51
|
Neuropathy-related mutations alter the membrane binding properties of the human myelin protein P0 cytoplasmic tail. PLoS One 2019; 14:e0216833. [PMID: 31173589 PMCID: PMC6555526 DOI: 10.1371/journal.pone.0216833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/29/2019] [Indexed: 01/19/2023] Open
Abstract
Schwann cells myelinate selected axons in the peripheral nervous system (PNS) and contribute to fast saltatory conduction via the formation of compact myelin, in which water is excluded from between tightly adhered lipid bilayers. Peripheral neuropathies, such as Charcot-Marie-Tooth disease (CMT) and Dejerine-Sottas syndrome (DSS), are incurable demyelinating conditions that result in pain, decrease in muscle mass, and functional impairment. Many Schwann cell proteins, which are directly involved in the stability of compact myelin or its development, are subject to mutations linked to these neuropathies. The most abundant PNS myelin protein is protein zero (P0); point mutations in this transmembrane protein cause CMT subtype 1B and DSS. P0 tethers apposing lipid bilayers together through its extracellular immunoglobulin-like domain. Additionally, P0 contains a cytoplasmic tail (P0ct), which is membrane-associated and contributes to the physical properties of the lipid membrane. Six CMT- and DSS-associated missense mutations have been reported in P0ct. We generated recombinant disease mutant variants of P0ct and characterized them using biophysical methods. Compared to wild-type P0ct, some mutants have negligible differences in function and folding, while others highlight functionally important amino acids within P0ct. For example, the D224Y variant of P0ct induced tight membrane multilayer stacking. Our results show a putative molecular basis for the hypermyelinating phenotype observed in patients with this particular mutation and provide overall information on the effects of disease-linked mutations in a flexible, membrane-binding protein segment. Using neutron reflectometry, we additionally show that P0ct embeds deep into a lipid bilayer, explaining the observed effects of P0ct on the physical properties of the membrane.
Collapse
|
52
|
Intrinsic Disorder-Based Emergence in Cellular Biology: Physiological and Pathological Liquid-Liquid Phase Transitions in Cells. Polymers (Basel) 2019; 11:polym11060990. [PMID: 31167414 PMCID: PMC6631845 DOI: 10.3390/polym11060990] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/14/2022] Open
Abstract
The visible outcome of liquid-liquid phase transitions (LLPTs) in cells is the formation and disintegration of various proteinaceous membrane-less organelles (PMLOs). Although LLPTs and related PMLOs have been observed in living cells for over 200 years, the physiological functions of these transitions (also known as liquid-liquid phase separation, LLPS) are just starting to be understood. While unveiling the functionality of these transitions is important, they have come into light more recently due to the association of abnormal LLPTs with various pathological conditions. In fact, several maladies, such as various cancers, different neurodegenerative diseases, and cardiovascular diseases, are known to be associated with either aberrant LLPTs or some pathological transformations within the resultant PMLOs. Here, we will highlight both the physiological functions of cellular liquid-liquid phase transitions as well as the pathological consequences produced through both dysregulated biogenesis of PMLOs and the loss of their dynamics. We will also discuss the potential downstream toxic effects of proteins that are involved in pathological formations.
Collapse
|
53
|
Lamont H, Ille A, Amico-Ruvio SA. Identification of a novel variant of Golli myelin basic protein BG21 in the uniquely neuroprotective white-footed mouse. Neurosci Lett 2019; 701:8-13. [PMID: 30742937 DOI: 10.1016/j.neulet.2019.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/12/2019] [Accepted: 02/05/2019] [Indexed: 11/26/2022]
Abstract
The myelin basic protein (MBP) gene is a complex gene which codes for several distinct forms of MBP. The various forms of MBP are functionally involved in the development of the nervous system, T-cell regulation, and myelination. Several neurological disorders have been linked to MBP abnormality, further demonstrating its functional significance in the nervous system. The white-footed mouse (Peromyscus leucopus) exhibits profound neuroprotective characteristics, is asymptomatic to various disease-states, and has a lifespan twice that of the house mouse (Mus musculus). We used M. musculus mouse MBP as a reference to explore MBP in P. leucopus mice. Through genetic and downstream proteomic data analysis, we identified a novel variant of the BG21 isoform of MBP in P. leucopus mice. Variation in this isoform is present at the genetic level between the two species of mice. Our results show differences within the open reading frame of the transcripts accompanied by corresponding differences in protein structure prediction. These data introduce the potential of MBP variation as one of many causal variables contributing to the unique presentation of enhanced neuroprotection and longevity in P. leucopus mice.
Collapse
Affiliation(s)
- Hannah Lamont
- D'Youville College, 320 Porter Ave, Buffalo, NY, 14201, USA.
| | - Alexander Ille
- D'Youville College, 320 Porter Ave, Buffalo, NY, 14201, USA.
| | | |
Collapse
|
54
|
Raasakka A, Jones NC, Hoffmann SV, Kursula P. Ionic strength and calcium regulate membrane interactions of myelin basic protein and the cytoplasmic domain of myelin protein zero. Biochem Biophys Res Commun 2019; 511:7-12. [DOI: 10.1016/j.bbrc.2019.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 01/03/2023]
|
55
|
Hauser J, Sultan S, Rytz A, Steiner P, Schneider N. A blend containing docosahexaenoic acid, arachidonic acid, vitamin B12, vitamin B9, iron and sphingomyelin promotes myelination in an in vitro model. Nutr Neurosci 2019; 23:931-945. [PMID: 30806182 DOI: 10.1080/1028415x.2019.1580918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
During the development of the central nervous system, oligodendrocytes (OLs) are responsible for myelination, the formation of the myelin sheath around axons. This process enhances neuronal connectivity and supports the maturation of emerging cognitive functions. In humans, recent evidence suggests that early life nutrition may affect myelination. In the present study, we investigated the impact of a blend containing docosahexaenoic acid, arachidonic acid, vitamin B12, vitamin B9, iron and sphingomyelin, or each of these nutrients individually, on oligodendrocyte precursor cells (OPCs) proliferation and maturation into OLs as well as their myelinating properties. By using an in vitro model, developed to study each step of myelination, we found that the nutrient blend increased the number of OPCs and promoted their differentiation and maturation into OLs, as measured by quantifying A2B5 positive cells, myelin-associated glycoprotein (MAG) positive cells and area, myelin binding protein (MBP) positive cells and area, respectively. Moreover, measuring myelination by quantifying the overlapping signal between neurofilament and either MAG or MBP revealed a positive effect of the blend on OLs myelinating properties. In contrast, treatment with each individual nutrient resulted in differential effects on the various readouts. This work suggests that dietary intake of these nutrients during early life, might be beneficial for myelination.
Collapse
|
56
|
Weil MT, Schulz-Ëberlin G, Mukherjee C, Kuo-Elsner WP, Schäfer I, Müller C, Simons M. Isolation and Culture of Oligodendrocytes. Methods Mol Biol 2019; 1936:79-95. [PMID: 30820894 DOI: 10.1007/978-1-4939-9072-6_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Primary cultures of brain-derived rodent cells are widely used to study molecular and cellular mechanisms in neurobiology. In this chapter, we describe methods of purifying and culturing oligodendroglial cells from mouse perinatal brains. In addition, we describe methods of coculturing the purified oligodendrocytes with neurons. When prepared and cultured according to these protocols, many essential aspects of the biology of oligodendrocytes, such as their proliferation, differentiation, and myelination, can be studied in culture.
Collapse
Affiliation(s)
- Marie-Theres Weil
- Max Planck Institute of Experimental Medicine, Goettingen, Germany
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Goettingen, Germany
- AbbVie Germany GmbH & Co. KG, Knollstrasse, Ludwigshafen, Germany
| | | | - Chaitali Mukherjee
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Disease (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Wen Ping Kuo-Elsner
- Department of Biology, Molecular Cell Biology, Johannes Gutenberg University, Mainz, Germany
| | - Isabelle Schäfer
- Institute of Physiology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Christina Müller
- Institute of Physiology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Mikael Simons
- Max Planck Institute of Experimental Medicine, Goettingen, Germany.
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.
- German Center for Neurodegenerative Disease (DZNE), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
57
|
Fonin AV, Darling AL, Kuznetsova IM, Turoverov KK, Uversky VN. Intrinsically disordered proteins in crowded milieu: when chaos prevails within the cellular gumbo. Cell Mol Life Sci 2018; 75:3907-3929. [PMID: 30066087 PMCID: PMC11105604 DOI: 10.1007/s00018-018-2894-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/18/2022]
Abstract
Effects of macromolecular crowding on structural and functional properties of ordered proteins, their folding, interactability, and aggregation are well documented. Much less is known about how macromolecular crowding might affect structural and functional behaviour of intrinsically disordered proteins (IDPs) or intrinsically disordered protein regions (IDPRs). To fill this gap, this review represents a systematic analysis of the available literature data on the behaviour of IDPs/IDPRs in crowded environment. Although it was hypothesized that, due to the excluded-volume effects present in crowded environments, IDPs/IDPRs would invariantly fold in the presence of high concentrations of crowding agents or in the crowded cellular environment, accumulated data indicate that, based on their response to the presence of crowders, IDPs/IDPRs can be grouped into three major categories, foldable, non-foldable, and unfoldable. This is because natural cellular environment is not simply characterized by the presence of high concentration of "inert" macromolecules, but represents an active milieu, components of which are engaged in direct physical interactions and soft interactions with target proteins. Some of these interactions with cellular components can cause (local) unfolding of query proteins. In other words, since crowding can cause both folding and unfolding of an IDP or its regions, the outputs of the placing of a query protein to the crowded environment would depend on the balance between these two processes. As a result, and because of the spatio-temporal heterogeneity in structural organization of IDPs, macromolecular crowding can differently affect structures of different IDPs. Recent studies indicate that some IDPs are able to undergo liquid-liquid-phase transitions leading to the formation of various proteinaceous membrane-less organelles (PMLOs). Although interiors of such PMLOs are self-crowded, being characterized by locally increased concentrations of phase-separating IDPs, these IDPs are minimally foldable or even non-foldable at all (at least within the physiologically safe time-frame of normal PMLO existence).
