51
|
Hwang J, Kim JY, Kim C, Park S, Joo S, Kim SK, Lee NK. Single-molecule observation of ATP-independent SSB displacement by RecO in Deinococcus radiodurans. eLife 2020; 9:50945. [PMID: 32297860 PMCID: PMC7200156 DOI: 10.7554/elife.50945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 04/15/2020] [Indexed: 12/27/2022] Open
Abstract
Deinococcus radiodurans (DR) survives in the presence of hundreds of double-stranded DNA (dsDNA) breaks by efficiently repairing such breaks. RecO, a protein that is essential for the extreme radioresistance of DR, is one of the major recombination mediator proteins in the RecA-loading process in the RecFOR pathway. However, how RecO participates in the RecA-loading process is still unclear. In this work, we investigated the function of drRecO using single-molecule techniques. We found that drRecO competes with the ssDNA-binding protein (drSSB) for binding to the freely exposed ssDNA, and efficiently displaces drSSB from ssDNA without consuming ATP. drRecO replaces drSSB and dissociates it completely from ssDNA even though drSSB binds to ssDNA approximately 300 times more strongly than drRecO does. We suggest that drRecO facilitates the loading of RecA onto drSSB-coated ssDNA by utilizing a small drSSB-free space on ssDNA that is generated by the fast diffusion of drSSB on ssDNA.
Collapse
Affiliation(s)
- Jihee Hwang
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jae-Yeol Kim
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, United States
| | - Cheolhee Kim
- Daegu National Science Museum, Daegu, Republic of Korea
| | - Soojin Park
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Sungmin Joo
- Department of Physics, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Seong Keun Kim
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Nam Ki Lee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
52
|
Bernheim A, Bikard D, Touchon M, Rocha EPC. A matter of background: DNA repair pathways as a possible cause for the sparse distribution of CRISPR-Cas systems in bacteria. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180088. [PMID: 30905287 PMCID: PMC6452273 DOI: 10.1098/rstb.2018.0088] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The absence of CRISPR-Cas systems in more than half of the sequenced bacterial genomes is intriguing, because their role in adaptive immunity and their frequent transfer between species should have made them almost ubiquitous, as is the case in Archaea. Here, we investigate the possibility that the success of CRISPR-Cas acquisition by horizontal gene transfer is affected by the interactions of these systems with the host genetic background and especially with components of double-strand break repair systems (DSB-RS). We first described the distribution of systems specialized in the repair of double-strand breaks in Bacteria: homologous recombination and non-homologous end joining. This allowed us to show that such systems are more often positively or negatively correlated with the frequency of CRISPR-Cas systems than random genes of similar frequency. The detailed analysis of these co-occurrence patterns shows that our method identifies previously known cases of mechanistic interactions between these systems. It also reveals other positive and negative patterns of co-occurrence between DSB-RS and CRISPR-Cas systems. Notably, it shows that the patterns of distribution of CRISPR-Cas systems in Proteobacteria are strongly dependent on the epistatic groups including RecBCD and AddAB. Our results suggest that the genetic background plays an important role in the success of adaptive immunity in different bacterial clades and provide insights to guide further experimental research on the interactions between CRISPR-Cas and DSB-RS. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.
Collapse
Affiliation(s)
- Aude Bernheim
- 1 Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, 25-28, rue Dr Roux, Paris, 75015, France.,2 Synthetic Biology Group, Institut Pasteur, 25-28 rue Dr Roux, Paris 75015, France.,3 AgroParisTech , Paris 75005 , France
| | - David Bikard
- 2 Synthetic Biology Group, Institut Pasteur, 25-28 rue Dr Roux, Paris 75015, France
| | - Marie Touchon
- 1 Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, 25-28, rue Dr Roux, Paris, 75015, France
| | - Eduardo P C Rocha
- 1 Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, 25-28, rue Dr Roux, Paris, 75015, France
| |
Collapse
|
53
|
RecA and DNA recombination: a review of molecular mechanisms. Biochem Soc Trans 2020; 47:1511-1531. [PMID: 31654073 DOI: 10.1042/bst20190558] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 11/17/2022]
Abstract
Recombinases are responsible for homologous recombination and maintenance of genome integrity. In Escherichia coli, the recombinase RecA forms a nucleoprotein filament with the ssDNA present at a DNA break and searches for a homologous dsDNA to use as a template for break repair. During the first step of this process, the ssDNA is bound to RecA and stretched into a Watson-Crick base-paired triplet conformation. The RecA nucleoprotein filament also contains ATP and Mg2+, two cofactors required for RecA activity. Then, the complex starts a homology search by interacting with and stretching dsDNA. Thanks to supercoiling, intersegment sampling and RecA clustering, a genome-wide homology search takes place at a relevant metabolic timescale. When a region of homology 8-20 base pairs in length is found and stabilized, DNA strand exchange proceeds, forming a heteroduplex complex that is resolved through a combination of DNA synthesis, ligation and resolution. RecA activities can take place without ATP hydrolysis, but this latter activity is necessary to improve and accelerate the process. Protein flexibility and monomer-monomer interactions are fundamental for RecA activity, which functions cooperatively. A structure/function relationship analysis suggests that the recombinogenic activity can be improved and that recombinases have an inherently large recombination potential. Understanding this relationship is essential for designing RecA derivatives with enhanced activity for biotechnology applications. For example, this protein is a major actor in the recombinase polymerase isothermal amplification (RPA) used in point-of-care diagnostics.
Collapse
|
54
|
Yan MY, Li SS, Ding XY, Guo XP, Jin Q, Sun YC. A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in Mycobacterium tuberculosis. mBio 2020; 11:e02364-19. [PMID: 31992616 PMCID: PMC6989103 DOI: 10.1128/mbio.02364-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/09/2019] [Indexed: 11/20/2022] Open
Abstract
New tools for genetic manipulation of Mycobacterium tuberculosis are needed for the development of new drug regimens and vaccines aimed at curing tuberculosis infections. Clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein (Cas) systems generate a highly specific double-strand break at the target site that can be repaired via nonhomologous end joining (NHEJ), resulting in the desired genome alteration. In this study, we first improved the NHEJ repair pathway and developed a CRISPR-Cas-mediated genome-editing method that allowed us to generate markerless deletion in Mycobacterium smegmatis, Mycobacterium marinum, and M. tuberculosis Then, we demonstrated that this system could efficiently achieve simultaneous generation of double mutations and large-scale genetic mutations in M. tuberculosis Finally, we showed that the strategy we developed can also be used to facilitate genome editing in Escherichia coli IMPORTANCE The global health impact of M. tuberculosis necessitates the development of new genetic tools for its manipulation, to facilitate the identification and characterization of novel drug targets and vaccine candidates. Clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein (Cas) genome editing has proven to be a powerful genetic tool in various organisms; to date, however, attempts to use this approach in M. tuberculosis have failed. Here, we describe a genome-editing tool based on CRISPR cleavage and the nonhomologous end-joining (NHEJ) repair pathway that can efficiently generate deletion mutants in M. tuberculosis More importantly, this system can generate simultaneous double mutations and large-scale genetic mutations in this species. We anticipate that this CRISPR-NHEJ-assisted genome-editing system will be broadly useful for research on mycobacteria, vaccine development, and drug target profiling.
Collapse
Affiliation(s)
- Mei-Yi Yan
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Si-Shang Li
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Yuan Ding
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Peng Guo
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Cheng Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Sanming Project of Medicine in Shenzhen on Construction of Novel Systematic Network against Tuberculosis, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
55
|
Factors Affecting Organelle Genome Stability in Physcomitrella patens. PLANTS 2020; 9:plants9020145. [PMID: 31979236 PMCID: PMC7076466 DOI: 10.3390/plants9020145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 01/25/2023]
Abstract
Organelle genomes are essential for plants; however, the mechanisms underlying the maintenance of organelle genomes are incompletely understood. Using the basal land plant Physcomitrella patens as a model, nuclear-encoded homologs of bacterial-type homologous recombination repair (HRR) factors have been shown to play an important role in the maintenance of organelle genome stability by suppressing recombination between short dispersed repeats. In this review, I summarize the factors and pathways involved in the maintenance of genome stability, as well as the repeats that cause genomic instability in organelles in P. patens, and compare them with findings in other plant species. I also discuss the relationship between HRR factors and organelle genome structure from the evolutionary standpoint.
