51
|
Argintar E, Edwards S, Delahay J. Bone morphogenetic proteins in orthopaedic trauma surgery. Injury 2011; 42:730-4. [PMID: 21145058 DOI: 10.1016/j.injury.2010.11.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 08/27/2010] [Accepted: 11/10/2010] [Indexed: 02/02/2023]
Abstract
Fracture healing describes the normal post-traumatic physiologic process of bone regeneration. Commonly, this complicated process occurs without interruption, however, certain clinical situations exist that may benefit from the usage of bone healing enhancement agents. Bone morphogenetic proteins (BMPs) assist in the process of bone healing by recruiting bone-forming cells to the area of trauma. The usage of BMP currently has two FDA-approved indications: (1) treatment of acute tibial fractures treated with intramedullary fixation and (2) treatment of long bone non-union. Despite this limited scope, off-label BMP usage continues to push the envelope for new applications. Although proven to be clinically successful, BMP use must be balanced with the large costs associated with their application. Regardless, more prospective randomised clinical trials must be conducted to validate and expand the role of BMP in the setting of trauma.
Collapse
Affiliation(s)
- Evan Argintar
- Georgetown University, Dept. Orthopedics, 3800 Reservoir Rd., Washington, DC 20007, United States.
| | | | | |
Collapse
|
52
|
Müller WEG, Wang X, Diehl-Seifert B, Kropf K, Schlossmacher U, Lieberwirth I, Glasser G, Wiens M, Schröder HC. Inorganic polymeric phosphate/polyphosphate as an inducer of alkaline phosphatase and a modulator of intracellular Ca2+ level in osteoblasts (SaOS-2 cells) in vitro. Acta Biomater 2011; 7:2661-71. [PMID: 21397057 DOI: 10.1016/j.actbio.2011.03.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/24/2011] [Accepted: 03/03/2011] [Indexed: 11/19/2022]
Abstract
Inorganic polymeric phosphate is a physiological polymer that accumulates in bone cells. In the present study osteoblast-like SaOS-2 cells were exposed to this polymer, complexed in a 2:1 stoichiometric ratio with Ca(2+), polyP (Ca(2+) salt). At a concentration of 100 μM, polyP (Ca(2+) salt) caused a strong increase in the activity of the alkaline phosphatase and also an induction of the steady-state expression of the gene encoding this enzyme. Comparative experiments showed that polyP (Ca(2+) salt) can efficiently replace β-glycerophosphate in the in vitro hydroxyapatite (HA) biomineralization assay. In the presence of polyP (Ca(2+) salt) the cells extensively form HA crystallites, which remain intimately associated with or covered by the plasma membrane. Only the tips of the crystallites are directly exposed to the extracellular space. Element mapping by scanning electron microscopy/energy-dispersive X-ray spectroscopy coupled to a silicon drift detector supported the finding that organic material was dispersed within the crystallites. Finally, polyP (Ca(2+) salt) was found to cause an increase in the intracellular Ca(2+) level, while polyP, as well as inorganic phosphate (P(i)) or Ca(2+) alone, had no effect at the concentrations used. These findings are compatible with the assumption that polyP (Ca(2+) salt) is locally, on the surface of the SaOS-2 cells, hydrolyzed to P(i) and Ca(2+). We conclude that the inorganic polymer polyP (Ca(2+) salt) in concert with a second inorganic, and physiologically occurring, polymer, biosilica, activates osteoblasts and impairs the maturation of osteoclasts.