Collapse
Affiliation(s)
- Alexander V Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - April L Darling
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
- St. Petersburg State Polytechnical University, St. Petersburg, Russian Federation
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
58
|
Pathological transitions in myelin membranes driven by environmental and multiple sclerosis conditions. Proc Natl Acad Sci U S A 2018; 115:11156-11161. [PMID: 30322944 PMCID: PMC6217380 DOI: 10.1073/pnas.1804275115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In demyelination diseases, such as multiple sclerosis, the structure of the axons’ protective sheaths is disrupted. Due to the proximity of cytoplasmic myelin membrane to structural phase transition, minor alterations in the local environmental conditions can have devastating results. Using small-angle X-ray scattering and cryogenic transmission electron microscopy, we show that drastic structural reorganization and instabilities of myelin membrane are linked to specific environmental conditions and molecular composition in healthy and diseased states. These instabilities involve phase transition from the healthy lamellar membranes to pathological inverted hexagonal phase. These results highlight that local environmental conditions are critical for myelin function and should be considered as alternative routes for early pathology and as a means to avoid the initiation of demyelination. Multiple sclerosis (MS) is an autoimmune disease, leading to the destruction of the myelin sheaths, the protective layers surrounding the axons. The etiology of the disease is unknown, although there are several postulated environmental factors that may contribute to it. Recently, myelin damage was correlated to structural phase transition from a healthy stack of lamellas to a diseased inverted hexagonal phase as a result of the altered lipid stoichiometry and low myelin basic protein (MBP) content. In this work, we show that environmental conditions, such as buffer salinity and temperature, induce the same pathological phase transition as in the case of the lipid composition in the absence of MBP. These phase transitions have different transition points, which depend on the lipid’s compositions, and are ion specific. In extreme environmental conditions, we find an additional dense lamellar phase and that the native lipid composition results in similar pathology as the diseased composition. These findings demonstrate that several local environmental changes can trigger pathological structural changes. We postulate that these structural modifications result in myelin membrane vulnerability to the immune system attacks and thus can help explain MS etiology.
Collapse
|
59
|
Ferrer I. Oligodendrogliopathy in neurodegenerative diseases with abnormal protein aggregates: The forgotten partner. Prog Neurobiol 2018; 169:24-54. [DOI: 10.1016/j.pneurobio.2018.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022]
|
60
|
The solvent side of proteinaceous membrane-less organelles in light of aqueous two-phase systems. Int J Biol Macromol 2018; 117:1224-1251. [PMID: 29890250 DOI: 10.1016/j.ijbiomac.2018.06.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/07/2018] [Indexed: 12/29/2022]
Abstract
Water represents a common denominator for liquid-liquid phase transitions leading to the formation of the polymer-based aqueous two-phase systems (ATPSs) and a set of the proteinaceous membrane-less organelles (PMLOs). ATPSs have a broad range of biotechnological applications, whereas PMLOs play a number of crucial roles in cellular compartmentalization and often represent a cellular response to the stress. Since ATPSs and PMLOs contain high concentrations of polymers (such as polyethylene glycol (PEG), polypropylene glycol (PPG), Ucon, and polyvinylpyrrolidone (PVP), Dextran, or Ficoll) or biopolymers (peptides, proteins and nucleic acids), it is expected that the separated phases of these systems are characterized by the noticeable changes in the solvent properties of water. These changes in solvent properties can drive partitioning of various compounds (proteins, nucleic acids, organic low-molecular weight molecules, metal ions, etc.) between the phases of ATPSs or between the PMLOs and their surroundings. Although there is a sizable literature on the properties of the ATPS phases, much less is currently known about PMLOs. In this perspective article, we first represent liquid-liquid phase transitions in water, discuss different types of biphasic (or multiphasic) systems in water, and introduce various PMLOs and some of their properties. Then, some basic characteristics of polymer-based ATPSs are presented, with the major focus being on the current understanding of various properties of ATPS phases and solvent properties of water inside them. Finally, similarities and differences between the polymer-based ATPSs and biological PMLOs are discussed.
Collapse
|
61
|
Dillenburg A, Ireland G, Holloway RK, Davies CL, Evans FL, Swire M, Bechler ME, Soong D, Yuen TJ, Su GH, Becher JC, Smith C, Williams A, Miron VE. Activin receptors regulate the oligodendrocyte lineage in health and disease. Acta Neuropathol 2018; 135:887-906. [PMID: 29397421 PMCID: PMC5954071 DOI: 10.1007/s00401-018-1813-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/16/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
Abstract
The most prevalent neurological disorders of myelin include perinatal brain injury leading to cerebral palsy in infants and multiple sclerosis in adults. Although these disorders have distinct etiologies, they share a common neuropathological feature of failed progenitor differentiation into myelin-producing oligodendrocytes and lack of myelin, for which there is an unmet clinical need. Here, we reveal that a molecular pathology common to both disorders is dysregulation of activin receptors and that activin receptor signaling is required for the majority of myelin generation in development and following injury. Using a constitutive conditional knockout of all activin receptor signaling in oligodendrocyte lineage cells, we discovered this signaling to be required for myelination via regulation of oligodendrocyte differentiation and myelin compaction. These processes were found to be dependent on the activin receptor subtype Acvr2a, which is expressed during oligodendrocyte differentiation and axonal ensheathment in development and following myelin injury. During efficient myelin regeneration, Acvr2a upregulation was seen to coincide with downregulation of Acvr2b, a receptor subtype with relatively higher ligand affinity; Acvr2b was shown to be dispensable for activin receptor-driven oligodendrocyte differentiation and its overexpression was sufficient to impair the abovementioned ligand-driven responses. In actively myelinating or remyelinating areas of human perinatal brain injury and multiple sclerosis tissue, respectively, oligodendrocyte lineage cells expressing Acvr2a outnumbered those expressing Acvr2b, whereas in non-repairing lesions Acvr2b+ cells were increased. Thus, we propose that following human white matter injury, this increase in Acvr2b expression would sequester ligand and consequently impair Acvr2a-driven oligodendrocyte differentiation and myelin formation. Our results demonstrate dysregulated activin receptor signaling in common myelin disorders and reveal Acvr2a as a novel therapeutic target for myelin generation following injury across the lifespan.
Collapse
|
62
|
Widder K, Träger J, Kerth A, Harauz G, Hinderberger D. Interaction of Myelin Basic Protein with Myelin-like Lipid Monolayers at Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6095-6108. [PMID: 29722987 DOI: 10.1021/acs.langmuir.8b00321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Interaction of myelin basic protein (MBP) and the cytoplasmic leaflets of the oligodendrocyte membrane is essential for the formation and compaction of the myelin sheath of the central nervous system and is altered aberrantly and implicated in the pathogenesis of neurodegenerative diseases like multiple sclerosis. To gain more detailed insights into this interaction, the adsorption of MBP to model lipid monolayers of similar composition to the myelin of the central nervous system was studied at the air-water interface with monolayer adsorption experiments. Measuring the surface pressure and the related maximum insertion pressure of MBP for different myelin-like lipid monolayers provided information about the specific role of each of the single lipids in the myelin. Depending on the ratio of negatively charged lipids to uncharged lipids and the distance between charges, the adsorption process was found to be determined by two counteracting effects: (i) protein incorporation, resulting in an increasing surface pressure and (ii) lipid condensation due to electrostatic interaction between the positively charged protein and negatively charged lipids, resulting in a decreasing surface pressure. Although electrostatic interactions led to high insertion pressures, the associated lipid condensation lowered the fluidity of the myelin-like monolayer.
Collapse
Affiliation(s)
- Katharina Widder
- Institut für Chemie , Martin-Luther-Universität Halle-Wittenberg , Von-Danckelmann-Platz 4 , 06120 Halle (Saale) , Germany
| | - Jennica Träger
- Institut für Chemie , Martin-Luther-Universität Halle-Wittenberg , Von-Danckelmann-Platz 4 , 06120 Halle (Saale) , Germany
| | - Andreas Kerth
- Institut für Chemie , Martin-Luther-Universität Halle-Wittenberg , Von-Danckelmann-Platz 4 , 06120 Halle (Saale) , Germany
| | - George Harauz
- Department of Molecular and Cellular Biology , University of Guelph , 50 Stone Road East , Guelph , Ontario , Canada N1G 2W1
| | - Dariush Hinderberger
- Institut für Chemie , Martin-Luther-Universität Halle-Wittenberg , Von-Danckelmann-Platz 4 , 06120 Halle (Saale) , Germany
| |
Collapse
|
63
|
Janowska J, Ziemka-Nalecz M, Sypecka J. The Differentiation of Rat Oligodendroglial Cells Is Highly Influenced by the Oxygen Tension: In Vitro Model Mimicking Physiologically Normoxic Conditions. Int J Mol Sci 2018; 19:ijms19020331. [PMID: 29364139 PMCID: PMC5855553 DOI: 10.3390/ijms19020331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 12/22/2022] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) constitute one of the main populations of dividing cells in the central nervous system (CNS). Physiologically, OPCs give rise to mature, myelinating oligodendrocytes and confer trophic support to their neighboring cells within the nervous tissue. OPCs are known to be extremely sensitive to the influence of exogenous clues which might affect their crucial biological processes, like survival, proliferation, differentiation, and the ability to generate a myelin membrane. Alterations in their differentiation influencing their final potential for myelinogenesis are usually the leading cause of CNS dys- and demyelination, contributing to the development of leukodystrophic disorders. The evaluation of the mechanisms that cause oligodendrocytes to malfunction requires detailed studies based on designed in vitro models. Since OPCs readily respond to changes in local homeostasis, it is crucial to establish restricted culture conditions to eliminate the potential stimuli that might influence oligodendrocyte biology. Additionally, the in vitro settings should mimic the physiological conditions to enable the obtained results to be translated to future preclinical studies. Therefore, the aim of our study was to investigate OPC differentiation in physiological normoxia (5% O2) and a restricted in vitro microenvironment. To evaluate the impact of the combined microenvironmental clues derived from other components of the nervous tissue, which are also influenced by the local oxygen concentration, the process of generating OPCs was additionally analyzed in organotypic hippocampal slices. The obtained results show that OPC differentiation, although significantly slowed down, proceeded correctly through its typical stages in the physiologically relevant conditions created in vitro. The established settings were also conducive to efficient cell proliferation, exerting also a neuroprotective effect by promoting the proliferation of neurons. In conclusion, the performed studies show how oxygen tension influences OPC proliferation, differentiation, and their ability to express myelin components, and should be taken into consideration while planning preclinical studies, e.g., to examine neurotoxic compounds or to test neuroprotective strategies.