Collapse
|
56
|
Chevigny N, Schatz-Daas D, Lotfi F, Gualberto JM. DNA Repair and the Stability of the Plant Mitochondrial Genome. Int J Mol Sci 2020; 21:E328. [PMID: 31947741 PMCID: PMC6981420 DOI: 10.3390/ijms21010328] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/27/2019] [Accepted: 01/01/2020] [Indexed: 12/13/2022] Open
Abstract
The mitochondrion stands at the center of cell energy metabolism. It contains its own genome, the mtDNA, that is a relic of its prokaryotic symbiotic ancestor. In plants, the mitochondrial genetic information influences important agronomic traits including fertility, plant vigor, chloroplast function, and cross-compatibility. Plant mtDNA has remarkable characteristics: It is much larger than the mtDNA of other eukaryotes and evolves very rapidly in structure. This is because of recombination activities that generate alternative mtDNA configurations, an important reservoir of genetic diversity that promotes rapid mtDNA evolution. On the other hand, the high incidence of ectopic recombination leads to mtDNA instability and the expression of gene chimeras, with potential deleterious effects. In contrast to the structural plasticity of the genome, in most plant species the mtDNA coding sequences evolve very slowly, even if the organization of the genome is highly variable. Repair mechanisms are probably responsible for such low mutation rates, in particular repair by homologous recombination. Herein we review some of the characteristics of plant organellar genomes and of the repair pathways found in plant mitochondria. We further discuss how homologous recombination is involved in the evolution of the plant mtDNA.
Collapse
Affiliation(s)
| | | | | | - José Manuel Gualberto
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67081 Strasbourg, France; (N.C.); (D.S.-D.); (F.L.)
| |
Collapse
|
57
|
Weissman JL, Fagan WF, Johnson PLF. Linking high GC content to the repair of double strand breaks in prokaryotic genomes. PLoS Genet 2019; 15:e1008493. [PMID: 31703064 PMCID: PMC6867656 DOI: 10.1371/journal.pgen.1008493] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/20/2019] [Accepted: 10/25/2019] [Indexed: 01/21/2023] Open
Abstract
Genomic GC content varies widely among microbes for reasons unknown. While mutation bias partially explains this variation, prokaryotes near-universally have a higher GC content than predicted solely by this bias. Debate surrounds the relative importance of the remaining explanations of selection versus biased gene conversion favoring GC alleles. Some environments (e.g. soils) are associated with a high genomic GC content of their inhabitants, which implies that either high GC content is a selective adaptation to particular habitats, or that certain habitats favor increased rates of gene conversion. Here, we report a novel association between the presence of the non-homologous end joining DNA double-strand break repair pathway and GC content; this observation suggests that DNA damage may be a fundamental driver of GC content, leading in part to the many environmental patterns observed to-date. We discuss potential mechanisms accounting for the observed association, and provide preliminary evidence that sites experiencing higher rates of double-strand breaks are under selection for increased GC content relative to the genomic background. The overall nucleotide composition of an organism’s genome varies greatly between species. Previous work has identified certain environmental factors (e.g., oxygen availability) associated with the relative number of GC bases as opposed to AT bases in the genomes of species. Many of these environments that are associated with high GC content are also associated with relatively high rates of DNA damage. We show that organisms possessing the non-homologous end-joining DNA repair pathway, which is one mechanism to repair DNA double-strand breaks, have an elevated GC content relative to expectation. We also show that certain sites on the genome that are particularly susceptible to double strand breaks have an elevated GC content. This leads us to suggest that an important underlying driver of variability in nucleotide composition across environments is the rate of DNA damage (specifically double-strand breaks) to which an organism living in each environment is exposed.
Collapse
Affiliation(s)
- JL Weissman
- Department of Biology, University of Maryland - College Park, College Park, Maryland, United States of America
| | - William F. Fagan
- Department of Biology, University of Maryland - College Park, College Park, Maryland, United States of America
| | - Philip L. F. Johnson
- Department of Biology, University of Maryland - College Park, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
58
|
Salmon-Divon M, Kornspan D. Transcriptomic analysis of smooth versus rough Brucella melitensis Rev.1 vaccine strains reveals insights into virulence attenuation. Int J Med Microbiol 2019; 310:151363. [PMID: 31699441 DOI: 10.1016/j.ijmm.2019.151363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/10/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
Brucella melitensis Rev.1 is the live attenuated Elberg-originated vaccine strain of the facultative intracellular Brucella species, and is widely used to control brucellosis in small ruminants. However, Rev.1 may cause abortions in small ruminants that have been vaccinated during the last trimester of gestation, it is pathogenic to humans, and it induces antibodies directed at the O-polysaccharide (O-PS) of the smooth lipopolysaccharide, thus making it difficult to distinguish between vaccinated and infected animals. Rough Brucella strains, which lack O-PS and are considered less pathogenic, have been introduced to address these drawbacks; however, as Rev.1 confers a much better immunity than the rough mutants, it is still considered the reference vaccine for the prophylaxis of brucellosis in small ruminants. Therefore, developing an improved vaccine strain, which lacks the Rev.1 drawbacks, is a highly evaluated task, which requires a better understanding of the molecular mechanisms underlying the virulence attenuation of Rev.1 smooth strains and of natural Rev.1 rough strains, which are currently only partly understood. As the acidification of the Brucella-containing vacuole during the initial stages of infection is crucial for their survival, identifying the genes that contribute to their survival in an acidic environment versus a normal environment will greatly assist our understanding of the molecular pathogenic mechanisms and the attenuated virulence of the Rev.1 strain. Here, we compared the transcriptomes of the smooth and natural rough Rev.1 strains, each grown under either normal or acidic conditions. We found 12 key genes that are significantly downregulated in the Rev.1 rough strains under normal pH, as compared with Rev.1 smooth strains, and six highly important genes that are significantly upregulated in the smooth strains under acidic conditions, as compared with Rev.1 rough strains. All 18 differentially expressed genes are associated with bacterial virulence and survival and may explain the attenuated virulence of the rough Rev.1 strains versus smooth Rev.1 strains, thus providing new insights into the virulence attenuation mechanisms of Brucella. These highly important candidate genes may facilitate the design of new and improved brucellosis vaccines.
Collapse
Affiliation(s)
- Mali Salmon-Divon
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel, Israel; Adelson School of Medicine, Ariel University, Israel.
| | - David Kornspan
- Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan, Israel.
| |
Collapse
|
59
|
Henrikus SS, Henry C, Ghodke H, Wood EA, Mbele N, Saxena R, Basu U, van Oijen AM, Cox MM, Robinson A. RecFOR epistasis group: RecF and RecO have distinct localizations and functions in Escherichia coli. Nucleic Acids Res 2019; 47:2946-2965. [PMID: 30657965 PMCID: PMC6451095 DOI: 10.1093/nar/gkz003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/03/2018] [Accepted: 01/10/2019] [Indexed: 01/31/2023] Open
Abstract
In bacteria, genetic recombination is a major mechanism for DNA repair. The RecF, RecO and RecR proteins are proposed to initiate recombination by loading the RecA recombinase onto DNA. However, the biophysical mechanisms underlying this process remain poorly understood. Here, we used genetics and single-molecule fluorescence microscopy to investigate whether RecF and RecO function together, or separately, in live Escherichia coli cells. We identified conditions in which RecF and RecO functions are genetically separable. Single-molecule imaging revealed key differences in the spatiotemporal behaviours of RecF and RecO. RecF foci frequently colocalize with replisome markers. In response to DNA damage, colocalization increases and RecF dimerizes. The majority of RecF foci are dependent on RecR. Conversely, RecO foci occur infrequently, rarely colocalize with replisomes or RecF and are largely independent of RecR. In response to DNA damage, RecO foci appeared to spatially redistribute, occupying a region close to the cell membrane. These observations indicate that RecF and RecO have distinct functions in the DNA damage response. The observed localization of RecF to the replisome supports the notion that RecF helps to maintain active DNA replication in cells carrying DNA damage.
Collapse
Affiliation(s)
- Sarah S Henrikus
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2500, Australia
| | - Camille Henry
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Harshad Ghodke
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2500, Australia
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Neema Mbele
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Roopashi Saxena
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Upasana Basu
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Antoine M van Oijen
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2500, Australia
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544, USA
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2500, Australia
| |
Collapse
|
60
|
Mahjoubi M, Aliyu H, Cappello S, Naifer M, Souissi Y, Cowan DA, Cherif A. The genome of Alcaligenes aquatilis strain BU33N: Insights into hydrocarbon degradation capacity. PLoS One 2019; 14:e0221574. [PMID: 31550268 PMCID: PMC6759156 DOI: 10.1371/journal.pone.0221574] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 08/10/2019] [Indexed: 01/12/2023] Open
Abstract
Environmental contamination with hydrocarbons though natural and anthropogenic activities is a serious threat to biodiversity and human health. Microbial bioremediation is considered as the effective means of treating such contamination. This study describes a biosurfactant producing bacterium capable of utilizing crude oil and various hydrocarbons as the sole carbon source. Strain BU33N was isolated from hydrocarbon polluted sediments from the Bizerte coast (northern Tunisia) and was identified as Alcaligenes aquatilis on the basis of 16S rRNA gene sequence analysis. When grown on crude oil and phenanthrene as sole carbon and energy sources, isolate BU33N was able to degrade ~86%, ~56% and 70% of TERHc, n-alkanes and phenanthrene, respectively. The draft genome sequence of the A. aquatilis strain BU33N was assembled into one scaffold of 3,838,299 bp (G+C content of 56.1%). Annotation of the BU33N genome resulted in 3,506 protein-coding genes and 56 rRNA genes. A large repertoire of genes related to the metabolism of aromatic compounds including genes encoding enzymes involved in the complete degradation of benzoate were identified. Also genes associated with resistance to heavy metals such as copper tolerance and cobalt-zinc-cadmium resistance were identified in BU33N. This work provides insight into the genomic basis of biodegradation capabilities and bioremediation/detoxification potential of A. aquatilis BU33N.
