injury.
Collapse
Affiliation(s)
- Li Liang
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Prié D, Beck L, Silve C, Friedlander G. Hypophosphatemia and calcium nephrolithiasis. Nephron Clin Pract 2006; 98:e50-4. [PMID: 15499207 DOI: 10.1159/000080256] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our knowledge of phosphate balance under physiological and pathological situations has increased substantially during the last decade thanks to the molecular identification of three dissimilar families of sodium-phosphate cotransport systems, two of them almost exclusively expressed in epithelia whereas the third one has a ubiquitous expression. Intracellular proteins such as NHERF1 (sodium-proton exchanger regulatory factor 1) can interact with phosphate transporters through PDZ domains thus regulating the expression of the transporters at the membrane. Moreover, newly acknowledged paracrine/endocrine peptides, such as fibroblast growth factor 23 (FGF23), also affect the activity of phosphate transporters. Renal phosphate leak, related to invalidation (in the mouse) or to mutations (in humans) of the renal phosphate transporter NPT2a, leads to hypophosphatemia on the one hand, and to nephrolithiasis or bone demineralization on the other hand. Similar features are observed during invalidation of NHERF or in case of overproduction of FGF23. These observations highlight the importance of phosphate homeostasis in common diseases such as renal stones or bone loss.
Collapse
Affiliation(s)
- Dominique Prié
- Department of Physiology and Inserm U 426, Faculté de Médecine Xavier Bichat, Université Denis Diderot, Paris, France
| | | | | | | |
Collapse
|
66
|
Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, Frappier D, Burkett K, Carpenter TO, Anderson D, Garabedian M, Sermet I, Fujiwara TM, Morgan K, Tenenhouse HS, Juppner H. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet 2006; 78:179-92. [PMID: 16358214 PMCID: PMC1380228 DOI: 10.1086/499409] [Citation(s) in RCA: 297] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 11/07/2005] [Indexed: 12/22/2022] Open
Abstract
Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare disorder of autosomal recessive inheritance that was first described in a large consanguineous Bedouin kindred. HHRH is characterized by the presence of hypophosphatemia secondary to renal phosphate wasting, radiographic and/or histological evidence of rickets, limb deformities, muscle weakness, and bone pain. HHRH is distinct from other forms of hypophosphatemic rickets in that affected individuals present with hypercalciuria due to increased serum 1,25-dihydroxyvitamin D levels and increased intestinal calcium absorption. We performed a genomewide linkage scan combined with homozygosity mapping, using genomic DNA from a large consanguineous Bedouin kindred that included 10 patients who received the diagnosis of HHRH. The disease mapped to a 1.6-Mbp region on chromosome 9q34, which contains SLC34A3, the gene encoding the renal sodium-phosphate cotransporter NaP(i)-IIc. Nucleotide sequence analysis revealed a homozygous single-nucleotide deletion (c.228delC) in this candidate gene in all individuals affected by HHRH. This mutation is predicted to truncate the NaP(i)-IIc protein in the first membrane-spanning domain and thus likely results in a complete loss of function of this protein in individuals homozygous for c.228delC. In addition, compound heterozygous missense and deletion mutations were found in three additional unrelated HHRH kindreds, which supports the conclusion that this disease is caused by SLC34A3 mutations affecting both alleles. Individuals of the investigated kindreds who were heterozygous for a SLC34A3 mutation frequently showed hypercalciuria, often in association with mild hypophosphatemia and/or elevations in 1,25-dihydroxyvitamin D levels. We conclude that NaP(i)-IIc has a key role in the regulation of phosphate homeostasis.