Collapse
Affiliation(s)
- Justyna Janowska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland.
| | - Malgorzata Ziemka-Nalecz
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland.
| | - Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland.
| |
Collapse
|
64
|
Nakamura H, Lee AA, Afshar AS, Watanabe S, Rho E, Razavi S, Suarez A, Lin YC, Tanigawa M, Huang B, DeRose R, Bobb D, Hong W, Gabelli SB, Goutsias J, Inoue T. Intracellular production of hydrogels and synthetic RNA granules by multivalent molecular interactions. NATURE MATERIALS 2018; 17:79-89. [PMID: 29115293 PMCID: PMC5916848 DOI: 10.1038/nmat5006] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 09/08/2017] [Indexed: 05/06/2023]
Abstract
Some protein components of intracellular non-membrane-bound entities, such as RNA granules, are known to form hydrogels in vitro. The physico-chemical properties and functional role of these intracellular hydrogels are difficult to study, primarily due to technical challenges in probing these materials in situ. Here, we present iPOLYMER, a strategy for a rapid induction of protein-based hydrogels inside living cells that explores the chemically inducible dimerization paradigm. Biochemical and biophysical characterizations aided by computational modelling show that the polymer network formed in the cytosol resembles a physiological hydrogel-like entity that acts as a size-dependent molecular sieve. We functionalize these polymers with RNA-binding motifs that sequester polyadenine-containing nucleotides to synthetically mimic RNA granules. These results show that iPOLYMER can be used to synthetically reconstitute the nucleation of biologically functional entities, including RNA granules in intact cells.
Collapse
Affiliation(s)
- Hideki Nakamura
- Department of Cell Biology, School of Medicine, The Johns Hopkins University, Baltimore, MD, 21205
- Center for Cell Dynamics, Institute for Basic Biomedical Sciences, The Johns Hopkins University, Baltimore, MD, 21205
| | - Albert A. Lee
- Department of Cell Biology, School of Medicine, The Johns Hopkins University, Baltimore, MD, 21205
- Center for Cell Dynamics, Institute for Basic Biomedical Sciences, The Johns Hopkins University, Baltimore, MD, 21205
| | - Ali Sobhi Afshar
- Center for Imaging Science, Whitaker Biomedical Engineering Institute, The Johns Hopkins University, Baltimore, MD, 21218
- To whom correspondence regarding the computational analysis should be addressed: (A.S.A)
| | - Shigeki Watanabe
- Department of Cell Biology, School of Medicine, The Johns Hopkins University, Baltimore, MD, 21205
| | - Elmer Rho
- Center for Cell Dynamics, Institute for Basic Biomedical Sciences, The Johns Hopkins University, Baltimore, MD, 21205
| | - Shiva Razavi
- Department of Cell Biology, School of Medicine, The Johns Hopkins University, Baltimore, MD, 21205
- Department of Biomedical Engineering, Whitaker Biomedical Engineering Institute, The Johns Hopkins University, Baltimore, MD 21218
| | - Allison Suarez
- Department of Cell Biology, School of Medicine, The Johns Hopkins University, Baltimore, MD, 21205
- Center for Cell Dynamics, Institute for Basic Biomedical Sciences, The Johns Hopkins University, Baltimore, MD, 21205
| | - Yu-Chun Lin
- Department of Cell Biology, School of Medicine, The Johns Hopkins University, Baltimore, MD, 21205
- Center for Cell Dynamics, Institute for Basic Biomedical Sciences, The Johns Hopkins University, Baltimore, MD, 21205
| | - Makoto Tanigawa
- Department of Cell Biology, School of Medicine, The Johns Hopkins University, Baltimore, MD, 21205
- Department of Biomedical Engineering, Whitaker Biomedical Engineering Institute, The Johns Hopkins University, Baltimore, MD 21218
| | - Brian Huang
- Center for Cell Dynamics, Institute for Basic Biomedical Sciences, The Johns Hopkins University, Baltimore, MD, 21205
| | - Robert DeRose
- Department of Cell Biology, School of Medicine, The Johns Hopkins University, Baltimore, MD, 21205
- Center for Cell Dynamics, Institute for Basic Biomedical Sciences, The Johns Hopkins University, Baltimore, MD, 21205
| | - Diana Bobb
- Department of Cell Biology, School of Medicine, The Johns Hopkins University, Baltimore, MD, 21205
- Center for Cell Dynamics, Institute for Basic Biomedical Sciences, The Johns Hopkins University, Baltimore, MD, 21205
| | - William Hong
- Department of Biophysics and Biophysical Chemistry, School of Medicine, The Johns Hopkins University, Baltimore, MD, 21205
| | - Sandra B. Gabelli
- Department of Biophysics and Biophysical Chemistry, School of Medicine, The Johns Hopkins University, Baltimore, MD, 21205
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205
| | - John Goutsias
- Center for Imaging Science, Whitaker Biomedical Engineering Institute, The Johns Hopkins University, Baltimore, MD, 21218
| | - Takanari Inoue
- Department of Cell Biology, School of Medicine, The Johns Hopkins University, Baltimore, MD, 21205
- Center for Cell Dynamics, Institute for Basic Biomedical Sciences, The Johns Hopkins University, Baltimore, MD, 21205
- Department of Biomedical Engineering, Whitaker Biomedical Engineering Institute, The Johns Hopkins University, Baltimore, MD 21218
- To whom general correspondence should be addressed: (T.I.)
| |
Collapse
|
65
|
Hoch-Kraft P, White R, Tenzer S, Krämer-Albers EM, Trotter J, Gonsior C. Dual role of the RNA helicase DDX5 in post-transcriptional regulation of Myelin Basic Protein in oligodendrocytes. J Cell Sci 2018; 131:jcs.204750. [DOI: 10.1242/jcs.204750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 03/28/2018] [Indexed: 01/11/2023] Open
Abstract
In the central nervous system, oligodendroglial expression of Myelin Basic Protein (MBP) is crucial for the assembly and structure of the myelin sheath. MBP synthesis is tightly regulated in space and time, particularly on the post-transcriptional level. We have identified the DEAD-box RNA helicase DDX5 (alias p68) in a complex with Mbp mRNA in oligodendroglial cells. Expression of DDX5 is highest in progenitor cells and immature oligodendrocytes, where it localizes to heterogeneous populations of cytoplasmic ribonucleoprotein (RNP) complexes associated with Mbp mRNA in the cell body and processes. Manipulation of DDX5 protein amounts inversely affects levels of MBP protein. We present evidence that DDX5 is involved in post-transcriptional regulation of MBP protein synthesis, with implications for oligodendroglial development. In addition, DDX5 knockdown results in an increased abundance of MBP exon 2-positive isoforms in immature oligodendrocytes, most likely by regulating alternative splicing of Mbp. Our findings contribute to the understanding of the complex nature of MBP post-transcriptional control in immature oligodendrocytes where DDX5 appears to affect the abundance of MBP proteins via distinct but converging mechanisms.
Collapse
Affiliation(s)
- Peter Hoch-Kraft
- Molecular Cell Biology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128 Mainz, Germany
| | - Robin White
- Molecular Cell Biology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128 Mainz, Germany
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55128 Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Eva-Maria Krämer-Albers
- Molecular Cell Biology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128 Mainz, Germany
| | - Jacqueline Trotter
- Molecular Cell Biology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128 Mainz, Germany
| | - Constantin Gonsior
- Molecular Cell Biology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University of Mainz, Anselm-Franz-von-Bentzelweg 3, 55128 Mainz, Germany
| |
Collapse
|
66
|
Darling AL, Liu Y, Oldfield CJ, Uversky VN. Intrinsically Disordered Proteome of Human Membrane-Less Organelles. Proteomics 2017; 18:e1700193. [PMID: 29068531 DOI: 10.1002/pmic.201700193] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/10/2017] [Indexed: 11/10/2022]
Abstract
It is recognized now that various proteinaceous membrane-less organelles (PMLOs) are commonly found in cytoplasm, nucleus, and mitochondria of various eukaryotic cells (as well as in the chloroplasts of plant cells). Being different from the "traditional" membrane-encapsulated organelles, such as chloroplasts, endoplasmic reticulum, Golgi apparatus, lysosomes, mitochondria, nucleus, and vacuoles, PMLOs solve the cellular need to facilitate and regulate molecular interactions via reversible and controllable isolation of target molecules in specialized compartments. PMLOs possess liquid-like behavior and are believed to be formed as a result of biological liquid-liquid phase transitions (LLPTs, also known as liquid-liquid phase separation), where an intricate interplay between RNA and intrinsically disordered proteins (IDPs) or hybrid proteins containing ordered domains and intrinsically disordered protein regions (IDPRs) may play an important role. This review analyzes the prevalence of intrinsic disorder in proteins associated with various PMLOs found in human cells and considers some of the functional roles of IDPs/IDPRs in biogenesis of these organelles.
Collapse
Affiliation(s)
- April L Darling
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Yun Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, P. R. China
| | | | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Institute for Biological Instrumentation, Russian Academy of Sciences, Moscow Region, Russia
| |
Collapse
|
67
|
Uversky VN. The roles of intrinsic disorder-based liquid-liquid phase transitions in the "Dr. Jekyll-Mr. Hyde" behavior of proteins involved in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Autophagy 2017; 13:2115-2162. [PMID: 28980860 DOI: 10.1080/15548627.2017.1384889] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pathological developments leading to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are associated with misbehavior of several key proteins, such as SOD1 (superoxide dismutase 1), TARDBP/TDP-43, FUS, C9orf72, and dipeptide repeat proteins generated as a result of the translation of the intronic hexanucleotide expansions in the C9orf72 gene, PFN1 (profilin 1), GLE1 (GLE1, RNA export mediator), PURA (purine rich element binding protein A), FLCN (folliculin), RBM45 (RNA binding motif protein 45), SS18L1/CREST, HNRNPA1 (heterogeneous nuclear ribonucleoprotein A1), HNRNPA2B1 (heterogeneous nuclear ribonucleoprotein A2/B1), ATXN2 (ataxin 2), MAPT (microtubule associated protein tau), and TIA1 (TIA1 cytotoxic granule associated RNA binding protein). Although these proteins are structurally and functionally different and have rather different pathological functions, they all possess some levels of intrinsic disorder and are either directly engaged in or are at least related to the physiological liquid-liquid phase transitions (LLPTs) leading to the formation of various proteinaceous membrane-less organelles (PMLOs), both normal and pathological. This review describes the normal and pathological functions of these ALS- and FTLD-related proteins, describes their major structural properties, glances at their intrinsic disorder status, and analyzes the involvement of these proteins in the formation of normal and pathological PMLOs, with the ultimate goal of better understanding the roles of LLPTs and intrinsic disorder in the "Dr. Jekyll-Mr. Hyde" behavior of those proteins.