Collapse
Affiliation(s)
- Mouna Mahjoubi
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabet, Ariana, Tunisia
| | - Habibu Aliyu
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Simone Cappello
- Istituto per l’Ambiente Marino Costiero (IAMC)-CNR of Messina. Sp. San Raineri, Messina, Italy
| | - Mohamed Naifer
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabet, Ariana, Tunisia
| | - Yasmine Souissi
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabet, Ariana, Tunisia
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Ameur Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabet, Ariana, Tunisia
- * E-mail:
| |
Collapse
|
61
|
Josi C, Bürki S, Vidal S, Dordet-Frisoni E, Citti C, Falquet L, Pilo P. Large-Scale Analysis of the Mycoplasma bovis Genome Identified Non-essential, Adhesion- and Virulence-Related Genes. Front Microbiol 2019; 10:2085. [PMID: 31572317 PMCID: PMC6753880 DOI: 10.3389/fmicb.2019.02085] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/23/2019] [Indexed: 12/21/2022] Open
Abstract
Mycoplasma bovis is an important pathogen of cattle causing bovine mycoplasmosis. Clinical manifestations are numerous, but pneumonia, mastitis, and arthritis cases are mainly reported. Currently, no efficient vaccine is available and antibiotic treatments are not always satisfactory. The design of new, efficient prophylactic and therapeutic approaches requires a better understanding of the molecular mechanisms responsible for M. bovis pathogenicity. Random transposon mutagenesis has been widely used in Mycoplasma species to identify potential gene functions. Such an approach can also be used to screen genomes and search for essential and non-essential genes for growth. Here, we generated a random transposon mutant library of M. bovis strain JF4278 containing approximately 4000 independent insertion sites. We then coupled high-throughput screening of this mutant library to transposon sequencing and bioinformatic analysis to identify M. bovis non-essential, adhesion- and virulence-related genes. Three hundred and fifty-two genes of M. bovis were assigned as essential for growth in rich medium. Among the remaining non-essential genes, putative virulence-related factors were subsequently identified. The complete mutant library was screened for adhesion using primary bovine mammary gland epithelial cells. Data from this assay resulted in a list of conditional-essential genes with putative adhesion-related functions by identifying non-essential genes for growth that are essential for host cell-adhesion. By individually assessing the adhesion capacity of six selected mutants, two previously unknown factors and the adhesin TrmFO were associated with a reduced adhesion phenotype. Overall, our study (i) uncovers new, putative virulence-related genes; (ii) offers a list of putative adhesion-related factors; and (iii) provides valuable information for vaccine design and for exploring M. bovis biology, pathogenesis, and host-interaction.
Collapse
Affiliation(s)
- Christoph Josi
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sibylle Bürki
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Sara Vidal
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | | | - Christine Citti
- UMR 1225, IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - Laurent Falquet
- Department of Biology, Faculty of Science and Medicine, Swiss Institute of Bioinformatics, University of Fribourg, Fribourg, Switzerland
| | - Paola Pilo
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| |
Collapse
|
62
|
Nakayama T, Nomura M, Takano Y, Tanifuji G, Shiba K, Inaba K, Inagaki Y, Kawata M. Single-cell genomics unveiled a cryptic cyanobacterial lineage with a worldwide distribution hidden by a dinoflagellate host. Proc Natl Acad Sci U S A 2019; 116:15973-15978. [PMID: 31235587 PMCID: PMC6689939 DOI: 10.1073/pnas.1902538116] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyanobacteria are one of the most important contributors to oceanic primary production and survive in a wide range of marine habitats. Much effort has been made to understand their ecological features, diversity, and evolution, based mainly on data from free-living cyanobacterial species. In addition, symbiosis has emerged as an important lifestyle of oceanic microbes and increasing knowledge of cyanobacteria in symbiotic relationships with unicellular eukaryotes suggests their significance in understanding the global oceanic ecosystem. However, detailed characteristics of these cyanobacteria remain poorly described. To gain better insight into marine cyanobacteria in symbiosis, we sequenced the genome of cyanobacteria collected from a cell of a pelagic dinoflagellate that is known to host cyanobacterial symbionts within a specialized chamber. Phylogenetic analyses using the genome sequence revealed that the cyanobacterium represents an underdescribed lineage within an extensively studied, ecologically important group of marine cyanobacteria. Metagenomic analyses demonstrated that this cyanobacterial lineage is globally distributed and strictly coexists with its host dinoflagellates, suggesting that the intimate symbiotic association allowed the cyanobacteria to escape from previous metagenomic studies. Furthermore, a comparative analysis of the protein repertoire with related species indicated that the lineage has independently undergone reductive genome evolution to a similar extent as Prochlorococcus, which has the most reduced genomes among free-living cyanobacteria. Discovery of this cyanobacterial lineage, hidden by its symbiotic lifestyle, provides crucial insights into the diversity, ecology, and evolution of marine cyanobacteria and suggests the existence of other undiscovered cryptic cyanobacterial lineages.
Collapse
Affiliation(s)
- Takuro Nakayama
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan;
| | - Mami Nomura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan
| | - Yoshihito Takano
- Faculty of Science and Technology, Kochi University, Nankoku 783-8502, Japan
| | - Goro Tanifuji
- Department of Zoology, National Museum of Nature and Science, Tsukuba 305-0005, Japan
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan
| | - Yuji Inagaki
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Masakado Kawata
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
63
|
Vidor CJ, Bulach D, Awad M, Lyras D. Paeniclostridium sordellii and Clostridioides difficile encode similar and clinically relevant tetracycline resistance loci in diverse genomic locations. BMC Microbiol 2019; 19:53. [PMID: 30832583 PMCID: PMC6399922 DOI: 10.1186/s12866-019-1427-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 02/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND With the current rise of antibiotic resistance in bacteria, it is important to monitor the efficacy of antimicrobials in clinical use. Paeniclostridium sordellii (previously Clostridium sordellii) is a bacterial pathogen that causes human uterine infection after spontaneous or medically induced abortion, for which mortality rates approach 100%. Prophylactic antibiotics have been recommended for individuals undergoing medically-induced abortion, one of which is doxycycline, a member of the tetracycline antibiotic family. However, tetracycline resistance had not been well characterized in P. sordellii. This study therefore aimed to determine the levels of tetracycline resistance in P. sordellii isolates, and to identify associated loci and their genomic locations. RESULTS Using a MIC assay, five of 24 P. sordellii isolates were found to be resistant to tetracycline, minocycline, and importantly, doxycycline. Analysis of genome sequence data from 46 isolates found that phenotypically resistant isolates encoded a variant of the Clostridium perfringens tetracycline resistance determinant Tet P. Bioinformatic analysis and comparison of the regions surrounding these determinants found variation in the genomic location of Tet P among P. sordellii isolates. The core genome comparison of the 46 isolates revealed genetic diversity and the absence of dominant genetic types among the isolates. There was no strong association between geographic location of isolation, animal host or Tet P carriage with isolate genetic type. Furthermore, the analysis of the Tet P genotype revealed that Tet P is encoded chromosomally, or on one of two, novel, small plasmids, all consistent with multiple acquisition and recombination events. BLAST analysis of Clostridioides difficile draft genome sequences also identified a Tet P locus, the genomic location of which demonstrated an evolutionary relationship with the P. sordellii locus. CONCLUSIONS The Tet P determinant is found in variable genomic locations within diverse human and animal isolates of P. sordellii and C. difficile, which suggests that it can undergo horizontal transfer, and may disseminate tetracycline resistance between clostridial species. Doxycycline is a suggested prophylactic treatment for P. sordellii infections, however, a small sub-set of the isolates tested are resistant to this antibiotic. Doxycycline may therefore not be an appropriate prophylactic treatment for P. sordellii infections.