Collapse
Affiliation(s)
- Clemens Bergwitz
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Vernon HJ, Osborne C, Tzortzaki EG, Yang M, Chen J, Rittling SR, Denhardt DT, Buyske S, Bledsoe SB, Evan AP, Fairbanks L, Simmonds HA, Tischfield JA, Sahota A. Aprt/Opn double knockout mice: osteopontin is a modifier of kidney stone disease severity. Kidney Int 2006; 68:938-47. [PMID: 16105024 DOI: 10.1111/j.1523-1755.2005.00487.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Osteopontin (OPN) is reported to have two distinct functions in kidney disease: Promotion of inflammation at sites of tissue injury, and inhibition of calcium oxalate monohydrate stone formation. However, many of the studies supporting these functions were carried out in animal models of acute renal injury or in cultured cells; thus, the role of OPN in chronic renal disease is not well defined. We examined the role of OPN in adenine phosphoribosyltransferase (Aprt) knockout mice, in which inflammation and formation of 2,8-dihydroxyadenine (DHA) kidney stones are prominent features, by generating Aprt/Opn double knockout mice. METHODS We characterized the phenotypes of six- and 12-week-old Aprt-/- Opn-/-, Aprt-/- Opn+/+, Aprt+/+ Opn-/-, and Aprt+/+ Opn+/+ male and female mice using biochemical, histologic, immunohistochemical, and in situ hybridization techniques. RESULTS At 6 weeks of age, there was no difference in phenotype between double knockout and Aprt knockout mice. At 12 weeks, there was increased adenine and DHA excretion, renal crystal deposition, and inflammation in double knockout versus Aprt knockout male mice. Double knockout and Aprt knockout female mice at 12 weeks had less pathology than their male counterparts, but kidneys from double knockout females showed more inflammation compared with Aprt knockout females; both genotypes had similar levels of DHA crystal deposition. CONCLUSION We conclude that (1) OPN is a major inhibitor of DHA crystal deposition and inflammation in male mice; and (2) OPN is a major modifier of the inflammatory response but not of crystal deposition in female mice. Thus, separate mechanisms appear responsible for the tissue changes seen in DKO males versus females.
Collapse
Affiliation(s)
- Hilary J Vernon
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854-8082, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Weinman EJ, Mohanlal V, Stoycheff N, Wang F, Steplock D, Shenolikar S, Cunningham R. Longitudinal study of urinary excretion of phosphate, calcium, and uric acid in mutant NHERF-1 null mice. Am J Physiol Renal Physiol 2005; 290:F838-43. [PMID: 16249272 DOI: 10.1152/ajprenal.00374.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
NHERF-1 binds numerous renal protein targets, including the proximal tubule transporters Na(+)/H(+) exchanger 3 (NHE3) and Na(+)-phosphate cotransporter 2a (Npt2a). Young NHERF-1(-/-) male mice display defective targeting of Npt2a to apical membranes in the renal proximal tubule and manifest hypophosphatemia and increased urinary excretion of phosphate. The present studies describe the changes in the urinary excretion of phosphate, calcium, uric acid, and sodium in male and female wild-type and NHERF-1 null mice over a time period from 12 to 54 wk of age. Young male and female NHERF-1(-/-) mice demonstrated increased urinary excretion of phosphate and urine phosphate/creatinine ratios. There was an age-related decline in the phosphate/creatinine ratio in mutant mice such that there were no differences between wild-type and NHERF-1(-/-) by 24 to 30 wk of age despite the continued presence of hypophosphatemia. Male and female NHERF-1 null mice also demonstrate increased urine calcium/creatinine and uric acid/creatinine ratios compared with wild-type controls. These studies indicate defects in the renal tubule transport of phosphate, calcium, and uric acid in NHERF-1(-/-) male and female mice that could account for the increased deposition of calcium in the papilla of null mice.
Collapse
Affiliation(s)
- Edward J Weinman
- Department of Medicine, University of Maryland School of Medicine, Baltimore 21202, USA.
