51
|
Skjaerven L, Muga A, Reuter N, Martinez A. A dynamic model of long-range conformational adaptations triggered by nucleotide binding in GroEL-GroES. Proteins 2012; 80:2333-46. [PMID: 22576372 DOI: 10.1002/prot.24113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/26/2012] [Accepted: 05/04/2012] [Indexed: 11/09/2022]
Abstract
The molecular chaperone, GroEL, essential for correct protein folding in E. coli, is composed of 14 identical subunits organized in two interacting rings, each providing a folding chamber for non-native substrate proteins. The oligomeric assembly shows positive cooperativity within each ring and negative cooperativity between the rings. Although it is well known that ATP and long-range allosteric interactions drive the functional cycle of GroEL, an atomic resolution view of how ligand binding modulates conformational adaptations over long distances remains a major challenge. Moreover, little is known on the relation between equilibrium dynamics at physiological temperatures and the allosteric transitions in GroEL. Here we present multiple all-atom molecular dynamics simulations of the GroEL-GroES assemblies at different stages of the functional cycle. Combined with an extensive analysis of the complete set of experimentally available structures, principal component analysis and conformer plots, we provide an explicit evaluation of the accessible conformational space of unliganded GroEL. Our results suggest the presence of pre-existing conformers at the equatorial domain level, and a shift of the conformational ensemble upon ATP-binding. At the inter-ring interface the simulations capture a remarkable offset motion of helix D triggered by ATP-binding to the folding active ring. The reorientation of helix D, previously only observed upon GroES association, correlates with a change of the internal dynamics in the opposite ring. This work contributes to the understanding of the molecular mechanisms in GroEL and highlights the ability of all-atom MD simulations to model long-range structural changes and allosteric events in large systems.
Collapse
Affiliation(s)
- Lars Skjaerven
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | | | | | | |
Collapse
|
52
|
Shadrina MS, English AM, Peslherbe GH. Effective Simulations of Gas Diffusion Through Kinetically Accessible Tunnels in Multisubunit Proteins: O2 Pathways and Escape Routes in T-state Deoxyhemoglobin. J Am Chem Soc 2012; 134:11177-84. [DOI: 10.1021/ja300903c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maria S. Shadrina
- Department
of Chemistry and Biochemistry and Centre
for Research in Molecular Modeling, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada H4B 1R6
| | - Ann M. English
- Department
of Chemistry and Biochemistry and Centre
for Research in Molecular Modeling, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada H4B 1R6
| | - Gilles H. Peslherbe
- Department
of Chemistry and Biochemistry and Centre
for Research in Molecular Modeling, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada H4B 1R6
| |
Collapse
|
53
|
Kim K, Muniyappan S, Oang KY, Kim JG, Nozawa S, Sato T, Koshihara SY, Henning R, Kosheleva I, Ki H, Kim Y, Kim TW, Kim J, Adachi SI, Ihee H. Direct observation of cooperative protein structural dynamics of homodimeric hemoglobin from 100 ps to 10 ms with pump-probe X-ray solution scattering. J Am Chem Soc 2012; 134:7001-8. [PMID: 22494177 PMCID: PMC3337689 DOI: 10.1021/ja210856v] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Indexed: 01/11/2023]
Abstract
Proteins serve as molecular machines in performing their biological functions, but the detailed structural transitions are difficult to observe in their native aqueous environments in real time. For example, despite extensive studies, the solution-phase structures of the intermediates along the allosteric pathways for the transitions between the relaxed (R) and tense (T) forms have been elusive. In this work, we employed picosecond X-ray solution scattering and novel structural analysis to track the details of the structural dynamics of wild-type homodimeric hemoglobin (HbI) from the clam Scapharca inaequivalvis and its F97Y mutant over a wide time range from 100 ps to 56.2 ms. From kinetic analysis of the measured time-resolved X-ray solution scattering data, we identified three structurally distinct intermediates (I(1), I(2), and I(3)) and their kinetic pathways common for both the wild type and the mutant. The data revealed that the singly liganded and unliganded forms of each intermediate share the same structure, providing direct evidence that the ligand photolysis of only a single subunit induces the same structural change as the complete photolysis of both subunits does. In addition, by applying novel structural analysis to the scattering data, we elucidated the detailed structural changes in the protein, including changes in the heme-heme distance, the quaternary rotation angle of subunits, and interfacial water gain/loss. The earliest, R-like I(1) intermediate is generated within 100 ps and transforms to the R-like I(2) intermediate with a time constant of 3.2 ± 0.2 ns. Subsequently, the late, T-like I(3) intermediate is formed via subunit rotation, a decrease in the heme-heme distance, and substantial gain of interfacial water and exhibits ligation-dependent formation kinetics with time constants of 730 ± 120 ns for the fully photolyzed form and 5.6 ± 0.8 μs for the partially photolyzed form. For the mutant, the overall kinetics are accelerated, and the formation of the T-like I(3) intermediate involves interfacial water loss (instead of water entry) and lacks the contraction of the heme-heme distance, thus underscoring the dramatic effect of the F97Y mutation. The ability to keep track of the detailed movements of the protein in aqueous solution in real time provides new insights into the protein structural dynamics.