Collapse
Affiliation(s)
- Vladimir N Uversky
- a Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute , Morsani College of Medicine , University of South Florida , Tampa , FL , USA.,b Institute for Biological Instrumentation of the Russian Academy of Sciences , Pushchino, Moscow region , Russia
| |
Collapse
|
68
|
Snaidero N, Velte C, Myllykoski M, Raasakka A, Ignatev A, Werner HB, Erwig MS, Möbius W, Kursula P, Nave KA, Simons M. Antagonistic Functions of MBP and CNP Establish Cytosolic Channels in CNS Myelin. Cell Rep 2017; 18:314-323. [PMID: 28076777 PMCID: PMC5263235 DOI: 10.1016/j.celrep.2016.12.053] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/02/2016] [Accepted: 12/15/2016] [Indexed: 11/18/2022] Open
Abstract
The myelin sheath is a multilamellar plasma membrane extension of highly specialized glial cells laid down in regularly spaced segments along axons. Recent studies indicate that myelin is metabolically active and capable of communicating with the underlying axon. To be functionally connected to the neuron, oligodendrocytes maintain non-compacted myelin as cytoplasmic nanochannels. Here, we used high-pressure freezing for electron microscopy to study these cytoplasmic regions within myelin close to their native state. We identified 2,'3'-cyclic nucleotide 3'-phosphodiesterase (CNP), an oligodendrocyte-specific protein previously implicated in the maintenance of axonal integrity, as an essential factor in generating and maintaining cytoplasm within the myelin compartment. We provide evidence that CNP directly associates with and organizes the actin cytoskeleton, thereby providing an intracellular strut that counteracts membrane compaction by myelin basic protein (MBP). Our study provides a molecular and structural framework for understanding how myelin maintains its cytoplasm to function as an active axon-glial unit.
Collapse
Affiliation(s)
- Nicolas Snaidero
- Cellular Neuroscience, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Institute of Neuronal Cell Biology, Technical University Munich, 80805 Munich, Germany
| | - Caroline Velte
- Cellular Neuroscience, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Matti Myllykoski
- Faculty of Biochemistry and Molecular Biology and Biocenter Oulu, University of Oulu, 90014 Oulu, Finland
| | - Arne Raasakka
- Faculty of Biochemistry and Molecular Biology and Biocenter Oulu, University of Oulu, 90014 Oulu, Finland; Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Alexander Ignatev
- Faculty of Biochemistry and Molecular Biology and Biocenter Oulu, University of Oulu, 90014 Oulu, Finland
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Michelle S Erwig
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075 Göttingen, Germany
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Biology and Biocenter Oulu, University of Oulu, 90014 Oulu, Finland; Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075 Göttingen, Germany
| | - Mikael Simons
- Cellular Neuroscience, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Institute of Neuronal Cell Biology, Technical University Munich, 80805 Munich, Germany; German Center for Neurodegenerative Disease (DZNE), 6250 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany.
| |
Collapse
|
69
|
Uversky VN. Paradoxes and wonders of intrinsic disorder: Stability of instability. INTRINSICALLY DISORDERED PROTEINS 2017; 5:e1327757. [PMID: 30250771 DOI: 10.1080/21690707.2017.1327757] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 01/03/2023]
Abstract
This article continues a series of short comments on the paradoxes and wonders of the protein intrinsic disorder phenomenon by introducing the "stability of instability" paradox. Intrinsically disordered proteins (IDPs) are characterized by the lack of stable 3D-structure, and, as a result, have an exceptional ability to sustain exposure to extremely harsh environmental conditions (an illustration of the "you cannot break what is already broken" principle). Extended IDPs are known to possess extreme thermal and acid stability and are able either to keep their functionality under these extreme conditions or to rapidly regain their functionality after returning to the normal conditions. Furthermore, sturdiness of intrinsic disorder and its capability to "ignore" harsh conditions provides some interesting and important advantages to its carriers, at the molecular (e.g., the cell wall-anchored accumulation-associated protein playing a crucial role in intercellular adhesion within the biofilm of Staphylococcus epidermidis), supramolecular (e.g., protein complexes, biologic liquid-liquid phase transitions, and proteinaceous membrane-less organelles), and organismal levels (e.g., the recently popularized case of the microscopic animals, tardigrades, or water bears, that use intrinsically disordered proteins to survive desiccation).
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
70
|
Dynein/dynactin is necessary for anterograde transport of Mbp mRNA in oligodendrocytes and for myelination in vivo. Proc Natl Acad Sci U S A 2017; 114:E9153-E9162. [PMID: 29073112 PMCID: PMC5664533 DOI: 10.1073/pnas.1711088114] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oligodendrocytes in the brain insulate neuronal axons in layers of fatty myelin to facilitate fast electrical signaling. Myelin basic protein (MBP), an important myelin component, is transported as mRNA away from the cell body before being translated into protein. In zebrafish, the anterograde motor kinesin transports mbp mRNA away from the cell body. We now identify myelination defects in zebrafish caused by a mutation in the retrograde motor complex dynein/dynactin, which normally transports cargos back toward the cell body. However, this mutant displays defects in anterograde mbp mRNA transport. We confirm in mammalian oligodendrocyte cultures that drug inhibition of dynein arrests transport in both directions and decreases MBP protein levels. Thus, dynein/dynactin is paradoxically required for anterograde mbp mRNA transport. Oligodendrocytes in the central nervous system produce myelin, a lipid-rich, multilamellar sheath that surrounds axons and promotes the rapid propagation of action potentials. A critical component of myelin is myelin basic protein (MBP), expression of which requires anterograde mRNA transport followed by local translation at the developing myelin sheath. Although the anterograde motor kinesin KIF1B is involved in mbp mRNA transport in zebrafish, it is not entirely clear how mbp transport is regulated. From a forward genetic screen for myelination defects in zebrafish, we identified a mutation in actr10, which encodes the Arp11 subunit of dynactin, a critical activator of the retrograde motor dynein. Both the actr10 mutation and pharmacological dynein inhibition in zebrafish result in failure to properly distribute mbp mRNA in oligodendrocytes, indicating a paradoxical role for the retrograde dynein/dynactin complex in anterograde mbp mRNA transport. To address the molecular mechanism underlying this observation, we biochemically isolated reporter-tagged Mbp mRNA granules from primary cultured mammalian oligodendrocytes to show that they indeed associate with the retrograde motor complex. Next, we used live-cell imaging to show that acute pharmacological dynein inhibition quickly arrests Mbp mRNA transport in both directions. Chronic pharmacological dynein inhibition also abrogates Mbp mRNA distribution and dramatically decreases MBP protein levels. Thus, these cell culture and whole animal studies demonstrate a role for the retrograde dynein/dynactin motor complex in anterograde mbp mRNA transport and myelination in vivo.
Collapse
|
71
|
Domingues HS, Cruz A, Chan JR, Relvas JB, Rubinstein B, Pinto IM. Mechanical plasticity during oligodendrocyte differentiation and myelination. Glia 2017; 66:5-14. [PMID: 28940651 DOI: 10.1002/glia.23206] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 12/14/2022]
Abstract
In the central nervous system, oligodendrocyte precursor cells are exclusive in their potential to differentiate into myelinating oligodendrocytes. Oligodendrocyte precursor cells migrate within the parenchyma and extend cell membrane protrusions that ultimately evolve into myelinating sheaths able to wrap neuronal axons and significantly increase their electrical conductivity. The subcellular force generating mechanisms driving morphological and functional transformations during oligodendrocyte differentiation and myelination remain elusive. In this review, we highlight the mechanical processes governing oligodendrocyte plasticity in a dynamic interaction with the extracellular matrix.
Collapse
Affiliation(s)
| | - Andrea Cruz
- International Iberian Nanotechnology Laboratory - INL, Braga, Portugal
| | - Jonah R Chan
- Department of Neurology, University of California, San Francisco, United States of America
| | - João B Relvas
- Instituto de Biologia Molecular e Celular - IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde - I3S, Universidade do Porto, Porto, Portugal
| | - Boris Rubinstein
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Inês Mendes Pinto
- International Iberian Nanotechnology Laboratory - INL, Braga, Portugal
| |
Collapse
|
72
|
Ruskamo S, Nieminen T, Kristiansen CK, Vatne GH, Baumann A, Hallin EI, Raasakka A, Joensuu P, Bergmann U, Vattulainen I, Kursula P. Molecular mechanisms of Charcot-Marie-Tooth neuropathy linked to mutations in human myelin protein P2. Sci Rep 2017; 7:6510. [PMID: 28747762 PMCID: PMC5529448 DOI: 10.1038/s41598-017-06781-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/16/2017] [Indexed: 02/06/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is one of the most common inherited neuropathies. Recently, three CMT1-associated point mutations (I43N, T51P, and I52T) were discovered in the abundant peripheral myelin protein P2. These mutations trigger abnormal myelin structure, leading to reduced nerve conduction velocity, muscle weakness, and distal limb atrophy. P2 is a myelin-specific protein expressed by Schwann cells that binds to fatty acids and membranes, contributing to peripheral myelin lipid homeostasis. We studied the molecular basis of the P2 patient mutations. None of the CMT1-associated mutations alter the overall folding of P2 in the crystal state. P2 disease variants show increased aggregation tendency and remarkably reduced stability, T51P being most severe. In addition, P2 disease mutations affect protein dynamics. Both fatty acid binding by P2 and the kinetics of its membrane interactions are affected by the mutations. Experiments and simulations suggest opening of the β barrel in T51P, possibly representing a general mechanism in fatty acid-binding proteins. Our findings demonstrate that altered biophysical properties and functional dynamics of P2 may cause myelin defects in CMT1 patients. At the molecular level, a few malformed hydrogen bonds lead to structural instability and misregulation of conformational changes related to ligand exchange and membrane binding.