| | | | | | | | | | | | | |
Collapse
|
69
|
Evan AP, Coe FL, Rittling SR, Bledsoe SM, Shao Y, Lingeman JE, Worcester EM. Apatite plaque particles in inner medulla of kidneys of calcium oxalate stone formers: osteopontin localization. Kidney Int 2005; 68:145-54. [PMID: 15954903 DOI: 10.1111/j.1523-1755.2005.00388.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND We have previously shown that interstitial plaque particles appear first in the basement membranes of thin loops of Henle and then in the interstitial space. However, it is not known if the plaque in the basement membrane of thin loops of Henle is of the same or different form than the interstitial plaque. Thus our purpose here is to detail the structure of the interstitial and membrane-bound plaque and explore the relationship of plaque apatite to osteopontin, a well-known crystal-associated urine protein. METHODS Deep papillary biopsy tissue was studied from all 15 calcium oxalate stone formers and four nonforming subjects that we previously reported on [Evan et al, J Clin Ivest, 2003]. Routine light and transmission electron microscopy (TEM) as well as light microscopy and TEM immunohistochemical localization of osteopontin antibody were performed on all 19 subjects. RESULTS In the basement membrane, plaque particles are individual and appear laminated with alternating light regions of crystal and electron-dense organic layers. In the interstitium, individual particles are not abundant but are instead aggregated to form regions of attached particles and in some regions what appears to be a fusion or syncytium in which crystal islands float in an organic sea. By light microscopy immunohistochemistry, osteopontin was localized to cells of the loops of Henle and collecting ducts as well as on sites of plaque. By immunoelectron microscopy, osteopontin immunogold label was found mainly on the surfaces of apatite crystal phase, at the junction of the crystal/organic layers. A similar immunogold labeling pattern was seen in the particles forming the syncytial islands of interstitial plaque. CONCLUSION If indeed we accept the hypothesis that apatite plaque may be an anchored site on which calcium oxalate stones form and grow, the present work makes clear that it is unlikely that the surface of plaque presented to the final urine will be apatite crystal per se. However, our findings clearly show osteopontin is one of the crystal-associated urine proteins involved in the formation of the organic layers of the plaque particles.
Collapse
Affiliation(s)
- Andrew P Evan
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46220, USA.
| | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
The type IIa Na/phosphate (Pi) cotransporter (Npt2a) is expressed in the brush border membrane (BBM) of renal proximal tubular cells where the bulk of filtered Pi is reabsorbed. Disruption of the Npt2a gene in mice elicits hypophosphatemia, renal Pi wasting, and an 80% decrease in renal BBM Na/Pi cotransport, and led to the demonstration that Npt2a is the target for hormonal and dietary regulation of renal Pi reabsorption. Regulation is achieved by changes in BBM abundance of Npt2a protein and requires the interaction of Npt2a with various scaffolding and regulatory proteins. Molecular studies in patients with renal Pi wasting resulted in the identification of novel regulators of Pi homeostasis: fibroblast growth factor-23 (FGF-23) and a phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX). In mouse models, increased FGF-23 production or loss of Phex function causes hypophosphatemia and decreased renal Pi reabsorption, secondary to decreased BBM Npt2a protein abundance. Thus, Npt2a plays a major role in the maintenance of Pi homeostasis in both health and disease.
Collapse
Affiliation(s)
- Harriet S Tenenhouse
- Department of Pediatrics, McGill University, Montreal Children's Hospital Research Institute, Montreal, Quebec, H3Z 2Z3 Canada.
| |
Collapse
|
71
|
Gambaro G, Vezzoli G, Casari G, Rampoldi L, D'Angelo A, Borghi L. Genetics of hypercalciuria and calcium nephrolithiasis: from the rare monogenic to the common polygenic forms. Am J Kidney Dis 2005; 44:963-86. [PMID: 15558518 DOI: 10.1053/j.ajkd.2004.06.030] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Idiopathic calcium nephrolithiasis is a multifactorial disease with a pathogenesis that involves a complex interaction of environmental and individual factors. This review discusses what is known about monogenic renal calcium stone-related disorders, provides an update on genetic research in calcium nephrolithiasis and such intermediate phenotypes as idiopathic hypercalciuria, discusses the problems that these conditions pose to clinicians and geneticists interested in their pathogenesis, and proposes some method tools potentially useful in this research frame of reference.
Collapse
Affiliation(s)
- Giovanni Gambaro
- Department of Biomedical and Surgical Sciences, Division of Nephrology, University of Verona, Verona, Italy.