Collapse
Affiliation(s)
- Werner E G Müller
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Magalhaes JKRS, Grynpas MD, Willett TL, Glogauer M. Deleting Rac1 improves vertebral bone quality and resistance to fracture in a murine ovariectomy model. Osteoporos Int 2011; 22:1481-92. [PMID: 20683708 DOI: 10.1007/s00198-010-1355-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 07/06/2010] [Indexed: 12/19/2022]
Abstract
SUMMARY The roles of Rac1 and Rac2 in regulating osteoclast-mediated bone quality in postmenopausal osteoporosis were evaluated using an ovariectomized murine model. Animals' bone composition and architecture were evaluated. Our results demonstrate that the deletion of Rac1 increases vertebral bone quality compared to wild-type bones in an ovariectomized model. INTRODUCTION To determine the roles of the Rho family small GTPases Rac1 and Rac2 in regulating osteoclast-mediated bone quality in a model of postmenopausal osteoporosis. METHODS Twelve-month-old female mice from three genotypes-wild type (WT), Rac1 null (LysM.Rac1 KO), and Rac2 null (Rac2KO)--were studied in control and ovariectomized groups (mice previously ovariectomized at 4 months of age). Animals were sacrificed at 12 months of age, and the femora and vertebrae were harvested for mechanical testing, bone densitometry, micro-computed tomography, and histomorphometric analyses to evaluate bone mineralization and architecture. The results were compared between groups using ANOVA and LSD post-hoc tests. RESULTS We observed that LysM.Rac1 KO mice showed higher vertebral bone mineral density compared to WT in both control and ovariectomized groups. Consistent with this finding, LysM.Rac1 KO vertebrae showed increased resistance to fracture and increased trabecular connectivity compared to WT in both groups. Micro-CT analysis revealed that Rac2KO ovariectomized vertebrae have more trabecular bone compared to WT and LysM.Rac1 KO, but this did not translate into increased fracture resistance. CONCLUSION Our results demonstrate that the deletion of Rac1 increases vertebral bone quality compared to WT bones in a postmenopausal osteoporosis model.
Collapse
Affiliation(s)
- J K R S Magalhaes
- CIHR Group in Matrix Dynamics, Faculty of Dentistry, University of Toronto, Fitzgerald Building-150 College Street, Room 221, Toronto, ON, Canada M5S 3E2
| | | | | | | |
Collapse
|
54
|
Temporal and Spatial Expression of BMPs and BMP Antagonists During Posterolateral Lumbar Fusion. Spine (Phila Pa 1976) 2011; 36:E237-44. [PMID: 21099737 DOI: 10.1097/brs.0b013e3181d73541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Quantitative gene expression analysis and immunohistochemistry were used to investigate the temporal and spatial expression of bone morphogenic proteins (BMPs) and BMP antagonists in a posterolateral spine fusion model in rabbits. OBJECTIVE To identify the expression pattern of BMPs and BMP antagonists and to determine the molecular and histologic changes of the graft and surrounding tissue during fusion. SUMMARY OF BACKGROUND DATA There are no studies on BMP antagonists during spinal fusion. Furthermore, the reciprocal interaction between bone grafts and surrounding tissue is still unknown in fusion. METHODS Eighteen New Zealand White rabbits underwent bilateral posterolateral spine fusion with autogenous bone graft. Rabbits were killed at 1, 2, 4, or 6 weeks after arthrodesis. The spinal fusions were analyzed by radiography. On the right side, specimens were collected from the outer zone over the transverse processes, the inner zone between the transverse processes, muscle surrounding bone grafts, and the transverse process. Gene expression of BMP-2, BMP-4, and BMP-7, noggin, chordin, Sox9, and Runx2 were measured by real-time polymerase chain reaction at each time point of each sample. On the left side, molecules of interest were evaluated by immunohistochemistry on tissue sections. RESULTS BMP-2, BMP-4, and BMP-7, noggin, and chordin were colocalized in rimming osteoblasts, osteoclasts, and chondrocytes. The outer zone demonstrated earlier bone maturation and faster increase in BMP gene expression than the inner zone. Muscle surrounding bone grafts showed significantly higher BMP expression and Runx2 activity at the early phase. BMP-positive cells were also noted around blood vessels. CONCLUSION The colocalization and temporal relationship of BMPs and BMP antagonists suggests that BMP activity is tightly regulated by the antagonists during fusion. In addition, not only the decorticated transverse process, but also muscle surrounding bone grafts, is actively involved in osteogenesis during fusion.