Collapse
Affiliation(s)
- Kyung
Hwan Kim
- Center for Time-Resolved Diffraction,
Department of Chemistry, Graduate School of Nanoscience & Technology
(WCU), KAIST, Daejeon, 305-701, Republic
of Korea
| | - Srinivasan Muniyappan
- Center for Time-Resolved Diffraction,
Department of Chemistry, Graduate School of Nanoscience & Technology
(WCU), KAIST, Daejeon, 305-701, Republic
of Korea
| | - Key Young Oang
- Center for Time-Resolved Diffraction,
Department of Chemistry, Graduate School of Nanoscience & Technology
(WCU), KAIST, Daejeon, 305-701, Republic
of Korea
| | - Jong Goo Kim
- Center for Time-Resolved Diffraction,
Department of Chemistry, Graduate School of Nanoscience & Technology
(WCU), KAIST, Daejeon, 305-701, Republic
of Korea
| | - Shunsuke Nozawa
- Photon Factory,
Institute of
Materials Structure Science, High Energy Accelerator
Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki
305-0801, Japan
| | - Tokushi Sato
- Photon Factory,
Institute of
Materials Structure Science, High Energy Accelerator
Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki
305-0801, Japan
| | - Shin-ya Koshihara
- Department
of Chemistry and Materials
Science, Tokyo Institute of Technology and
CREST, Japan Science and Technology Agency (JST), Meguro-ku, Tokyo 152-8551, Japan
| | - Robert Henning
- Center for Advanced Radiation
Sources, The University of Chicago, Chicago,
Illinois 60637, United States
| | - Irina Kosheleva
- Center for Advanced Radiation
Sources, The University of Chicago, Chicago,
Illinois 60637, United States
| | - Hosung Ki
- Center for Time-Resolved Diffraction,
Department of Chemistry, Graduate School of Nanoscience & Technology
(WCU), KAIST, Daejeon, 305-701, Republic
of Korea
| | - Youngmin Kim
- Center for Time-Resolved Diffraction,
Department of Chemistry, Graduate School of Nanoscience & Technology
(WCU), KAIST, Daejeon, 305-701, Republic
of Korea
| | - Tae Wu Kim
- Center for Time-Resolved Diffraction,
Department of Chemistry, Graduate School of Nanoscience & Technology
(WCU), KAIST, Daejeon, 305-701, Republic
of Korea
| | - Jeongho Kim
- Center for Time-Resolved Diffraction,
Department of Chemistry, Graduate School of Nanoscience & Technology
(WCU), KAIST, Daejeon, 305-701, Republic
of Korea
| | - Shin-ichi Adachi
- Photon Factory,
Institute of
Materials Structure Science, High Energy Accelerator
Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki
305-0801, Japan
- PRESTO, Japan Science
and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi,
Saitama 332-0012, Japan
| | - Hyotcherl Ihee
- Center for Time-Resolved Diffraction,
Department of Chemistry, Graduate School of Nanoscience & Technology
(WCU), KAIST, Daejeon, 305-701, Republic
of Korea
| |
Collapse
|
54
|
Kang J, Kuroyanagi S, Akisada T, Hagiwara Y, Tateno M. Unidirectional Mechanistic Valved Mechanisms for Ammonia Transport in GatCAB. J Chem Theory Comput 2012; 8:649-60. [PMID: 26596613 DOI: 10.1021/ct200387u] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glutamine amidotransferase CAB (GatCAB), a crucial enzyme involved in translational fidelity, catalyzes three reactions: (i) the glutaminase reaction to yield ammonia (NH3 or NH4(+)) from glutamine, (ii) the phosphorylation of Glu-tRNA(Gln), and (iii) the transamidase reaction to convert the phosphorylated Glu-tRNA(Gln) to Gln-tRNA(Gln). In the crystal