| | | | | | | | | | | |
Collapse
|
72
|
Prié D, Beck L, Friedlander G, Silve C. Sodium-phosphate cotransporters, nephrolithiasis and bone demineralization. Curr Opin Nephrol Hypertens 2005; 13:675-81. [PMID: 15483460 DOI: 10.1097/00041552-200411000-00015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW We discuss how recent findings obtained in disorders of phosphate metabolism in humans and in animal models have provided insights into the pathogenesis of renal stone formation and bone demineralization. RECENT FINDINGS Mice that are null for the sodium-phosphate cotransporter (NPT)2a gene (NPT2a(-/-) mice) exhibit hypophosphataemia, increased urinary phosphate excretion, hypercalciuria and nephrolithiasis, but no bone demineralization. Mice null for the sodium-hydrogen exchanger regulatory factor (NHERF)1 (NHERF1(-/-) mice) also exhibit hypophosphataemia and increased renal phosphate excretion with decreased renal NPT2a expression, but they present with a severe sex-dependent bone demineralization. Heterozygous loss-of-function mutations in the NPT2a gene in humans induce hypophosphataemia, increased urinary phosphate excretion, hypercalciuria, nephrolithiasis in males (to date) and bone demineralization of variable severity in both sexes. Patients and experimental animals with increased circulating levels of fibroblast growth factor 23 present with hypophosphataemia, increased urinary phosphate excretion, inappropriate calcitriol synthesis and rickets/osteomalacia, but no nephrolithiasis except when treated. Low-phosphate diet in spontaneously hypercalciuric rats and disruption of the 1-alpha-hydroxylase gene in NPT2a mice prevent renal stone formation. SUMMARY Increased urinary phosphate excretion is a risk factor for renal calcium stone formation when it is associated with hypercalciuria. As yet undefined interplay between NPT2a, NHERF1 and possibly other cotransporters or associated proteins in bone cells may account for the diversity of bone phenotypes observed in disorders of phosphate metabolism with impaired renal phosphate reabsorption. The pathogenesis of both renal stone and bone demineralization appear to be affected by species, sex and mutation type, among other factors.
Collapse
Affiliation(s)
- Dominique Prié
- Inserm U 426 et Institut Fédératif de Recherche 02, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, 75018 Paris, France.
| | | | | | | |
Collapse
|
73
|
Evan AP, Bledsoe SB, Smith SB, Bushinsky DA. Calcium oxalate crystal localization and osteopontin immunostaining in genetic hypercalciuric stone-forming rats. Kidney Int 2004; 65:154-61. [PMID: 14675046 DOI: 10.1111/j.1523-1755.2004.00396.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The inbred genetic hypercalciuric stone-forming (GHS) rats develop calcium phosphate (apatite) stones when fed a normal 1.2% calcium diet. The addition of 1% hydroxyproline to this diet does not alter the type of stone formed, while rats fed this diet with 3% hydroxyproline form mixed apatite and calcium oxalate stones and those with 5% hydroxyproline added form only calcium oxalate stones. The present study was designed to determine the localization of stone formation and if this solid phase resulted in pathologic changes to the kidneys. METHODS GHS rats were fed 15 g of the standard diet or the diet supplemented with 1%, 3%, or 5% hydroxyproline for 18 weeks. A separate group of Sprague-Dawley rats (the parental strain of the GHS rats), fed the standard diet for a similar duration, served as an additional control. At 18 weeks, all kidneys were perfusion-fixed for structural analysis, detection of crystal deposits using the Yasue silver substitution method, and osteopontin immunostaining. RESULTS There were no crystal deposits found in the kidneys of Sprague-Dawley rats. Crystal deposits were found in the kidneys of all GHS rats and this Yasue-stained material was detected only in the urinary space. No crystal deposits were noted within the cortical or medullary segments of the nephron and there was no evidence for tubular damage in any group. The only pathologic changes occurred in 3% and 5% hydroxyproline groups with the 5% group showing the most severe changes. In these rats, which form only calcium oxalate stones, focal sites along the urothelial lining of the papilla and fornix of the urinary space demonstrated a proliferative response characterized by increased density of urothelial cells that surrounded the crystal deposits. At the fornix, some crystals were lodged within the interstitium, deep to the proliferative urothelium. There was increased osteopontin immunostaining in the proliferating urothelium. CONCLUSION Thus in the GHS rat, the initial stone formation occurred solely in the urinary space. Tubular damage was not observed with either apatite or calcium oxalate stones. The apatite stones do not appear to cause any pathological change while those rats forming calcium oxalate stones have a proliferative response of the urothelium, with increased osteopontin immunostaining, around the crystal deposits in the fornix.