Collapse
|
55
|
Siar CH, Nakano K, Han PP, Tomida M, Tsujigiwa H, Nagatsuka H, H. Ng K, Kawakami T. Co-expression of BMP-2 and -7 in the Tumoral Epithelium of CEOT with Selective BMP-7 Expression in Amyloid Materials. J HARD TISSUE BIOL 2011. [DOI: 10.2485/jhtb.20.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
56
|
Ripamonti U, Klar RM, Renton LF, Ferretti C. Synergistic induction of bone formation by hOP-1, hTGF-beta3 and inhibition by zoledronate in macroporous coral-derived hydroxyapatites. Biomaterials 2010; 31:6400-10. [PMID: 20493522 DOI: 10.1016/j.biomaterials.2010.04.037] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 04/21/2010] [Indexed: 01/19/2023]
Abstract
Thirty coral-derived calcium carbonate-based macroporous constructs with limited hydrothermal conversion to hydroxyapatite (7% HA/CC) were implanted in the rectus abdominis of three adult non-human primate Papio ursinus to investigate the intrinsic induction of bone formation. Macroporous constructs with 125 microg human recombinant osteogenic protein-1 (hOP-1) or 125 microg human recombinant transforming growth factor-beta(3) (hTGF-beta(3)) were also implanted. The potential synergistic interaction between morphogens was tested by implanting binary applications of hOP-1 and hTGF-beta(3) 5:1 by weight, respectively. To evaluate the role of osteoclastic activity on the implanted macroporous surfaces, coral-derived constructs were pre-loaded with 0.24 mg of bisphosphonate zoledronate (Zometa). To correlate the morphology of tissue induction with osteogenic gene expression and activation, harvested specimens on day 90 were analyzed for changes in OP-1 and TGF-beta(3) mRNA synthesis by quantitative real-time polymerase chain reaction (qRT-PCR). The induction of bone formation in 7% HA/CC solo correlated with OP-1 expression. Massive bone induction formed by binary applications of the recombinant morphogens. Single applications of hOP-1 and hTGF-beta(3) also resulted in substantial bone formation, not comparable however to synergistic binary applications. Zoledronate-treated macroporous constructs showed limited bone formation and in two specimens bone formation was altogether absent; qRT-PCR showed a prominent reduction of OP-1 gene expression whilst TGF-beta(3) expression was far greater than OP-1. The lack of bone formation by zoledronate-treated specimens indicates that osteoclastic activity on the implanted coral-derived constructs is critical for the spontaneous induction of bone formation. Indirectly, zoledronate-treated samples showing lack of OP-1 gene expression and absent or very limited bone formation by induction confirm that the spontaneous induction of bone formation by coral-derived macroporous constructs is initiated by secreted BMPs/OPs, in context the OP-1 isoform.
Collapse
Affiliation(s)
- Ugo Ripamonti
- Bone Research Unit, Medical Research Council/University of the Witwatersrand, Johannesburg, South Africa.
| | | | | | | |
Collapse
|
57
|
Yu YY, Lieu S, Lu C, Miclau T, Marcucio RS, Colnot C. Immunolocalization of BMPs, BMP antagonists, receptors, and effectors during fracture repair. Bone 2010; 46:841-51. [PMID: 19913648 DOI: 10.1016/j.bone.2009.11.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/04/2009] [Accepted: 11/04/2009] [Indexed: 01/20/2023]
Abstract
Bone morphogenetic proteins (BMPs) are potent bone inducers used clinically to enhance fracture repair. BMPs have been shown to be produced in the fracture callus; however, the comparative expression of BMPs and BMP signaling components has only been partially examined at the cellular level. The aim of the present study was to establish a detailed spatiotemporal localization of BMPs and BMP signaling components in mouse models of stabilized and nonstabilized fractures. During healing of nonstabilized fractures, which occurs via endochondral ossification, BMP2, 3, 4, 5, and 8, noggin, BMPRIA, BMPRII, and pSmad 1/5/8 were immunolocalized in the activated periosteum as early as 3 days after fracture. BMP2, 4, 5, 6, 7, and 8 and noggin were also found in isolated inflammatory cells within granulation tissue during the early stages of repair, but not BMP receptors and effectors. During the soft callus phase of repair, all BMPs and BMP signaling components were detected in chondrocytes with various intensities of staining depending on the stage of chondrocyte differentiation and their location in the callus. The strongest staining was observed in hypertrophic chondrocytes with decreased intensity during the hard callus phase of repair. All BMPs and components of the BMP pathway were detected in osteoblasts and osteocytes within new bone, with strongest intensity of immunoreaction reported during the early soft callus phase followed by decreasing intensity during the hard callus phase of repair. Most components of the BMP pathway were also detected in endothelial cells associated with new bone. In stabilized fractures that heal strictly via intramembranous ossification, BMPs and BMP antagonists were detected in isolated inflammatory cells and BMP signaling components were not detectable in osteoblasts or osteocytes within new bone. In conclusion, the BMP signaling pathway is primarily activated during fracture healing via endochondral ossification, suggesting that this pathway may influence the mode of healing during the recruitment of skeletal progenitors.