Collapse
Affiliation(s)
- Callum J Vidor
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Dieter Bulach
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Milena Awad
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
64
|
Palmer M, Venter SN, Coetzee MP, Steenkamp ET. Prokaryotic species are sui generis evolutionary units. Syst Appl Microbiol 2019; 42:145-158. [DOI: 10.1016/j.syapm.2018.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/25/2022]
|
65
|
Lim S, Jung JH, Blanchard L, de Groot A. Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species. FEMS Microbiol Rev 2019; 43:19-52. [PMID: 30339218 PMCID: PMC6300522 DOI: 10.1093/femsre/fuy037] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2022] Open
Abstract
Deinococcus bacteria are famous for their extreme resistance to ionising radiation and other DNA damage- and oxidative stress-generating agents. More than a hundred genes have been reported to contribute to resistance to radiation, desiccation and/or oxidative stress in Deinococcus radiodurans. These encode proteins involved in DNA repair, oxidative stress defence, regulation and proteins of yet unknown function or with an extracytoplasmic location. Here, we analysed the conservation of radiation resistance-associated proteins in other radiation-resistant Deinococcus species. Strikingly, homologues of dozens of these proteins are absent in one or more Deinococcus species. For example, only a few Deinococcus-specific proteins and radiation resistance-associated regulatory proteins are present in each Deinococcus, notably the metallopeptidase/repressor pair IrrE/DdrO that controls the radiation/desiccation response regulon. Inversely, some Deinococcus species possess proteins that D. radiodurans lacks, including DNA repair proteins consisting of novel domain combinations, translesion polymerases, additional metalloregulators, redox-sensitive regulator SoxR and manganese-containing catalase. Moreover, the comparisons improved the characterisation of several proteins regarding important conserved residues, cellular location and possible protein–protein interactions. This comprehensive analysis indicates not only conservation but also large diversity in the molecular mechanisms involved in radiation resistance even within the Deinococcus genus.
Collapse
Affiliation(s)
- Sangyong Lim
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Jong-Hyun Jung
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | | | - Arjan de Groot
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| |
Collapse
|
66
|
Abstract
Microbial populations exchange genetic material through a process called homologous recombination. Although this process has been studied in particular organisms, we lack an understanding of its differential impact over the genome and across microbes with different life-styles. We used a common analytical framework to assess this process in a representative set of microorganisms. Our results uncovered important trends. First, microbes with different lifestyles are differentially impacted, with endosymbionts and obligate pathogens being those less prone to undergo this process. Second, certain genetic elements such as restriction-modification systems seem to be associated with higher rates of recombination. Most importantly, recombined genomes show the footprints of natural selection in which recombined regions preferentially contain genes that can be related to specific ecological adaptations. Taken together, our results clarify the relative contributions of factors modulating homologous recombination and show evidence for a clear a role of this process in shaping microbial genomes and driving ecological adaptations. Homologous recombination (HR) enables the exchange of genetic material between and within species. Recent studies suggest that this process plays a major role in the microevolution of microbial genomes, contributing to core genome homogenization and to the maintenance of cohesive population structures. However, we still have a very poor understanding of the possible adaptive roles of intraspecific HR and of the factors that determine its differential impact across clades and lifestyles. Here we used a unified methodological framework to assess HR in 338 complete genomes from 54 phylogenetically diverse and representative prokaryotic species, encompassing different lifestyles and a broad phylogenetic distribution. Our results indicate that lifestyle and presence of restriction-modification (RM) machineries are among the main factors shaping HR patterns, with symbionts and intracellular pathogens having the lowest HR levels. Similarly, the size of exchanged genomic fragments correlated with the presence of RM and competence machineries. Finally, genes exchanged by HR showed functional enrichments which could be related to adaptations to different environments and ecological strategies. Taken together, our results clarify the factors underlying HR impact and suggest important adaptive roles of genes exchanged through this mechanism. Our results also revealed that the extent of genetic exchange correlated with lifestyle and some genomic features. Moreover, the genes in exchanged regions were enriched for functions that reflected specific adaptations, supporting identification of HR as one of the main evolutionary mechanisms shaping prokaryotic core genomes.
Collapse
|
67
|
Alfsnes K, Frye SA, Eriksson J, Eldholm V, Brynildsrud OB, Bohlin J, Harrison OB, Hood DW, Maiden MCJ, Tønjum T, Ambur OH. A genomic view of experimental intraspecies and interspecies transformation of a rifampicin-resistance allele into Neisseria meningitidis. Microb Genom 2018; 4. [PMID: 30251949 PMCID: PMC6321871 DOI: 10.1099/mgen.0.000222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The spread of antibiotic resistance within and between different bacterial populations is a major health problem on a global scale. The identification of genetic transformation in genomic data from Neisseria meningitidis, the meningococcus (Mc), and other bacteria is problematic, since similar or even identical alleles may be involved. A particular challenge in naturally transformable bacteria generally is to distinguish between common ancestry and true recombined sites in sampled genome sequences. Furthermore, the identification of recombination following experimental transformation of homologous alleles requires identifiable differences between donor and recipient, which in itself influences the propensity for homologous recombination (HR). This study identifies the distribution of HR events following intraspecies and interspecies Mc transformations of rpoB alleles encoding rifampicin resistance by whole-genome DNA sequencing and single nucleotide variant analysis. The HR events analysed were confined to the genomic region surrounding the single nucleotide genetic marker used for selection. An exponential length distribution of these recombined events was found, ranging from a few nucleotides to about 72 kb stretches. The lengths of imported sequences were on average found to be longer following experimental transformation of the recipient with genomic DNA from an intraspecies versus an interspecies donor (P<0.001). The recombination events were generally observed to be mosaic, with donor sequences interspersed with recipient sequence. Here, we present four models to explain these observations, by fragmentation of the transformed DNA, by interruptions of the recombination mechanism, by secondary recombination of endogenous self-DNA, or by repair/replication mechanisms.
Collapse
Affiliation(s)
| | - Stephan A Frye
- 2Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Jens Eriksson
- 2Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Vegard Eldholm
- 3Department of Molecular Biology, Domain of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ola Brønstad Brynildsrud
- 4Department of Methodology Research and Analysis, Domain of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jon Bohlin
- 4Department of Methodology Research and Analysis, Domain of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Odile B Harrison
- 5The Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Derek W Hood
- 6Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | - Martin C J Maiden
- 5The Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Tone Tønjum
- 2Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,7Department of Microbiology, University of Oslo, Oslo, Norway
| | - Ole Herman Ambur
- 2Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,8OsloMet - Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
68
|
Freed E, Fenster J, Smolinski SL, Walker J, Henard CA, Gill R, Eckert CA. Building a genome engineering toolbox in nonmodel prokaryotic microbes. Biotechnol Bioeng 2018; 115:2120-2138. [PMID: 29750332 DOI: 10.1002/bit.26727] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/02/2018] [Accepted: 03/10/2018] [Indexed: 12/26/2022]
Abstract
The realization of a sustainable bioeconomy requires our ability to understand and engineer complex design principles for the development of platform organisms capable of efficient conversion of cheap and sustainable feedstocks (e.g., sunlight, CO2 , and nonfood biomass) into biofuels and bioproducts at sufficient titers and costs. For model microbes, such as Escherichia coli, advances in DNA reading and writing technologies are driving the adoption of new paradigms for engineering biological systems. Unfortunately, microbes with properties of interest for the utilization of cheap and renewable feedstocks, such as photosynthesis, autotrophic growth, and cellulose degradation, have very few, if any, genetic tools for metabolic engineering. Therefore, it is important to develop "design rules" for building a genetic toolbox for novel microbes. Here, we present an overview of our current understanding of these rules for the genetic manipulation of prokaryotic microbes and the available genetic tools to expand our ability to genetically engineer nonmodel systems.
Collapse
Affiliation(s)
- Emily Freed
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO.,Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO
| | - Jacob Fenster
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO.,Chemical and Biological Engineering, University of Colorado, Boulder, CO
| | | | - Julie Walker
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO
| | - Calvin A Henard
- National Renewable Energy Laboratory, National Bioenergy Center, Golden, CO
| | - Ryan Gill
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO.,Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO.,Chemical and Biological Engineering, University of Colorado, Boulder, CO
| | - Carrie A Eckert
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO.,Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO
| |
Collapse
|
69
|
Odahara M, Sekine Y. RECX Interacts with Mitochondrial RECA to Maintain Mitochondrial Genome Stability. PLANT PHYSIOLOGY 2018; 177:300-310. [PMID: 29581177 PMCID: PMC5933123 DOI: 10.1104/pp.18.00218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
The chloroplast and mitochondrial genomes are essential for photosynthesis and respiration, respectively. RECA and RECG, which are plant-specific homologs of the bacterial homologous recombination repair proteins RecA and RecG, maintain organelle genome stability by suppressing aberrant recombination between short dispersed repeats (SDRs) in the moss Physcomitrella patens In this study, we analyzed the plant-specific factor RECX, a homolog of bacterial RecX that regulates RecA. RECX fused to GFP colocalized with mitochondrial RECA1 and chloroplast RECA2 on mitochondrial and chloroplast nucleoids, respectively. Knockout (KO) and overexpression (OEX) of RECX did not alter the P. patens morphological phenotype. Analysis of mitochondrial DNA, however, showed that products from recombination between SDRs increased significantly in RECX OEX mitochondria and modestly in RECX KO mitochondria. By contrast, analysis of chloroplast DNA revealed no substantial alteration in the number of products from recombination between SDRs in RECX KO and OEX chloroplasts. Yeast two-hybrid analysis revealed interactions between RECX and RECA1 and between RECX and RECA2. Expression profiles showed a positive correlation between RECX and factors maintaining the stability of both organelle genomes and RECA1 Collectively, these results suggest that RECX maintains mitochondrial genome stability, likely by modulating RECA1 activity, and that the compromised function of RECX induces mitochondrial genome instability.