Collapse
Affiliation(s)
- Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
| | - Tuomo Nieminen
- Department of Physics, Tampere University of Technology, 33720, Tampere, Finland
| | | | - Guro H Vatne
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway
| | - Anne Baumann
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, 5021, Bergen, Norway
| | - Erik I Hallin
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway
| | - Päivi Joensuu
- Department of Sustainable Chemistry, Technical Faculty, University of Oulu, 90570, Oulu, Finland
| | - Ulrich Bergmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
- Biocenter Oulu, University of Oulu, 90220, Oulu, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, 33720, Tampere, Finland
- Department of Physics, University of Helsinki, 00560, Helsinki, Finland
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland.
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway.
| |
Collapse
|
73
|
Uversky VN. Intrinsic Disorder, Protein-Protein Interactions, and Disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 110:85-121. [PMID: 29413001 DOI: 10.1016/bs.apcsb.2017.06.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
It is recognized now that biologically active proteins without stable tertiary structure (known as intrinsically disordered proteins, IDPs) and hybrid proteins containing ordered domains and intrinsically disordered protein regions (IDPRs) are important players found in any given proteome. These IDPs/IDPRs possess functions that complement functional repertoire of their ordered counterparts, being commonly related to recognition, as well as control and regulation of various signaling pathways. They are interaction masters, being able to utilize a wide spectrum of interaction mechanisms, ranging from induced folding to formation of fuzzy complexes where significant levels of disorder are preserved, to polyvalent stochastic interactions playing crucial roles in the liquid-liquid phase transitions leading to the formation of proteinaceous membrane-less organelles. IDPs/IDPRs are tightly controlled themselves via various means, including alternative splicing, precisely controlled expression and degradation, binding to specific partners, and posttranslational modifications. Distortions in the regulation and control of IDPs/IDPRs, as well as their aberrant interactivity are commonly associated with various human diseases. This review presents some aspects of the intrinsic disorder-based functionality and dysfunctionality, paying special attention to the normal and pathological protein-protein interactions.
Collapse
Affiliation(s)
- Vladimir N Uversky
- USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| |
Collapse
|
74
|
Na I, Meng F, Kurgan L, Uversky VN. Autophagy-related intrinsically disordered proteins in intra-nuclear compartments. MOLECULAR BIOSYSTEMS 2017; 12:2798-817. [PMID: 27377881 DOI: 10.1039/c6mb00069j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent analyses indicated that autophagy can be regulated via some nuclear transcriptional networks and many important players in the autophagy and other forms of programmed cell death are known to be intrinsically disordered. To this end, we analyzed similarities and differences in the intrinsic disorder distribution of nuclear and non-nuclear proteins related to autophagy. We also looked at the peculiarities of the distribution of the intrinsically disordered autophagy-related proteins in various intra-nuclear organelles, such as the nucleolus, chromatin, Cajal bodies, nuclear speckles, promyelocytic leukemia (PML) nuclear bodies, nuclear lamina, nuclear pores, and perinucleolar compartment. This analysis revealed that the autophagy-related proteins constitute about 2.5% of the non-nuclear proteins and 3.3% of the nuclear proteins, which corresponds to a substantial enrichment by about 32% in the nucleus. Curiously, although, in general, the autophagy-related proteins share similar characteristics of disorder with a generic set of all non-nuclear proteins, chromatin and nuclear speckles are enriched in the intrinsically disordered autophagy proteins (29 and 37% of these proteins are disordered, respectively) and have high disorder content at 0.24 and 0.27, respectively. Therefore, our data suggest that some of the nuclear disordered proteins may play important roles in autophagy.
Collapse
Affiliation(s)
- Insung Na
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Fanchi Meng
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23219, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA. and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA and Biology Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia and Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
75
|
Raasakka A, Ruskamo S, Kowal J, Barker R, Baumann A, Martel A, Tuusa J, Myllykoski M, Bürck J, Ulrich AS, Stahlberg H, Kursula P. Membrane Association Landscape of Myelin Basic Protein Portrays Formation of the Myelin Major Dense Line. Sci Rep 2017; 7:4974. [PMID: 28694532 PMCID: PMC5504075 DOI: 10.1038/s41598-017-05364-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/26/2017] [Indexed: 01/06/2023] Open
Abstract
Compact myelin comprises most of the dry weight of myelin, and its insulative nature is the basis for saltatory conduction of nerve impulses. The major dense line (MDL) is a 3-nm compartment between two cytoplasmic leaflets of stacked myelin membranes, mostly occupied by a myelin basic protein (MBP) phase. MBP is an abundant myelin protein involved in demyelinating diseases, such as multiple sclerosis. The association of MBP with lipid membranes has been studied for decades, but the MBP-driven formation of the MDL remains elusive at the biomolecular level. We employed complementary biophysical methods, including atomic force microscopy, cryo-electron microscopy, and neutron scattering, to investigate the formation of membrane stacks all the way from MBP binding onto a single membrane leaflet to the organisation of a stable MDL. Our results support the formation of an amorphous protein phase of MBP between two membrane bilayers and provide a molecular model for MDL formation during myelination, which is of importance when understanding myelin assembly and demyelinating conditions.
Collapse
Affiliation(s)
- Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Julia Kowal
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Robert Barker
- School of Physical Sciences, University of Kent, Canterbury, Kent, United Kingdom
- Institut Laue-Langevin (ILL), Grenoble, France
| | - Anne Baumann
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Anne Martel
- Institut Laue-Langevin (ILL), Grenoble, France
| | - Jussi Tuusa
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Matti Myllykoski
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
76
|
Myelin structure in unfixed, single nerve fibers: Scanning X-ray microdiffraction with a beam size of 200nm. J Struct Biol 2017; 200:229-243. [PMID: 28698109 DOI: 10.1016/j.jsb.2017.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/27/2017] [Accepted: 07/07/2017] [Indexed: 11/21/2022]
Abstract
Previous raster-scanning with a 1μm X-ray beam of individual, myelinated fibers from glutaraldehyde-fixed rat sciatic nerve revealed a spatially-dependent variation in the diffraction patterns from single fibers. Analysis indicated differences in the myelin periodicity, membrane separations, distribution of proteins, and orientation of membrane lamellae. As chemical fixation is known to produce structural artifacts, we sought to determine in the current study whether the structural heterogeneity is intrinsic to unfixed myelin. Using a 200nm-beam that was about five-fold smaller than before, we raster-scanned individual myelinated fibers from both the peripheral (PNS; mouse and rat sciatic nerves) and central (CNS; rat corpus callosum) nervous systems. As expected, the membrane stacking in the internodal region was nearly parallel to the fiber axis and in the paranodal region it was perpendicular to the axis. A myelin lattice was also frequently observed when the incident beam was injected en face to the sheath. Myelin periodicity and diffracted intensity varied with axial position along the fiber, as did the calculated membrane profiles. Raster-scanning with an X-ray beam at sub-micron resolution revealed for the first time that the individual myelin sheaths in unfixed nerve are heterogeneous in both membrane structure and packing.
Collapse
|
77
|
Reorganization of Lipid Diffusion by Myelin Basic Protein as Revealed by STED Nanoscopy. Biophys J 2017; 110:2441-2450. [PMID: 27276262 PMCID: PMC4906378 DOI: 10.1016/j.bpj.2016.04.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/30/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022] Open
Abstract
Myelin is a multilayered membrane that ensheathes axonal fibers in the vertebrate nervous system, allowing fast propagation of nerve action potentials. It contains densely packed lipids, lacks an actin-based cytocortex, and requires myelin basic protein (MBP) as its major structural component. This protein is the basic constituent of the proteinaceous meshwork that is localized between adjacent cytoplasmic membranes of the myelin sheath. Yet, it is not clear how MBP influences the organization and dynamics of the lipid constituents of myelin. Here, we used optical stimulated emission depletion super-resolution microscopy in combination with fluorescence correlation spectroscopy to assess the characteristics of diffusion of different fluorescent lipid analogs in myelin membrane sheets of cultured oligodendrocytes and in micrometer-sized domains that were induced by MBP in live epithelial PtK2 cells. Lipid diffusion was significantly faster and less anomalous both in oligodendrocytes and inside the MBP-rich domains of PtK2 cells compared with undisturbed live PtK2 cells. Our data show that MBP reorganizes lipid diffusion, possibly by preventing the buildup of an actin-based cytocortex and by preventing most membrane proteins from entering the myelin sheath region. Yet, in contrast to myelin sheets in oligodendrocytes, the MBP-induced domains in epithelial PtK2 cells demonstrate no change in lipid order, indicating that segregation of long-chain lipids into myelin sheets is a process specific to oligodendrocytes.