Collapse
Affiliation(s)
- Yan Yiu Yu
- Department of Orthopaedic Surgery, University of California, San Francisco General Hospital, San Francisco, CA 94110, USA
| | | | | | | | | | | |
Collapse
|
58
|
Abstract
Bone morphogenetic protein-6 (BMP-6) is produced by bone marrow-mesenchymal (BMSC) and hematopoietic stem cells, which can differentiate into bone, cartilage, adipose, muscle, hematopoietic, synovial and other tissues. Bmp6-/- null mice have low hepcidin serum levels and an iron overload, resembling hereditary hemochromatosis, which may cause a reduced number of pancreatic beta-cells, increased serum glucose and diabetes. BMP-6 circulates in the normal human plasma and is produced by BMSC prior to differentiation into osteoblasts. Moreover, it is also released by osteoclasts as a key bone coupling factor recruiting osteoblasts to the resorption site. Due to unique structural, receptor binding and signaling characteristics much smaller amounts of BMP-6 than BMP-7 are needed in vivo to induce regeneration of bone defects in animals.
Collapse
Affiliation(s)
- Slobodan Vukicevic
- Laboratory of Mineralized Tissues, Center for Translational Research, School of Medicine, University of Zagreb, Salata 5, 10000 Zagreb, Croatia.
| | | |
Collapse
|
59
|
Growth/differentiation factor-15 inhibits differentiation into osteoclasts—A novel factor involved in control of osteoclast differentiation. Differentiation 2009; 78:213-22. [DOI: 10.1016/j.diff.2009.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/03/2009] [Accepted: 07/30/2009] [Indexed: 01/16/2023]
|
60
|
Enhanced osteoclastogenesis causes osteopenia in twisted gastrulation-deficient mice through increased BMP signaling. J Bone Miner Res 2009; 24:1917-26. [PMID: 19419314 PMCID: PMC2765934 DOI: 10.1359/jbmr.090507] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The uncoupling of osteoblastic and osteoclastic activity is central to disorders such as osteoporosis, osteolytic malignancies, and periodontitis. Numerous studies have shown explicit functions for bone morphogenetic proteins (BMPs) in skeletogenesis. Their signaling activity has been shown in various contexts to be regulated by extracellular proteins, including Twisted gastrulation (TWSG1). However, experimental paradigms determining the effects of BMP regulators on bone remodeling are limited. In this study, we assessed the role of TWSG1 in postnatal bone homeostasis. Twsg1-deficient (Twsg1(-/-)) mice developed osteopenia that could not be explained by defective osteoblast function, because mineral apposition rate and differentiation markers were not significantly different compared with wildtype (WT) mice. Instead, we discovered a striking enhancement of osteoclastogenesis in Twsg1(-/-) mice, leading to increased bone resorption with resultant osteopenia. Enhanced osteoclastogenesis in Twsg1(-/-) mice was caused by increased cell fusion, differentiation, and function of osteoclasts. Furthermore, RANKL-mediated osteoclastogenesis and phosphorylated Smad1/5/8 levels were enhanced when WT osteoclasts were treated with recombinant BMP2, suggesting direct regulation of osteoclast differentiation by BMPs. Increase in detectable levels of phosphorylated Smad 1/5/8 was noted in osteoclasts from Twsg1(-/-) mice compared with WT mice. Furthermore, the enhanced osteoclastogenesis in Twsg1(-/-) mice was reversed in vitro in a dose-dependent manner with exposure to Noggin, a BMP antagonist, strongly suggesting that the enhanced osteoclastogenesis in Twsg1 mutants is attributable to increased BMP signaling. Thus, we present a novel and previously uncharacterized role for TWSG1 in inhibiting osteoclastogenesis through regulation of BMP activity.