Collapse
Affiliation(s)
- Masaki Odahara
- Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima-ku, Tokyo 171-8501, Japan
| | - Yasuhiko Sekine
- Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
70
|
Chu HY, Sprouffske K, Wagner A. Assessing the benefits of horizontal gene transfer by laboratory evolution and genome sequencing. BMC Evol Biol 2018; 18:54. [PMID: 29673327 PMCID: PMC5909237 DOI: 10.1186/s12862-018-1164-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 03/22/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Recombination is widespread across the tree of life, because it helps purge deleterious mutations and creates novel adaptive traits. In prokaryotes, it often takes the form of horizontal gene transfer from a donor to a recipient bacterium. While such transfer is widespread in natural communities, its immediate fitness benefits are usually unknown. We asked whether any such benefits depend on the environment, and on the identity of donor and recipient strains. To this end, we adapted Escherichia coli to two novel carbon sources over several hundred generations of laboratory evolution, exposing evolving populations to various DNA donors. RESULTS At the end of these experiments, we measured fitness and sequenced the genomes of 65 clones from 34 replicate populations to study the genetic changes associated with adaptive evolution. Furthermore, we identified candidate de novo beneficial mutations. During adaptive evolution on the first carbon source, 4-Hydroxyphenylacetic acid (HPA), recombining populations adapted better, which was likely mediated by acquiring the hpa operon from the donor. In contrast, recombining populations did not adapt better to the second carbon source, butyric acid, even though they suffered fewer extinctions than non-recombining populations. The amount of DNA transferred, but not its benefit, strongly depended on the donor-recipient strain combination. CONCLUSIONS To our knowledge, our study is the first to investigate the genomic consequences of prokaryotic recombination and horizontal gene transfer during laboratory evolution. It shows that the benefits of recombination strongly depend on the environment and the foreign DNA donor.
Collapse
Affiliation(s)
- Hoi Yee Chu
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Kathleen Sprouffske
- The Swiss Institute of Bioinformatics, Quartier Sorge – Batiment Genopode, 1015 Lausanne, Switzerland
| | - Andreas Wagner
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- The Swiss Institute of Bioinformatics, Quartier Sorge – Batiment Genopode, 1015 Lausanne, Switzerland
- Santa Fe Institute, Santa Fe, New Mexico USA
| |
Collapse
|
71
|
Genome plasticity is governed by double strand break DNA repair in Streptomyces. Sci Rep 2018; 8:5272. [PMID: 29588483 PMCID: PMC5869714 DOI: 10.1038/s41598-018-23622-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/12/2018] [Indexed: 12/22/2022] Open
Abstract
The linear chromosome of the bacterium Streptomyces exhibits a remarkable genetic organization with grossly a central conserved region flanked by variable chromosomal arms. The terminal diversity co-locates with an intense DNA plasticity including the occurrence of large deletions associated to circularization and chromosomal arm exchange. These observations prompted us to assess the role of double strand break (DSB) repair in chromosome plasticity following. For that purpose, DSBs were induced along the chromosome using the meganuclease I-SceI. DSB repair in the central region of the chromosome was mutagenic at the healing site but kept intact the whole genome structure. In contrast, DSB repair in the chromosomal arms was mostly associated to the loss of the targeted chromosomal arm and extensive deletions beyond the cleavage sites. While homologous recombination occurring between copies of DNA sequences accounted for the most part of the chromosome rescue events, Non Homologous End Joining was involved in mutagenic repair as well as in huge genome rearrangements (i.e. circularization). Further, NHEJ repair was concomitant with the integration of genetic material at the healing site. We postulate that DSB repair drives genome plasticity and evolution in Streptomyces and that NHEJ may foster horizontal transfer in the environment.
Collapse
|
72
|
Pandey S, Kirti A, Kumar A, Rajaram H. The SbcC and SbcD homologs of the cyanobacterium Anabaena sp. strain PCC7120 (Alr3988 and All4463) contribute independently to DNA repair. Funct Integr Genomics 2018. [DOI: 10.1007/s10142-018-0599-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
73
|
Tang Q, Liu YP, Shan HH, Tian LF, Zhang JZ, Yan XX. ATP-dependent conformational change in ABC-ATPase RecF serves as a switch in DNA repair. Sci Rep 2018; 8:2127. [PMID: 29391496 PMCID: PMC5794780 DOI: 10.1038/s41598-018-20557-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/19/2018] [Indexed: 11/13/2022] Open
Abstract
RecF is a principal member of the RecF pathway. It interacts with RecO and RecR to initiate homologous recombination by loading RecA recombinases on single-stranded DNA and displacing single-stranded DNA-binding proteins. As an ATP-binding cassette ATPase, RecF exhibits ATP-dependent dimerization and structural homology with Rad50 and SMC proteins. However, the mechanism and action pattern of RecF ATP-dependent dimerization remains unclear. Here, We determined three crystal structures of TTERecF, TTERecF-ATP and TTERecF-ATPɤS from Thermoanaerobacter tengcongensis that reveal a novel ATP-driven RecF dimerization. RecF contains a positively charged tunnel on its dimer interface that is essential to ATP binding. Our structural and biochemical data indicate that the Walker A motif serves as a switch and plays a key role in ATP binding and RecF dimerization. Furthermore, Biolayer interferometry assay results showed that the TTERecF interacted with ATP and formed a dimer, displaying a higher affinity for DNA than that of the TTERecF monomer. Overall, our results provide a solid structural basis for understanding the process of RecF binding with ATP and the functional mechanism of ATP-dependent RecF dimerization.
Collapse
Affiliation(s)
- Qun Tang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan-Ping Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hai-Huan Shan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li-Fei Tian
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie-Zhong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao-Xue Yan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
74
|
Kim Y, Jeon J, Kwak MS, Kim GH, Koh I, Rho M. Photosynthetic functions of Synechococcus in the ocean microbiomes of diverse salinity and seasons. PLoS One 2018; 13:e0190266. [PMID: 29293601 PMCID: PMC5749766 DOI: 10.1371/journal.pone.0190266] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/11/2017] [Indexed: 12/27/2022] Open
Abstract
Synechococcus is an important photosynthetic picoplankton in the temperate to tropical oceans. As a photosynthetic bacterium, Synechococcus has an efficient mechanism to adapt to the changes in salinity and light intensity. The analysis of the distributions and functions of such microorganisms in the ever changing river mouth environment, where freshwater and seawater mix, should help better understand their roles in the ecosystem. Toward this objective, we have collected and sequenced the ocean microbiome in the river mouth of Kwangyang Bay, Korea, as a function of salinity and temperature. In conjunction with comparative genomics approaches using the sequenced genomes of a wide phylogeny of Synechococcus, the ocean microbiome was analyzed in terms of their composition and clade-specific functions. The results showed significant differences in the compositions of Synechococcus sampled in different seasons. The photosynthetic functions in such enhanced Synechococcus strains were also observed in the microbiomes in summer, which is significantly different from those in other seasons.