Collapse
|
78
|
Genetic modifiers of multiple sclerosis progression, severity and onset. Clin Immunol 2017; 180:100-105. [DOI: 10.1016/j.clim.2017.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/09/2017] [Indexed: 11/20/2022]
|
79
|
Bessonov K, Vassall KA, Harauz G. Docking and molecular dynamics simulations of the Fyn-SH3 domain with free and phospholipid bilayer-associated 18.5-kDa myelin basic protein (MBP)-Insights into a noncanonical and fuzzy interaction. Proteins 2017; 85:1336-1350. [PMID: 28380689 DOI: 10.1002/prot.25295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/03/2017] [Accepted: 03/27/2017] [Indexed: 01/06/2023]
Abstract
The molecular details of the association between the human Fyn-SH3 domain, and the fragment of 18.5-kDa myelin basic protein (MBP) spanning residues S38-S107 (denoted as xα2-peptide, murine sequence numbering), were studied in silico via docking and molecular dynamics over 50-ns trajectories. The results show that interaction between the two proteins is energetically favorable and heavily dependent on the MBP proline-rich region (P93-P98) in both aqueous and membrane environments. In aqueous conditions, the xα2-peptide/Fyn-SH3 complex adopts a "sandwich""-like structure. In the membrane context, the xα2-peptide interacts with the Fyn-SH3 domain via the proline-rich region and the β-sheets of Fyn-SH3, with the latter wrapping around the proline-rich region in a form of a clip. Moreover, the simulations corroborate prior experimental evidence of the importance of upstream segments beyond the canonical SH3-ligand. This study thus provides a more-detailed glimpse into the context-dependent interaction dynamics and importance of the β-sheets in Fyn-SH3 and proline-rich region of MBP. Proteins 2017; 85:1336-1350. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kyrylo Bessonov
- Systems and Modeling Unit, Montefiore Institute, Université de Liège, Quartier Polytech 1, Allée de la Découverte 10, Liège, 4000, Belgium
| | - Kenrick A Vassall
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group, and Collaborative Program in Neuroscience, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group, and Collaborative Program in Neuroscience, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
80
|
Stroberg W, Schnell S. On the origin of non-membrane-bound organelles, and their physiological function. J Theor Biol 2017; 434:42-49. [PMID: 28392184 DOI: 10.1016/j.jtbi.2017.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 12/28/2022]
Abstract
The origin of cellular compartmentalization has long been viewed as paralleling the origin of life. Historically, membrane-bound organelles have been presented as the canonical examples of compartmentalization. However, recent interest in cellular compartments that lack encompassing membranes has forced biologists to reexamine the form and function of cellular organization. The intracellular environment is now known to be full of transient macromolecular structures that are essential to cellular function, especially in relation to RNA regulation. Here we discuss key findings regarding the physicochemical principles governing the formation and function of non-membrane-bound organelles. Particularly, we focus how the physiological function of non-membrane-bound organelles depends on their molecular structure. We also present a potential mechanism for the formation of non-membrane-bound organelles. We conclude with suggestions for future inquiry into the diversity of roles played by non-membrane bound organelles.
Collapse
Affiliation(s)
- Wylie Stroberg
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| |
Collapse
|
81
|
Tuusa J, Raasakka A, Ruskamo S, Kursula P. Myelin-derived and putative molecular mimic peptides share structural properties in aqueous and membrane-like environments. ACTA ACUST UNITED AC 2017. [DOI: 10.1186/s40893-017-0021-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
82
|
Snaidero N, Simons M. The logistics of myelin biogenesis in the central nervous system. Glia 2017; 65:1021-1031. [DOI: 10.1002/glia.23116] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Nicolas Snaidero
- Institute of Neuronal Cell Biology, Technical University Munich; Munich 80805 Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich; Munich 80805 Germany
- German Center for Neurodegenerative Disease (DZNE); Munich 6250 Germany
- Cellular Neuroscience; Max Planck Institute of Experimental Medicine; Göttingen 37075 Germany
- Munich Cluster for Systems Neurology (SyNergy); Munich 81377 Germany
| |
Collapse
|
83
|
Protein intrinsic disorder-based liquid-liquid phase transitions in biological systems: Complex coacervates and membrane-less organelles. Adv Colloid Interface Sci 2017; 239:97-114. [PMID: 27291647 DOI: 10.1016/j.cis.2016.05.012] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/24/2016] [Indexed: 12/18/2022]
Abstract
It is clear now that eukaryotic cells contain numerous membrane-less organelles, many of which are formed in response to changes in the cellular environment. Being typically liquid in nature, many of these organelles can be described as products of the reversible and highly controlled liquid-liquid phase transitions in biological systems. Many of these membrane-less organelles are complex coacervates containing (almost invariantly) intrinsically disordered proteins and often nucleic acids. It seems that the lack of stable structure in major proteinaceous constituents of these organelles is crucial for the formation of phase-separated droplets. This review considers several biologically relevant liquid-liquid phase transitions, introduces some general features attributed to intrinsically disordered proteins, represents several illustrative examples of intrinsic disorder-based phase separation, and provides some reasons for the abundance of intrinsically disordered proteins in organelles formed as a result of biological liquid-liquid phase transitions.
Collapse
|
84
|
A thermodynamic analysis of the effects of myelin basic protein (MBP) on DPPS and DPPG monolayers. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
85
|
Romanelli E, Merkler D, Mezydlo A, Weil MT, Weber MS, Nikić I, Potz S, Meinl E, Matznick FEH, Kreutzfeldt M, Ghanem A, Conzelmann KK, Metz I, Brück W, Routh M, Simons M, Bishop D, Misgeld T, Kerschensteiner M. Myelinosome formation represents an early stage of oligodendrocyte damage in multiple sclerosis and its animal model. Nat Commun 2016; 7:13275. [PMID: 27848954 PMCID: PMC5116090 DOI: 10.1038/ncomms13275] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 09/19/2016] [Indexed: 12/14/2022] Open
Abstract
Oligodendrocyte damage is a central event in the pathogenesis of the common neuroinflammatory condition, multiple sclerosis (MS). Where and how oligodendrocyte damage is initiated in MS is not completely understood. Here, we use a combination of light and electron microscopy techniques to provide a dynamic and highly resolved view of oligodendrocyte damage in neuroinflammatory lesions. We show that both in MS and in its animal model structural damage is initiated at the myelin sheaths and only later spreads to the oligodendrocyte cell body. Early myelin damage itself is characterized by the formation of local myelin out-foldings-'myelinosomes'-, which are surrounded by phagocyte processes and promoted in their formation by anti-myelin antibodies and complement. The presence of myelinosomes in actively demyelinating MS lesions suggests that oligodendrocyte damage follows a similar pattern in the human disease, where targeting demyelination by therapeutic interventions remains a major open challenge.
Collapse
Affiliation(s)
- Elisa Romanelli
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Aleksandra Mezydlo
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Marie-Theres Weil
- Max-Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
- Department of Neurology, Georg-August University Göttingen, 37075 Göttingen, Germany
| | - Martin S. Weber
- Department of Neurology, Georg-August University Göttingen, 37075 Göttingen, Germany
- Institute of Neuropathology, Georg-August University Göttingen, 37075 Göttingen, Germany
| | - Ivana Nikić
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Stephanie Potz
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Florian E. H. Matznick
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Alexander Ghanem
- Max von Pettenkofer-Institute and Gene Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer-Institute and Gene Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Imke Metz
- Institute of Neuropathology, Georg-August University Göttingen, 37075 Göttingen, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, Georg-August University Göttingen, 37075 Göttingen, Germany
| | - Matthew Routh
- Department of Physiology and Health Science, Ball State University, Muncie, Indiana 47306, USA
| | - Mikael Simons
- Max-Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
- Department of Neurology, Georg-August University Göttingen, 37075 Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Derron Bishop
- Department of Cellular and Integrative Physiology and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Thomas Misgeld
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, 80802 Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany
- Center of Integrated Protein Sciences (CIPS), 81377 Munich, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany
| |
Collapse
|
86
|
Uversky VN. Intrinsically disordered proteins in overcrowded milieu: Membrane-less organelles, phase separation, and intrinsic disorder. Curr Opin Struct Biol 2016; 44:18-30. [PMID: 27838525 DOI: 10.1016/j.sbi.2016.10.015] [Citation(s) in RCA: 452] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/08/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022]
Abstract
Although the cellular interior is crowded with various biological macromolecules, the distribution of these macromolecules is highly inhomogeneous. Eukaryotic cells contain numerous proteinaceous membrane-less organelles (PMLOs), which are condensed liquid droplets formed as a result of the reversible and highly controlled liquid-liquid phase transitions. The interior of these cellular bodies represents an overcrowded milieu, since their protein concentrations are noticeably higher than those of the crowded cytoplasm and nucleoplasm. PMLOs are different in size, shape, and composition, and almost invariantly contain intrinsically disordered proteins (e.g., eIF4B and TDP43 in stress granules, TTP in P-bodies, RDE-12 in nuage, RNG105 in RNA granules, centrins in centrosomes, NOPP140 in nucleoli, SRSF4 in nuclear speckles, Saf-B in nuclear stress bodies, NOLC1 in Cajal bodies, CBP in PML nuclear bodies, SOX9 in paraspeckles, KSRP in perinucleolar compartment, and hnRNPG and Sam68 in Sam68 nuclear body, to name a few), which indicates that the formation of these phase-separated droplets is crucially dependent on intrinsic disorder. The goal of this review is to show the roles of intrinsic disorder in the magic behind biological liquid-liquid phase transitions that lead to the formation of PMLOs.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation.
| |
Collapse
|
87
|
Shaharabani R, Ram-On M, Avinery R, Aharoni R, Arnon R, Talmon Y, Beck R. Structural Transition in Myelin Membrane as Initiator of Multiple Sclerosis. J Am Chem Soc 2016; 138:12159-65. [DOI: 10.1021/jacs.6b04826] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Rona Shaharabani
- Raymond & Beverly Sackler School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- Tel
Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Maor Ram-On
- Department
of Chemical Engineering and the Russell Berrie Nanotechnology Institute
(RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Ram Avinery
- Tel
Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Raymond & Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Rina Aharoni
- Department
of Immunology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ruth Arnon
- Department
of Immunology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yeshayahu Talmon
- Department
of Chemical Engineering and the Russell Berrie Nanotechnology Institute
(RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Roy Beck
- Tel
Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Raymond & Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School
of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
88
|
Ozgen H, Baron W, Hoekstra D, Kahya N. Oligodendroglial membrane dynamics in relation to myelin biogenesis. Cell Mol Life Sci 2016; 73:3291-310. [PMID: 27141942 PMCID: PMC4967101 DOI: 10.1007/s00018-016-2228-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/14/2016] [Indexed: 12/12/2022]
Abstract
In the central nervous system, oligodendrocytes synthesize a specialized membrane, the myelin membrane, which enwraps the axons in a multilamellar fashion to provide fast action potential conduction and to ensure axonal integrity. When compared to other membranes, the composition of myelin membranes is unique with its relatively high lipid to protein ratio. Their biogenesis is quite complex and requires a tight regulation of sequential events, which are deregulated in demyelinating diseases such as multiple sclerosis. To devise strategies for remedying such defects, it is crucial to understand molecular mechanisms that underlie myelin assembly and dynamics, including the ability of specific lipids to organize proteins and/or mediate protein-protein interactions in healthy versus diseased myelin membranes. The tight regulation of myelin membrane formation has been widely investigated with classical biochemical and cell biological techniques, both in vitro and in vivo. However, our knowledge about myelin membrane dynamics, such as membrane fluidity in conjunction with the movement/diffusion of proteins and lipids in the membrane and the specificity and role of distinct lipid-protein and protein-protein interactions, is limited. Here, we provide an overview of recent findings about the myelin structure in terms of myelin lipids, proteins and membrane microdomains. To give insight into myelin membrane dynamics, we will particularly highlight the application of model membranes and advanced biophysical techniques, i.e., approaches which clearly provide an added value to insight obtained by classical biochemical techniques.