Collapse
|
61
|
Abstract
PURPOSE OF REVIEW Bone cells such as osteoclasts, osteoblasts, and osteocytes 'talk' to each other throughout adult life to maintain bone integrity. This review highlights frontier areas of research on intercellular communication among bone cells. RECENT FINDINGS Bone cells communicate to regulate the balance between bone resorption and bone formation. Recent findings have suggested that bone remodeling compartment is critical for osteoclast-osteoblast communication during bone remodeling. New molecules and mechanisms for bone cell communication, including 'coupling' of bone formation to resorption, have been revealed. Osteoclastic regulation of pH within the bone remodeling compartment is a mechanism that has been posited to rapidly activate osteoblastic bone formation, whereas osteocytes in the bone matrix regulate osteoclasts and osteoblasts on the bone surface through the lacuno-canaliculi network. SUMMARY Differentiation, activation, and apoptosis of bone cells are often dependent on the status of other types of bone cells. Bone cells in different lineages achieve intercellular communication not only by ligand-receptor interactions but also by molecules and ions traveling in the extracellular space or across gap junctions, processes that depend profoundly on the four-dimensional (space and time) architecture of bone tissue.
Collapse
|
62
|
Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci U S A 2008; 105:20764-9. [PMID: 19075223 DOI: 10.1073/pnas.0805133106] [Citation(s) in RCA: 371] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Under most conditions, resorbed bone is nearly precisely replaced in location and amount by new bone. Thus, it has long been recognized that bone loss through osteoclast-mediated bone resorption and bone replacement through osteoblast-mediated bone formation are tightly coupled processes. Abundant data conclusively demonstrate that osteoblasts direct osteoclast differentiation. Key questions remain, however, as to how osteoblasts are recruited to the resorption site and how the amount of bone produced is so precisely controlled. We hypothesized that osteoclasts play a crucial role in the promotion of bone formation. We found that osteoclast conditioned medium stimulates human mesenchymal stem (hMS) cell migration and differentiation toward the osteoblast lineage as measured by mineralized nodule formation in vitro. We identified candidate osteoclast-derived coupling factors using the Affymetrix microarray. We observed significant induction of sphingosine kinase 1 (SPHK1), which catalyzes the phosphorylation of sphingosine to form sphingosine 1-phosphate (S1P), in mature multinucleated osteoclasts as compared with preosteoclasts. S1P induces osteoblast precursor recruitment and promotes mature cell survival. Wnt10b and BMP6 also were significantly increased in mature osteoclasts, whereas sclerostin levels decreased during differentiation. Stimulation of hMS cell nodule formation by osteoclast conditioned media was attenuated by the Wnt antagonist Dkk1, a BMP6-neutralizing antibody, and by a S1P antagonist. BMP6 antibodies and the S1P antagonist, but not Dkk1, reduced osteoclast conditioned media-induced hMS chemokinesis. In summary, our findings indicate that osteoclasts may recruit osteoprogenitors to the site of bone remodeling through SIP and BMP6 and stimulate bone formation through increased activation of Wnt/BMP pathways.