Collapse
Affiliation(s)
- Yihwan Kim
- Department of Computer Science and Engineering, Hanyang University, Seoul, Korea
| | - Jehyun Jeon
- Department of Computer Science and Engineering, Hanyang University, Seoul, Korea
| | - Min Seok Kwak
- Department of Biology, Kongju National University, Kongju, Korea
| | - Gwang Hoon Kim
- Department of Biology, Kongju National University, Kongju, Korea
| | - InSong Koh
- Department of Biomedical Informatics, Hanyang University, Seoul, Korea
| | - Mina Rho
- Department of Computer Science and Engineering, Hanyang University, Seoul, Korea
- Department of Biomedical Informatics, Hanyang University, Seoul, Korea
- * E-mail:
| |
Collapse
|
75
|
Moreb EA, Hoover B, Yaseen A, Valyasevi N, Roecker Z, Menacho-Melgar R, Lynch MD. Managing the SOS Response for Enhanced CRISPR-Cas-Based Recombineering in E. coli through Transient Inhibition of Host RecA Activity. ACS Synth Biol 2017; 6:2209-2218. [PMID: 28915012 DOI: 10.1021/acssynbio.7b00174] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Phage-derived "recombineering" methods are utilized for bacterial genome editing. Recombineering results in a heterogeneous population of modified and unmodified chromosomes, and therefore selection methods, such as CRISPR-Cas9, are required to select for edited clones. Cells can evade CRISPR-Cas-induced cell death through recA-mediated induction of the SOS response. The SOS response increases RecA dependent repair as well as mutation rates through induction of the umuDC error prone polymerase. As a result, CRISPR-Cas selection is more efficient in recA mutants. We report an approach to inhibiting the SOS response and RecA activity through the expression of a mutant dominant negative form of RecA, which incorporates into wild type RecA filaments and inhibits activity. Using a plasmid-based system in which Cas9 and recA mutants are coexpressed, we can achieve increased efficiency and consistency of CRISPR-Cas9-mediated selection and recombineering in E. coli, while reducing the induction of the SOS response. To date, this approach has been shown to be independent of recA genotype and host strain lineage. Using this system, we demonstrate increased CRISPR-Cas selection efficacy with over 10 000 guides covering the E. coli chromosome. The use of dominant negative RecA or homologues may be of broad use in bacterial CRISPR-Cas-based genome editing where the SOS pathways are present.
Collapse
Affiliation(s)
- Eirik Adim Moreb
- Department of Biomedical
Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Benjamin Hoover
- Department of Biomedical
Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Adam Yaseen
- Department of Biomedical
Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Nisakorn Valyasevi
- Department of Biomedical
Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Zoe Roecker
- Department of Biomedical
Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Romel Menacho-Melgar
- Department of Biomedical
Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Michael D. Lynch
- Department of Biomedical
Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
76
|
Bernheim A, Calvo-Villamañán A, Basier C, Cui L, Rocha EPC, Touchon M, Bikard D. Inhibition of NHEJ repair by type II-A CRISPR-Cas systems in bacteria. Nat Commun 2017; 8:2094. [PMID: 29234047 PMCID: PMC5727150 DOI: 10.1038/s41467-017-02350-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/22/2017] [Indexed: 12/26/2022] Open
Abstract
Type II CRISPR-Cas systems introduce double-strand breaks into DNA of invading genetic material and use DNA fragments to acquire novel spacers during adaptation. These breaks can be the substrate of several DNA repair pathways, paving the way for interactions. We report that non-homologous end-joining (NHEJ) and type II-A CRISPR-Cas systems only co-occur once among 5563 fully sequenced prokaryotic genomes. We investigated experimentally the possible molecular interactions using the NHEJ pathway from Bacillus subtilis and the type II-A CRISPR-Cas systems from Streptococcus thermophilus and Streptococcus pyogenes. Our results suggest that the NHEJ system has no effect on CRISPR immunity. On the other hand, we provide evidence for the inhibition of NHEJ repair by the Csn2 protein. Our findings give insights on the complex interactions between CRISPR-Cas systems and repair mechanisms in bacteria, contributing to explain the scattered distribution of CRISPR-Cas systems in bacterial genome.
Collapse
Affiliation(s)
- Aude Bernheim
- Microbial Evolutionary Genomics, Institut Pasteur, 25-28 rue Dr. Roux, 75015, Paris, France.,CNRS, UMR3525, 25-28 rue Dr. Roux, 75015, Paris, France.,Synthetic Biology Group, Institut Pasteur, 25-28 rue Dr. Roux, 75015, Paris, France.,AgroParisTech, 75005, Paris, France
| | | | - Clovis Basier
- Synthetic Biology Group, Institut Pasteur, 25-28 rue Dr. Roux, 75015, Paris, France
| | - Lun Cui
- Synthetic Biology Group, Institut Pasteur, 25-28 rue Dr. Roux, 75015, Paris, France
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, 25-28 rue Dr. Roux, 75015, Paris, France.,CNRS, UMR3525, 25-28 rue Dr. Roux, 75015, Paris, France
| | - Marie Touchon
- Microbial Evolutionary Genomics, Institut Pasteur, 25-28 rue Dr. Roux, 75015, Paris, France.,CNRS, UMR3525, 25-28 rue Dr. Roux, 75015, Paris, France
| | - David Bikard
- Synthetic Biology Group, Institut Pasteur, 25-28 rue Dr. Roux, 75015, Paris, France.
| |
Collapse
|
77
|
Huang SH, Cozart MR, Hart MA, Kobryn K. The Borrelia burgdorferi telomere resolvase, ResT, possesses ATP-dependent DNA unwinding activity. Nucleic Acids Res 2017; 45:1319-1329. [PMID: 28180323 PMCID: PMC5388405 DOI: 10.1093/nar/gkw1243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/23/2016] [Accepted: 11/28/2016] [Indexed: 11/14/2022] Open
Abstract
Spirochetes of the genus Borrelia possess unusual genomes harboring multiple linear and circular replicons. The linear replicons are terminated by covalently closed hairpin (hp) telomeres. Hairpin telomeres are formed from replicated intermediates by the telomere resolvase, ResT, in a phosphoryl transfer reaction with mechanistic similarities to those promoted by type 1B topoisomerases and tyrosine recombinases. There is growing evidence that ResT is multifunctional. Upon ResT depletion DNA replication unexpectedly ceases. Additionally, ResT possesses RecO-like biochemical activities being able to promote single-strand annealing on both free ssDNA and ssDNA complexed with cognate single-stranded DNA binding protein. We report here that ResT possesses DNA-dependent ATPase activity that promotes DNA unwinding with a 3΄-5΄ polarity. ResT can unwind a variety of substrates including synthetic replication forks and D-loops. We demonstrate that ResT's twin activities of DNA unwinding and annealing can drive regression of a model replication fork. These properties are similar to those of the RecQ helicase of the RecF pathway involved in DNA gap repair. We propose that ResT's combination of activities implicates it in replication and recombination processes operating on the linear chromosome and plasmids of Borrelia burgdorferi.
Collapse
Affiliation(s)
- Shu Hui Huang
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, Canada
| | - McKayla R Cozart
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, Canada
| | - Madison A Hart
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, Canada
| | - Kerri Kobryn
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, Canada
| |
Collapse
|
78
|
Millán-Aguiñaga N, Chavarria KL, Ugalde JA, Letzel AC, Rouse GW, Jensen PR. Phylogenomic Insight into Salinispora (Bacteria, Actinobacteria) Species Designations. Sci Rep 2017; 7:3564. [PMID: 28620214 PMCID: PMC5472633 DOI: 10.1038/s41598-017-02845-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/18/2017] [Indexed: 11/12/2022] Open
Abstract
Bacteria represent the most genetically diverse kingdom of life. While great progress has been made in describing this diversity, it remains difficult to identify the phylogenetic and ecological characteristics that delineate groups of bacteria that possess species-like properties. One major challenge associated with species delineations is that not all shared genes have the same evolutionary history, and thus the choice of loci can have a major impact on phylogenetic reconstruction. Sequencing the genomes of large numbers of closely related strains provides new opportunities to distinguish ancestral from acquired alleles and assess the effects of recombination on phylogenetic inference. Here we analyzed the genomes of 119 strains of the marine actinomycete genus Salinispora, which is currently comprised of three named species that share 99% 16S rRNA gene sequence identity. While 63% of the core genome showed evidence of recombination, this had no effect on species-level phylogenomic resolution. Recombination did however blur intra-species relationships and biogeographic resolution. The genome-wide average nucleotide identity provided a new perspective on Salinispora diversity, revealing as many as seven new species. Patterns of orthologous group distributions reveal a genetic basis to delineation the candidate taxa and insight into the levels of genetic cohesion associated with bacterial species.
Collapse
Affiliation(s)
- Natalie Millán-Aguiñaga
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States.,Universidad Autónoma de Baja California. Facultad de Ciencias Marinas, Ensenada, Baja California, Mexico
| | - Krystle L Chavarria
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States
| | - Juan A Ugalde
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States.,Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias Biológicas, Universidad Andrés Bella, Santiago, Chile
| | - Anne-Catrin Letzel
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States
| | - Greg W Rouse
- Marine Biology Research Division Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States. .,Marine Biology Research Division Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States.
| |
Collapse
|
79
|
Gualberto JM, Newton KJ. Plant Mitochondrial Genomes: Dynamics and Mechanisms of Mutation. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:225-252. [PMID: 28226235 DOI: 10.1146/annurev-arplant-043015-112232] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The large mitochondrial genomes of angiosperms are unusually dynamic because of recombination activities involving repeated sequences. These activities generate subgenomic forms and extensive genomic variation even within the same species. Such changes in genome structure are responsible for the rapid evolution of plant mitochondrial DNA and for the variants associated with cytoplasmic male sterility and abnormal growth phenotypes. Nuclear genes modulate these processes, and over the past decade, several of these genes have been identified. They are involved mainly in pathways of DNA repair by homologous recombination and mismatch repair, which appear to be essential for the faithful replication of the mitogenome. Mutations leading to the loss of any of these activities release error-prone repair pathways, resulting in increased ectopic recombination, genome instability, and heteroplasmy. We review the present state of knowledge of the genes and pathways underlying mitochondrial genome stability.