Collapse
Affiliation(s)
- Hande Ozgen
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Wia Baron
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| | - Dick Hoekstra
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Nicoletta Kahya
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
89
|
Weil MT, Möbius W, Winkler A, Ruhwedel T, Wrzos C, Romanelli E, Bennett JL, Enz L, Goebels N, Nave KA, Kerschensteiner M, Schaeren-Wiemers N, Stadelmann C, Simons M. Loss of Myelin Basic Protein Function Triggers Myelin Breakdown in Models of Demyelinating Diseases. Cell Rep 2016. [PMID: 27346352 DOI: 10.1016/j.celrep.2016.06.008;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Breakdown of myelin sheaths is a pathological hallmark of several autoimmune diseases of the nervous system. We employed autoantibody-mediated animal models of demyelinating diseases, including a rat model of neuromyelitis optica (NMO), to target myelin and found that myelin lamellae are broken down into vesicular structures at the innermost region of the myelin sheath. We demonstrated that myelin basic proteins (MBP), which form a polymer in between the myelin membrane layers, are targeted in these models. Elevation of intracellular Ca(2+) levels resulted in MBP network disassembly and myelin vesiculation. We propose that the aberrant phase transition of MBP molecules from their cohesive to soluble and non-adhesive state is a mechanism triggering myelin breakdown in NMO and possibly in other demyelinating diseases.
Collapse
Affiliation(s)
- Marie-Theres Weil
- Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075 Göttingen, Germany
| | - Anne Winkler
- Department of Neuropathology, University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075 Göttingen, Germany
| | - Claudia Wrzos
- Department of Neuropathology, University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Elisa Romanelli
- Institute of Clinical Neuroimmunology and Biomedical Center, Ludwig-Maximillians University, 80539 Munich, Germany
| | - Jeffrey L Bennett
- Departments of Neurology, University of Denver, Denver, CO 80045, USA
| | - Lukas Enz
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Norbert Goebels
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075 Göttingen, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology and Biomedical Center, Ludwig-Maximillians University, 80539 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Nicole Schaeren-Wiemers
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Christine Stadelmann
- Department of Neuropathology, University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Mikael Simons
- Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Institute of Neuronal Cell Biology, Technical University Munich, 80805 Munich, Germany; German Center for Neurodegenerative Disease (DZNE), 6250 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany.
| |
Collapse
|
90
|
Loss of Myelin Basic Protein Function Triggers Myelin Breakdown in Models of Demyelinating Diseases. Cell Rep 2016; 16:314-322. [PMID: 27346352 PMCID: PMC4949381 DOI: 10.1016/j.celrep.2016.06.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/22/2016] [Accepted: 05/26/2016] [Indexed: 11/23/2022] Open
Abstract
Breakdown of myelin sheaths is a pathological hallmark of several autoimmune diseases of the nervous system. We employed autoantibody-mediated animal models of demyelinating diseases, including a rat model of neuromyelitis optica (NMO), to target myelin and found that myelin lamellae are broken down into vesicular structures at the innermost region of the myelin sheath. We demonstrated that myelin basic proteins (MBP), which form a polymer in between the myelin membrane layers, are targeted in these models. Elevation of intracellular Ca(2+) levels resulted in MBP network disassembly and myelin vesiculation. We propose that the aberrant phase transition of MBP molecules from their cohesive to soluble and non-adhesive state is a mechanism triggering myelin breakdown in NMO and possibly in other demyelinating diseases.
Collapse
|
91
|
Chang KJ, Redmond SA, Chan JR. Remodeling myelination: implications for mechanisms of neural plasticity. Nat Neurosci 2016; 19:190-7. [PMID: 26814588 DOI: 10.1038/nn.4200] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 10/12/2015] [Indexed: 02/08/2023]
Abstract
One of the most significant paradigm shifts in membrane remodeling is the emerging view that membrane transformation is not exclusively controlled by cytoskeletal rearrangement, but also by biophysical constraints, adhesive forces, membrane curvature and compaction. One of the most exquisite examples of membrane remodeling is myelination. The advent of myelin was instrumental in advancing the nervous system during vertebrate evolution. With more rapid and efficient communication between neurons, faster and more complex computations could be performed in a given time and space. Our knowledge of how myelin-forming oligodendrocytes select and wrap axons has been limited by insufficient spatial and temporal resolution. By virtue of recent technological advances, progress has clarified longstanding controversies in the field. Here we review insights into myelination, from target selection to axon wrapping and membrane compaction, and discuss how understanding these processes has unexpectedly opened new avenues of insight into myelination-centered mechanisms of neural plasticity.
Collapse
Affiliation(s)
- Kae-Jiun Chang
- Department of Neurology, University of California, San Francisco, California, USA
| | - Stephanie A Redmond
- Department of Neurology, University of California, San Francisco, California, USA.,Program in Neuroscience, University of California, San Francisco, California, USA
| | - Jonah R Chan
- Department of Neurology, University of California, San Francisco, California, USA.,Program in Neuroscience, University of California, San Francisco, California, USA
| |
Collapse
|
92
|
Substitutions mimicking deimination and phosphorylation of 18.5-kDa myelin basic protein exert local structural effects that subtly influence its global folding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1262-77. [DOI: 10.1016/j.bbamem.2016.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/30/2016] [Accepted: 02/17/2016] [Indexed: 11/20/2022]
|
93
|
Huang L, Wickramasekara SI, Akinyeke T, Stewart BS, Jiang Y, Raber J, Maier CS. Ion mobility-enhanced MS(E)-based label-free analysis reveals effects of low-dose radiation post contextual fear conditioning training on the mouse hippocampal proteome. J Proteomics 2016; 140:24-36. [PMID: 27020882 PMCID: PMC5029422 DOI: 10.1016/j.jprot.2016.03.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 11/15/2022]
Abstract
UNLABELLED Recent advances in the field of biodosimetry have shown that the response of biological systems to ionizing radiation is complex and depends on the type and dose of radiation, the tissue(s) exposed, and the time lapsed after exposure. The biological effects of low dose radiation on learning and memory are not well understood. An ion mobility-enhanced data-independent acquisition (MS(E)) approach in conjunction with the ISOQuant software tool was utilized for label-free quantification of hippocampal proteins with the goal of determining protein alteration associated with low-dose whole body ionizing radiation (X-rays, 1Gy) of 5.5-month-old male C57BL/6J mice post contextual fear conditioning training. Global proteome analysis revealed deregulation of 73 proteins (out of 399 proteins). Deregulated proteins indicated adverse effects of irradiation on myelination and perturbation of energy metabolism pathways involving a shift from the TCA cycle to glutamate oxidation. Our findings also indicate that proteins associated with synaptic activity, including vesicle recycling and neurotransmission, were altered in the irradiated mice. The elevated LTP and decreased LTD suggest improved synaptic transmission and enhanced efficiency of neurotransmitter release which would be consistent with the observed comparable contextual fear memory performance of the mice following post-training whole body or sham-irradiation. SIGNIFICANCE This study is significant because the biological consequences of low dose radiation on learning and memory are complex and not yet well understood. We conducted a IMS-enhanced MS(E)-based label-free quantitative proteomic analysis of hippocampal tissue with the goal of determining protein alteration associated with low-dose whole body ionizing radiation (X-ray, 1Gy) of 5.5-month-old male C57BL/6J mice post contextual fear conditioning training. The IMS-enhanced MS(E) approach in conjunction with ISOQuant software was robust and accurate with low median CV values of 0.99% for the technical replicates of samples from both the sham and irradiated group. The biological variance was as low as 1.61% for the sham group and 1.31% for the irradiated group. The applied data generation and processing workflow allowed the quantitative evaluation of 399 proteins. The current proteomic analysis indicates that myelination is sensitive to low dose radiation. The observed protein level changes imply modulation of energy metabolism pathways in the radiation exposed group, specifically changes in protein abundance levels suggest a shift from TCA cycle to glutamate oxidation to satisfy energy demands. Most significantly, our study reveals deregulation of proteins involved in processes that govern synaptic activity including enhanced synaptic vesicle cycling, and altered long-term potentiation (LTP) and depression (LTD). An elevated LTP and decreased LTD suggest improved synaptic transmission and enhanced efficiency of neurotransmitter release which is consistent with the observed comparable contextual fear memory performance of the mice following post-training whole body or sham-irradiation. Overall, our results underscore the importance of low dose radiation experiments for illuminating the sensitivity of biochemical pathways to radiation, and the modulation of potential repair and compensatory response mechanisms. This kind of studies and associated findings may ultimately lead to the design of strategies for ameliorating hippocampal and CNS injury following radiation exposure as part of medical therapies or as a consequence of occupational hazards.
Collapse
Affiliation(s)
- Lin Huang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | | | - Tunde Akinyeke
- Department of Behavioral Neuroscience, Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Blair S Stewart
- Department of Behavioral Neuroscience, Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Yuan Jiang
- Department of Statistics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jacob Raber
- Department of Behavioral Neuroscience, Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon 97239, United States; Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.
| |
Collapse
|
94
|
Thakurela S, Garding A, Jung RB, Müller C, Goebbels S, White R, Werner HB, Tiwari VK. The transcriptome of mouse central nervous system myelin. Sci Rep 2016; 6:25828. [PMID: 27173133 PMCID: PMC4865983 DOI: 10.1038/srep25828] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/21/2016] [Indexed: 01/03/2023] Open
Abstract
Rapid nerve conduction in the CNS is facilitated by insulation of axons with myelin, a specialized oligodendroglial compartment distant from the cell body. Myelin is turned over and adapted throughout life; however, the molecular and cellular basis of myelin dynamics remains elusive. Here we performed a comprehensive transcriptome analysis (RNA-seq) of myelin biochemically purified from mouse brains at various ages and find a surprisingly large pool of transcripts enriched in myelin. Further computational analysis showed that the myelin transcriptome is closely related to the myelin proteome but clearly distinct from the transcriptomes of oligodendrocytes and brain tissues, suggesting a highly selective incorporation of mRNAs into the myelin compartment. The mRNA-pool in myelin displays maturation-dependent dynamic changes of composition, abundance, and functional associations; however ageing-dependent changes after 6 months were minor. We suggest that this transcript pool enables myelin turnover and the local adaptation of individual pre-existing myelin sheaths.