Collapse
|
63
|
|
64
|
Kawano T, Troiano N, Adams DJ, Wu JJ, Sun BH, Insogna K. The anabolic response to parathyroid hormone is augmented in Rac2 knockout mice. Endocrinology 2008; 149:4009-15. [PMID: 18467443 PMCID: PMC2488220 DOI: 10.1210/en.2008-0034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 04/30/2008] [Indexed: 12/13/2022]
Abstract
PTH is the only currently available anabolic therapy for osteoporosis. In clinical practice, the skeletal response to PTH varies and because therapy is limited to 2 yr, approaches to maximize the therapeutic response are desirable. Rac2 is a small GTPase that is expressed only in hematopoietic tissue. Rac2(-/-) mice have a slight increase in bone mass and osteoclasts isolated from these animals have reduced basal resorptive activity and reduced chemotaxis. To evaluate the anabolic response to PTH in Rac2(-/-) mice, we treated 18 Rac2(-/-) and 17 control, age-matched wild-type animals once daily for 28 d with 80 ng/g body weight of h(1-34)PTH. Treatment resulted in significantly greater increments in spinal, femur, and total bone density in the Rac2(-/-) as compared with wild-type animals. Microcomputed tomography analysis demonstrated greater increases in trabecular thickness and cortical thickness in the knockout mice. Interestingly, histomorphometric analysis showed an equivalent increase in osteoblast and osteoclast number in response to PTH treatment in both groups of animals. However, as judged by changes in serum markers, the resorptive response to PTH was impaired. Thus, telopeptide of type 1 collagen was 15.9+/-6.9 ng/ml after PTH treatment in the knockout animals and 26.8+/-11.1 ng/ml in the PTH-treated wild-type group. In contrast, serum aminoterminal propeptide of type 1 collagen and osteocalcin were equivalent in both groups. We conclude that, in the genetic absence of Rac2, the anabolic response to PTH is increased. This appears to be due to attenuated resorptive activity of osteoclasts.
Collapse
Affiliation(s)
- Tsutomu Kawano
- Section of Endocrinology, Yale School of Medicine, New Haven, Connecticut 06520-8020, USA.
| | | | | | | | | | | |
Collapse
|
65
|
Nahar NN, Missana LR, Garimella R, Tague SE, Anderson HC. Matrix vesicles are carriers of bone morphogenetic proteins (BMPs), vascular endothelial growth factor (VEGF), and noncollagenous matrix proteins. J Bone Miner Metab 2008; 26:514-9. [PMID: 18758911 DOI: 10.1007/s00774-008-0859-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 02/01/2008] [Indexed: 01/31/2023]
Abstract
Matrix vesicles (MVs) are well positioned in the growth plate to serve as a carrier of morphogenetic information to nearby chondrocytes and osteoblasts. Bone morphogenetic proteins (BMPs) carried in MVs could promote differentiation of these skeletal cells. Vascular endothelial growth factor (VEGF) in MVs could stimulate angiogenesis. Therefore, a study was undertaken to confirm the presence of bone morphogenetic protein (BMP)-1 through-7, VEGF, and the noncollagenous matrix proteins, bone sialoprotein (BSP), osteopontin (OPN), osteocalcin (OC), and osteonectin (ON) in isolated rat growth plate MVs. MVs were isolated from collagenase-digested rachitic rat tibial and femoral growth plates. The presence of BMP-1 through BMP-7, VEGF, BSP, ON, OPN, and OC was evaluated by Western blot, plus ELISA analyses for BMP-2 and-4 content. The alkaline phosphatase-raising ability of MV extracts on cultured rat growth plate chondrocytes was measured as a reflection of MV ability to promote chondroosseous differentiation. BMP-1 through-7, VEGF, BSP, ON, OPN, and OC were all detected by Western blot analyses. Chondrocytes treated with MV extracts showed a two-to threefold increase in alkaline phosphatase activity over control, indicating increased differentiation. Significant amounts of BMP-2 and BMP-4 were detected in MVs by ELISA. Combined, these data suggest that MVs could play an important morphogenetic role in growth plate and endochondral bone formation.
Collapse
Affiliation(s)
- Niru N Nahar
- Department of Pathology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|