Collapse
Affiliation(s)
- José M Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, 67084 Strasbourg, France;
| | - Kathleen J Newton
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211;
| |
Collapse
|
80
|
Prolonged particulate chromate exposure does not inhibit homologous recombination repair in North Atlantic right whale (Eubalaena glacialis) lung cells. Toxicol Appl Pharmacol 2017; 331:18-23. [PMID: 28411036 DOI: 10.1016/j.taap.2017.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 01/28/2023]
Abstract
Chromosome instability is a common feature of cancers that forms due to the misrepair of DNA double strand breaks. Homologous recombination (HR) repair is a high fidelity DNA repair pathway that utilizes a homologous DNA sequence to accurately repair such damage and protect the genome. Prolonged exposure (>72h) to the human lung carcinogen, particulate hexavalent chromium (Cr(VI)), inhibits HR repair, resulting in increased chromosome instability in human cells. Comparative studies have shown acute Cr(VI) exposure induces less chromosome damage in whale cells than human cells, suggesting investigating the effect of this carcinogen in other species may inform efforts to prevent Cr(VI)-induced chromosome instability. Thus, the goal of this study was to determine the effect of prolonged Cr(VI) exposure on HR repair and clastogenesis in North Atlantic right whale (Eubalaena glacialis) lung cells. We show particulate Cr(VI) induces HR repair activity after both acute (24h) and prolonged (120h) exposure in North Atlantic right whale cells. Although the RAD51 response was lower following prolonged Cr(VI) exposure compared to acute exposure, the response was sufficient for HR repair to occur. In accordance with active HR repair, no increase in Cr(VI)-induced clastogenesis was observed with increased exposure time. These results suggest prolonged Cr(VI) exposure affects HR repair and genomic stability differently in whale and human lung cells. Future investigation of the differences in how human and whale cells respond to chemical carcinogens may provide valuable insight into mechanisms of preventing chemical carcinogenesis.
Collapse
|
81
|
Castillo F, Benmohamed A, Szatmari G. Xer Site Specific Recombination: Double and Single Recombinase Systems. Front Microbiol 2017; 8:453. [PMID: 28373867 PMCID: PMC5357621 DOI: 10.3389/fmicb.2017.00453] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/03/2017] [Indexed: 12/20/2022] Open
Abstract
The separation and segregation of newly replicated bacterial chromosomes can be constrained by the formation of circular chromosome dimers caused by crossing over during homologous recombination events. In Escherichia coli and most bacteria, dimers are resolved to monomers by site-specific recombination, a process performed by two Chromosomally Encoded tyrosine Recombinases (XerC and XerD). XerCD recombinases act at a 28 bp recombination site dif, which is located at the replication terminus region of the chromosome. The septal protein FtsK controls the initiation of the dimer resolution reaction, so that recombination occurs at the right time (immediately prior to cell division) and at the right place (cell division septum). XerCD and FtsK have been detected in nearly all sequenced eubacterial genomes including Proteobacteria, Archaea, and Firmicutes. However, in Streptococci and Lactococci, an alternative system has been found, composed of a single recombinase (XerS) genetically linked to an atypical 31 bp recombination site (difSL). A similar recombination system has also been found in 𝜀-proteobacteria such as Campylobacter and Helicobacter, where a single recombinase (XerH) acts at a resolution site called difH. Most Archaea contain a recombinase called XerA that acts on a highly conserved 28 bp sequence dif, which appears to act independently of FtsK. Additionally, several mobile elements have been found to exploit the dif/Xer system to integrate their genomes into the host chromosome in Vibrio cholerae, Neisseria gonorrhoeae, and Enterobacter cloacae. This review highlights the versatility of dif/Xer recombinase systems in prokaryotes and summarizes our current understanding of homologs of dif/Xer machineries.
Collapse
Affiliation(s)
- Fabio Castillo
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, MontréalQC, Canada
| | | | - George Szatmari
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, MontréalQC, Canada
| |
Collapse
|
82
|
Abstract
DNA repair is essential to maintain genomic integrity and initiate genetic diversity. While gene conversion and classical nonhomologous end-joining are the most physiologically predominant forms of DNA repair mechanisms, emerging lines of evidence suggest the usage of several noncanonical homology-directed repair (HDR) pathways in both prokaryotes and eukaryotes in different contexts. Here we review how these alternative HDR pathways are executed, specifically focusing on the determinants that dictate competition between them and their relevance to cancers that display complex genomic rearrangements or maintain their telomeres by homology-directed DNA synthesis.
Collapse
|
83
|
Shimamura S, Kaneko T, Ozawa G, Matsumoto MN, Koshiishi T, Takaki Y, Kato C, Takai K, Yoshida T, Fujikura K, Barry JP, Maruyama T. Loss of genes related to Nucleotide Excision Repair (NER) and implications for reductive genome evolution in symbionts of deep-sea vesicomyid clams. PLoS One 2017; 12:e0171274. [PMID: 28199404 PMCID: PMC5310779 DOI: 10.1371/journal.pone.0171274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/17/2017] [Indexed: 01/08/2023] Open
Abstract
Intracellular thioautotrophic symbionts of deep-sea vesicomyid clams lack some DNA repair genes and are thought to be undergoing reductive genome evolution (RGE). In this study, we addressed two questions, 1) how these symbionts lost their DNA repair genes and 2) how such losses affect RGE. For the first question, we examined genes associated with nucleotide excision repair (NER; uvrA, uvrB, uvrC, uvrD, uvrD paralog [uvrDp] and mfd) in 12 symbionts of vesicomyid clams belonging to two clades (5 clade I and 7 clade II symbionts). While uvrA, uvrDp and mfd were conserved in all symbionts, uvrB and uvrC were degraded in all clade I symbionts but were apparently intact in clade II symbionts. UvrD was disrupted in two clade II symbionts. Among the intact genes in Ca. Vesicomyosocius okutanii (clade I), expressions of uvrD and mfd were detected by reverse transcription-polymerase chain reaction (RT-PCR), but those of uvrA and uvrDp were not. In contrast, all intact genes were expressed in the symbiont of Calyptogena pacifica (clade II). To assess how gene losses affect RGE (question 2), genetic distances of the examined genes in symbionts from Bathymodiolus septemdierum were shown to be larger in clade I than clade II symbionts. In addition, these genes had lower guanine+cytosine (GC) content and higher repeat sequence densities in clade I than measured in clade II. Our results suggest that NER genes are currently being lost from the extant lineages of vesicomyid clam symbionts. The loss of NER genes and mutY in these symbionts is likely to promote increases in genetic distance and repeat sequence density as well as reduced GC content in genomic genes, and may have facilitated reductive evolution of the genome.
Collapse
Affiliation(s)
- Shigeru Shimamura
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Takashi Kaneko
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
- Tokyo College of Biotechnology, Kitakoujiya, Ota-ku,Tokyo, Japan
| | - Genki Ozawa
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
- Kitasato University, School of Marine Biosciences, Kitasato Minami-ku Sagamihara-shi Kanagawa, Japan
| | - Mamiko Nishino Matsumoto
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Takeru Koshiishi
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Yoshihiro Takaki
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Chiaki Kato
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Ken Takai
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Takao Yoshida
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
- Kitasato University, School of Marine Biosciences, Kitasato Minami-ku Sagamihara-shi Kanagawa, Japan
| | - Katsunori Fujikura
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - James P. Barry
- Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America
| | - Tadashi Maruyama
- Kitasato University, School of Marine Biosciences, Kitasato Minami-ku Sagamihara-shi Kanagawa, Japan
- Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
84
|
Shewaramani S, Finn TJ, Leahy SC, Kassen R, Rainey PB, Moon CD. Anaerobically Grown Escherichia coli Has an Enhanced Mutation Rate and Distinct Mutational Spectra. PLoS Genet 2017; 13:e1006570. [PMID: 28103245 PMCID: PMC5289635 DOI: 10.1371/journal.pgen.1006570] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 02/02/2017] [Accepted: 01/04/2017] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress is a major cause of mutation but little is known about how growth in the absence of oxygen impacts the rate and spectrum of mutations. We employed long-term mutation accumulation experiments to directly measure the rates and spectra of spontaneous mutation events in Escherichia coli populations propagated under aerobic and anaerobic conditions. To detect mutations, whole genome sequencing was coupled with methods of analysis sufficient to identify a broad range of mutational classes, including structural variants (SVs) generated by movement of repetitive elements. The anaerobically grown populations displayed a mutation rate nearly twice that of the aerobic populations, showed distinct asymmetric mutational strand biases, and greater insertion element activity. Consistent with mutation rate and spectra observations, genes for transposition and recombination repair associated with SVs were up-regulated during anaerobic growth. Together, these results define differences in mutational spectra affecting the evolution of facultative anaerobes.