Collapse
Affiliation(s)
- Andrew P Evan
- Anatomy Department, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | |
Collapse
|
74
|
Abstract
PURPOSE OF REVIEW The search for hormones which specifically regulate phosphate metabolism has fuelled recent tantalizing studies. These studies have been motivated by diseases involving renal phosphate wasting, including tumor-induced osteomalacia, X-linked hypophosphatemic rickets, and autosomal dominant hypophosphatemia. This review focuses on likely candidate 'phosphatonins' and their possible physiological significance. RECENT FINDINGS Candidate phosphatonins include fibroblast growth factor 23, matrix extracellular phosphoglycoprotein, stanniocalcin, and Frizzled-related protein 4. Fibroblast growth factor 23 has emerged as the prime candidate explaining pathophysiology of these diseases. FGF-23 is expressed in most tumors in tumor-induced osteomalacia. Serum fibroblast growth factor 23 is increased in most patients with X-linked hypophosphatemic rickets and tumor-induced osteomalacia. Injection of recombinant fibroblast growth factor 23 induces phosphaturia, hypophosphatemia, and suppression of 1,25-dihydroxyvitamin D in animals. Many unanswered questions remain, including the relationship between PHEX (phosphate-regulating gene with homologies to endopeptidases on the X chromosome) mutations and elevated fibroblast growth factor 23. It is also not clear whether these candidate phosphatonins play a role in phosphate or vitamin D metabolism in healthy humans, or that this role is endocrine. The most compelling evidence derives from the fibroblast growth factor 23-knockout mouse which shows hyperphosphatemia and increased serum 1,25-dihydroxyvitamin D. A physiologically relevant phosphatonin should explain renal adaptation to variable dietary phosphate intake. The tissue source and determinants of serum fibroblast growth factor 23 are unknown. SUMMARY Pathophysiological and animal studies serve as a logical foundation on which to base further questions of human physiology. The definition of what is or is not a phosphatonin may need to be refined. There is a need to return to 'old-fashioned' human physiology studies to place recent findings in perspective.
Collapse
Affiliation(s)
- Aubrey Blumsohn
- Academic Unit of Bone Metabolism, Division of Clinical Sciences (North), University of Sheffield, Sheffield, UK.
| |
Collapse
|
75
|
Tenenhouse HS, Gauthier C, Chau H, St-Arnaud R. 1α-Hydroxylase gene ablation and Pisupplementation inhibit renal calcification in mice homozygous for the disruptedNpt2agene. Am J Physiol Renal Physiol 2004; 286:F675-81. [PMID: 14656762 DOI: 10.1152/ajprenal.00362.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Disruption of the major renal Na-phosphate (Pi) cotransporter gene Npt2a in mice leads to a substantial decrease in renal brush-border membrane Na-Picotransport, hypophosphatemia, and appropriate adaptive increases in renal 25-hydroxyvitamin D3-1α-hydroxylase (1αOHase) activity and the serum concentration of 1,25-dihydroxyvitamin D3[1,25(OH)2D]. The latter is associated with increased intestinal Ca absorption, hypercalcemia, hypercalciuria, and renal calcification in Npt2-/-mice. To determine the contribution of elevated serum 1,25(OH)2D levels to the development of hypercalciuria and nephrocalcinosis in Npt2-/-mice, we examined the effects of 1α OHase gene ablation and long-term Pisupplementation on urinary Ca excretion and renal calcification by microcomputed tomography. We show that the urinary Ca/creatinine ratio is significantly decreased in Npt2-/-/1α OHase-/-mice compared with Npt2-/-mice. In addition, renal calcification, determined by estimating the calcified volume to total renal volume (CV/TV), is reduced by ∼80% in Npt2-/-/1α OHase-/-mice compared with that in Npt2-/-mice. In Npt2-/-mice derived from dams fed a 1% Pidiet and maintained on the same diet, we observed a significant decrease in urinary Ca/creatinine that was also associated with ∼80% reduction in CV/TV when compared with counterparts fed a 0.6% diet. Taken together, the present data demonstrate that both 1α OHase gene ablation and Pisupplementation inhibit renal calcification in Npt2-/-mice and that 1,25(OH)2D is essential for the development of hypercalciuria and nephrocalcinosis in the mutant strain.
Collapse
Affiliation(s)
- Harriet S Tenenhouse
- McGill Univ.-Montreal Children's Hospital Research Institute, 4060 Ste-Cathe ine St. West, Montreal, Quebec, Canada H3Z 2Z3.
| | | | | | | |
Collapse
|
76
|
Affiliation(s)
- Harriet S Tenenhouse
- Departments of Pediatrics and Human Genetics, McGill University, Montreal Children's Hospital Research Institute, Montreal, Canada.
| | | |
Collapse
|