Collapse
Affiliation(s)
| | - Angela Garding
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Ramona B. Jung
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Christina Müller
- Institute of Physiology, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Robin White
- Institute of Physiology, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Hauke B. Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | | |
Collapse
|
95
|
Simons K. Cell membranes: A subjective perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2569-2572. [PMID: 26827711 DOI: 10.1016/j.bbamem.2016.01.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 11/29/2022]
Abstract
Cell membranes have developed a tremendous complexity of lipids and proteins geared to perform the functions cells require. The lipids have for long remained in the background and are now regaining their role as important building blocks of cells. Their main function is to form the matrix of our cell membranes where they support a variety of functions essential for life. This 2-dimensional fluid matrix has evolved unexpected material properties that involve both lipid-lipid and lipid-protein interactions. This perspective is a short summary of the challenges that this field faces and discusses potential ways and means for coming to grips with the properties of this incredible fluid. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Kai Simons
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany.
| |
Collapse
|
96
|
Yoon H, Kleven A, Paulsen A, Kleppe L, Wu J, Ying Z, Gomez-Pinilla F, Scarisbrick IA. Interplay between exercise and dietary fat modulates myelinogenesis in the central nervous system. Biochim Biophys Acta Mol Basis Dis 2016; 1862:545-555. [PMID: 26826016 DOI: 10.1016/j.bbadis.2016.01.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/15/2015] [Accepted: 01/14/2016] [Indexed: 12/14/2022]
Abstract
Here we show that the interplay between exercise training and dietary fat regulates myelinogenesis in the adult central nervous system. Mice consuming high fat with coordinate voluntary running wheel exercise for 7weeks showed increases in the abundance of the major myelin membrane proteins, proteolipid (PLP) and myelin basic protein (MBP), in the lumbosacral spinal cord. Expression of MBP and PLP RNA, as well that for Myrf1, a transcription factor driving oligodendrocyte differentiation were also differentially increased under each condition. Furthermore, expression of IGF-1 and its receptor IGF-1R, known to promote myelinogenesis, were also increased in the spinal cord in response to high dietary fat or exercise training. Parallel increases in AKT signaling, a pro-myelination signaling intermediate activated by IGF-1, were also observed in the spinal cord of mice consuming high fat alone or in combination with exercise. Despite the pro-myelinogenic effects of high dietary fat in the context of exercise, high fat consumption in the setting of a sedentary lifestyle reduced OPCs and mature oligodendroglia. Whereas 7weeks of exercise training alone did not alter OPC or oligodendrocyte numbers, it did reverse reductions seen with high fat. Evidence is presented suggesting that the interplay between exercise and high dietary fat increase SIRT1, PGC-1α and antioxidant enzymes which may permit oligodendroglia to take advantage of diet and exercise-related increases in mitochondrial activity to yield increases in myelination despite higher levels of reactive oxygen species.
Collapse
Affiliation(s)
- Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew Kleven
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA
| | - Alex Paulsen
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA
| | - Laurel Kleppe
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA
| | - Jianmin Wu
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA 90095, USA
| | | | - Isobel A Scarisbrick
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
97
|
Meng F, Na I, Kurgan L, Uversky VN. Compartmentalization and Functionality of Nuclear Disorder: Intrinsic Disorder and Protein-Protein Interactions in Intra-Nuclear Compartments. Int J Mol Sci 2015; 17:ijms17010024. [PMID: 26712748 PMCID: PMC4730271 DOI: 10.3390/ijms17010024] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/23/2015] [Accepted: 12/18/2015] [Indexed: 01/12/2023] Open
Abstract
The cell nucleus contains a number of membrane-less organelles or intra-nuclear compartments. These compartments are dynamic structures representing liquid-droplet phases which are only slightly denser than the bulk intra-nuclear fluid. They possess different functions, have diverse morphologies, and are typically composed of RNA (or, in some cases, DNA) and proteins. We analyzed 3005 mouse proteins localized in specific intra-nuclear organelles, such as nucleolus, chromatin, Cajal bodies, nuclear speckles, promyelocytic leukemia (PML) nuclear bodies, nuclear lamina, nuclear pores, and perinuclear compartment and compared them with ~29,863 non-nuclear proteins from mouse proteome. Our analysis revealed that intrinsic disorder is enriched in the majority of intra-nuclear compartments, except for the nuclear pore and lamina. These compartments are depleted in proteins that lack disordered domains and enriched in proteins that have multiple disordered domains. Moonlighting proteins found in multiple intra-nuclear compartments are more likely to have multiple disordered domains. Protein-protein interaction networks in the intra-nuclear compartments are denser and include more hubs compared to the non-nuclear proteins. Hubs in the intra-nuclear compartments (except for the nuclear pore) are enriched in disorder compared with non-nuclear hubs and non-nuclear proteins. Therefore, our work provides support to the idea of the functional importance of intrinsic disorder in the cell nucleus and shows that many proteins associated with sub-nuclear organelles in nuclei of mouse cells are enriched in disorder. This high level of disorder in the mouse nuclear proteins defines their ability to serve as very promiscuous binders, possessing both large quantities of potential disorder-based interaction sites and the ability of a single such site to be involved in a large number of interactions.
Collapse
Affiliation(s)
- Fanchi Meng
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada.
| | - Insung Na
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Lukasz Kurgan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada.
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23219, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- University of South Florida Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region 142292, Russian.
- Biology Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg 194064, Russian.
| |
Collapse
|
98
|
A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation. Cell 2015; 162:1066-77. [PMID: 26317470 DOI: 10.1016/j.cell.2015.07.047] [Citation(s) in RCA: 1886] [Impact Index Per Article: 209.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/10/2015] [Accepted: 07/14/2015] [Indexed: 01/20/2023]
Abstract
Many proteins contain disordered regions of low-sequence complexity, which cause aging-associated diseases because they are prone to aggregate. Here, we study FUS, a prion-like protein containing intrinsically disordered domains associated with the neurodegenerative disease ALS. We show that, in cells, FUS forms liquid compartments at sites of DNA damage and in the cytoplasm upon stress. We confirm this by reconstituting liquid FUS compartments in vitro. Using an in vitro "aging" experiment, we demonstrate that liquid droplets of FUS protein convert with time from a liquid to an aggregated state, and this conversion is accelerated by patient-derived mutations. We conclude that the physiological role of FUS requires forming dynamic liquid-like compartments. We propose that liquid-like compartments carry the trade-off between functionality and risk of aggregation and that aberrant phase transitions within liquid-like compartments lie at the heart of ALS and, presumably, other age-related diseases.
Collapse
|
99
|
MyelStones: the executive roles of myelin basic protein in myelin assembly and destabilization in multiple sclerosis. Biochem J 2015; 472:17-32. [DOI: 10.1042/bj20150710] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The classic isoforms of myelin basic protein (MBP, 14–21.5 kDa) are essential to formation of the multilamellar myelin sheath of the mammalian central nervous system (CNS). The predominant 18.5-kDa isoform links together the cytosolic surfaces of oligodendrocytes, but additionally participates in cytoskeletal turnover and membrane extension, Fyn-mediated signalling pathways, sequestration of phosphoinositides and maintenance of calcium homoeostasis. All MBP isoforms are intrinsically disordered proteins (IDPs) that interact via molecular recognition fragments (MoRFs), which thereby undergo local disorder-to-order transitions. Their conformations and associations are modulated by environment and by a dynamic barcode of post-translational modifications, particularly phosphorylation by mitogen-activated and other protein kinases and deimination [a hallmark of demyelination in multiple sclerosis (MS)]. The MBPs are thus to myelin what basic histones are to chromatin. Originally thought to be merely structural proteins forming an inert spool, histones are now known to be dynamic entities involved in epigenetic regulation and diseases such as cancer. Analogously, the MBPs are not mere adhesives of compact myelin, but active participants in oligodendrocyte proliferation and in membrane process extension and stabilization during myelinogenesis. A central segment of these proteins is pivotal in membrane-anchoring and SH3 domain (Src homology 3) interaction. We discuss in the present review advances in our understanding of conformational conversions of this classic basic protein upon membrane association, including new thermodynamic analyses of transitions into different structural ensembles and how a shift in the pattern of its post-translational modifications is associated with the pathogenesis and potentially onset of demyelination in MS.
Collapse
|
100
|
Inouye H, Kirschner DA. Evolution of myelin ultrastructure and the major structural myelin proteins. Brain Res 2015; 1641:43-63. [PMID: 26519753 DOI: 10.1016/j.brainres.2015.10.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/17/2015] [Accepted: 10/21/2015] [Indexed: 01/16/2023]
Abstract
Myelin sheaths, as the specialized tissue wrapping the nerve fibers in the central and peripheral nervous systems (CNS and PNS), are responsible for rapid conduction of electrical signals in these fibers. We compare the nerve myelin sheaths of different phylogenetic origins-including mammal, rodent, bird, reptile, amphibian, lungfish, teleost, and elasmobranch-with respect to periodicities and inter-membrane separations at their cytoplasmic and extracellular appositions, and correlate these structural parameters with biochemical composition. P0 glycoprotein and P0-like proteins are present in PNS of terrestrial species or land vertebrates (Tetrapod) and in CNS and PNS of aquatic species. Proteolipid protein (PLP) is a major component only in the CNS myelin of terrestrial species and is involved in compaction of the extracellular apposition. The myelin structures of aquatic garfish and lungfish, which contain P0-like protein both in CNS and PNS, are similar to those of terrestrial species, indicating that they may be transitional organisms between water and land species. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
Affiliation(s)
- Hideyo Inouye
- Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Daniel A Kirschner
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3811, USA.
| |
Collapse
|