structure of GatCAB, the two catalytic centers are far apart, and the presence of a hydrophilic channel to transport the molecules produced by the reaction (i) was proposed. We investigated the transport mechanisms of GatCAB by molecular dynamics (MD) simulations and free energy (PMF) calculations. In the MD simulations (in total ∼1.1 μs), the entrance of the previously proposed channel is closed, as observed in the crystal structure. Instead, a novel hydrophobic channel has been identified in this study: Since the newly identified entrance opened and closed repeatedly in the MD simulations, it may act as a gate. The calculated free energy difference revealed the significant preference of the newly identified gate/channel for NH3 transport (∼10(4)-fold). In contrast, with respect to NH4(+), the free energy barriers are significantly increased for both channels due to tight hydrogen-bonding with hydrophilic residues, which hinders efficient transport. The opening of the newly identified gate is modulated by Phe206, which acts as a "valve". For the backward flow of NH3, our PMF calculation revealed that the opening of the gate is hindered by Ala207, which acts as a mechanistic "stopper" against the motion of the "valve" (Phe206). This is the first report to elucidate the detailed mechanisms of unidirectional mechanistic valved transport inside proteins.
Collapse
Affiliation(s)
- Jiyoung Kang
- Graduate School of Pure and Applied Sciences, University of Tsukuba , Tennodai 1-1-1, Tsukuba Science City, Ibaraki 305-8571, Japan
| | - Shigehide Kuroyanagi
- Graduate School of Pure and Applied Sciences, University of Tsukuba , Tennodai 1-1-1, Tsukuba Science City, Ibaraki 305-8571, Japan
| | - Tomohiro Akisada
- Graduate School of Life Science, University of Hyogo , 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yohsuke Hagiwara
- Graduate School of Pure and Applied Sciences, University of Tsukuba , Tennodai 1-1-1, Tsukuba Science City, Ibaraki 305-8571, Japan
| | - Masaru Tateno
- Graduate School of Life Science, University of Hyogo , 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| |
Collapse
|
55
|
Abstract
The Monod-Wyman-Changeux (MWC) model was conceived in 1965 to account for the signal transduction and cooperative properties of bacterial regulatory enzymes and hemoglobin. It was soon extended to pharmacological receptors for neurotransmitters and other macromolecular entities involved in intracellular and intercellular communications. Five decades later, the two main hypotheses of the model are reexamined on the basis of a variety of regulatory proteins with known X-ray structures: (a) Regulatory proteins possess an oligomeric structure with symmetry properties, and (b) the allosteric interactions between topographically distinct sites are mediated by a conformational transition established between a few preestablished states with conservation of symmetry and ligand-directed conformational selection. Several well-documented examples are adequately represented by the MWC model, yet a few possible exceptions are noted. New questions are raised concerning the dynamics of the allosteric transitions and more complex supramolecular ensembles.
Collapse
Affiliation(s)
- Jean-Pierre Changeux
- Collège de France & Institut Pasteur, URA CNRS 2182, Paris Cedex 15 75724, France.
| |
Collapse
|