Collapse
Affiliation(s)
- Sonal Shewaramani
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
| | - Thomas J. Finn
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
| | - Sinead C. Leahy
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - Rees Kassen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Paul B. Rainey
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI ParisTech), CNRS UMR 8231, PSL Research University, Paris, France
| | - Christina D. Moon
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
- * E-mail:
| |
Collapse
|
85
|
Hoff G, Bertrand C, Zhang L, Piotrowski E, Chipot L, Bontemps C, Confalonieri F, McGovern S, Lecointe F, Thibessard A, Leblond P. Multiple and Variable NHEJ-Like Genes Are Involved in Resistance to DNA Damage in Streptomyces ambofaciens. Front Microbiol 2016; 7:1901. [PMID: 27965636 PMCID: PMC5124664 DOI: 10.3389/fmicb.2016.01901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/14/2016] [Indexed: 11/26/2022] Open
Abstract
Non-homologous end-joining (NHEJ) is a double strand break (DSB) repair pathway which does not require any homologous template and can ligate two DNA ends together. The basic bacterial NHEJ machinery involves two partners: the Ku protein, a DNA end binding protein for DSB recognition and the multifunctional LigD protein composed a ligase, a nuclease and a polymerase domain, for end processing and ligation of the broken ends. In silico analyses performed in the 38 sequenced genomes of Streptomyces species revealed the existence of a large panel of NHEJ-like genes. Indeed, ku genes or ligD domain homologues are scattered throughout the genome in multiple copies and can be distinguished in two categories: the “core” NHEJ gene set constituted of conserved loci and the “variable” NHEJ gene set constituted of NHEJ-like genes present in only a part of the species. In Streptomyces ambofaciens ATCC23877, not only the deletion of “core” genes but also that of “variable” genes led to an increased sensitivity to DNA damage induced by electron beam irradiation. Multiple mutants of ku, ligase or polymerase encoding genes showed an aggravated phenotype compared to single mutants. Biochemical assays revealed the ability of Ku-like proteins to protect and to stimulate ligation of DNA ends. RT-qPCR and GFP fusion experiments suggested that ku-like genes show a growth phase dependent expression profile consistent with their involvement in DNA repair during spores formation and/or germination.
Collapse
Affiliation(s)
- Grégory Hoff
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Claire Bertrand
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Lingli Zhang
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Emilie Piotrowski
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Ludovic Chipot
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Cyril Bontemps
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Fabrice Confalonieri
- Institute for Integrative Biology of the Cell (I2BC), CEA, Centre National de la Recherche Scientifique, Université Paris-Sud Orsay, France
| | - Stephen McGovern
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - François Lecointe
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Annabelle Thibessard
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Pierre Leblond
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| |
Collapse
|
86
|
Beyene GT, Balasingham SV, Frye SA, Namouchi A, Homberset H, Kalayou S, Riaz T, Tønjum T. Characterization of the Neisseria meningitidis Helicase RecG. PLoS One 2016; 11:e0164588. [PMID: 27736945 PMCID: PMC5063381 DOI: 10.1371/journal.pone.0164588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/27/2016] [Indexed: 11/19/2022] Open
Abstract
Neisseria meningitidis (Nm) is a Gram-negative oral commensal that opportunistically can cause septicaemia and/or meningitis. Here, we overexpressed, purified and characterized the Nm DNA repair/recombination helicase RecG (RecGNm) and examined its role during genotoxic stress. RecGNm possessed ATP-dependent DNA binding and unwinding activities in vitro on a variety of DNA model substrates including a Holliday junction (HJ). Database searching of the Nm genomes identified 49 single nucleotide polymorphisms (SNPs) in the recGNm including 37 non-synonymous SNPs (nsSNPs), and 7 of the nsSNPs were located in the codons for conserved active site residues of RecGNm. A transient reduction in transformation of DNA was observed in the Nm ΔrecG strain as compared to the wildtype. The gene encoding recGNm also contained an unusually high number of the DNA uptake sequence (DUS) that facilitate transformation in neisserial species. The differentially abundant protein profiles of the Nm wildtype and ΔrecG strains suggest that expression of RecGNm might be linked to expression of other proteins involved in DNA repair, recombination and replication, pilus biogenesis, glycan biosynthesis and ribosomal activity. This might explain the growth defect that was observed in the Nm ΔrecG null mutant.
Collapse
Affiliation(s)
| | | | - Stephan A. Frye
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Amine Namouchi
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | | | - Shewit Kalayou
- Department of Microbiology, University of Oslo, Oslo, Norway
| | - Tahira Riaz
- Department of Microbiology, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, Oslo, Norway
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
- * E-mail:
| |
Collapse
|
87
|
Chai R, Zhang C, Tian F, Li H, Yang Q, Song A, Qiu L. Recombination function and recombination kinetics of Escherichia coli single-stranded DNA-binding protein. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-016-1160-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
88
|
Pinto C, Kasaciunaite K, Seidel R, Cejka P. Human DNA2 possesses a cryptic DNA unwinding activity that functionally integrates with BLM or WRN helicases. eLife 2016; 5. [PMID: 27612385 PMCID: PMC5030094 DOI: 10.7554/elife.18574] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/08/2016] [Indexed: 12/13/2022] Open
Abstract
Human DNA2 (hDNA2) contains both a helicase and a nuclease domain within the same polypeptide. The nuclease of hDNA2 is involved in a variety of DNA metabolic processes. Little is known about the role of the hDNA2 helicase. Using bulk and single-molecule approaches, we show that hDNA2 is a processive helicase capable of unwinding kilobases of dsDNA in length. The nuclease activity prevents the engagement of the helicase by competing for the same substrate, hence prominent DNA unwinding by hDNA2 alone can only be observed using the nuclease-deficient variant. We show that the helicase of hDNA2 functionally integrates with BLM or WRN helicases to promote dsDNA degradation by forming a heterodimeric molecular machine. This collectively suggests that the hDNA2 motor promotes the enzyme's capacity to degrade dsDNA in conjunction with BLM or WRN and thus promote the repair of broken DNA. DOI:http://dx.doi.org/10.7554/eLife.18574.001
Collapse
Affiliation(s)
- Cosimo Pinto
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | | | - Ralf Seidel
- Institute of Experimental Physics I, University of Leipzig, Leipzig, Germany
| | - Petr Cejka
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| |
Collapse
|
89
|
McClung DJ, Calixto A, Mosera MN, Kumar R, Neidle EL, Elliott KT. Novel heterologous bacterial system reveals enhanced susceptibility to DNA damage mediated by yqgF, a nearly ubiquitous and often essential gene. MICROBIOLOGY-SGM 2016; 162:1808-1821. [PMID: 27527105 DOI: 10.1099/mic.0.000355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite its presence in most bacteria, yqgF remains one of only 13 essential genes of unknown function in Escherichia coli. Predictions of YqgF function often derive from sequence similarity to RuvC, the canonical Holliday junction resolvase. To clarify its role, we deleted yqgF from a bacterium where it is not essential, Acinetobacter baylyi ADP1. Loss of yqgF impaired growth and increased the frequency of transformation and allelic replacement (TAR). When E. coli yqgF was inserted in place of its A. baylyi chromosomal orthologue, wild-type growth and TAR were restored. Functional similarities of yqgF in both gamma-proteobacteria were further supported by defective 16S rRNA processing by the A. baylyi mutant, an effect previously shown in E. coli for a temperature-sensitive yqgF allele. However, our data question the validity of deducing YqgF function strictly by comparison to RuvC. A. baylyi studies indicated that YqgF and RuvC can function in opposition to one another. Relative to the wild type, the ΔyqgF mutant had increased TAR frequency and increased resistance to nalidixic acid, a DNA-damaging agent. In contrast, deletion of ruvC decreased TAR frequency and lowered resistance to nalidixic acid. YqgF, but not RuvC, appears to increase bacterial susceptibility to DNA damage, including UV radiation. Nevertheless, the effects of yqgF on growth and TAR frequency were found to depend on amino acids analogous to catalytically required residues of RuvC. This new heterologous system should facilitate future yqgF investigation by exploiting the viability of A. baylyi yqgF mutants. In addition, bioinformatic analysis showed that a non-essential gene immediately upstream of yqgF in A. baylyi and E. coli (yqgE) is similarly positioned in most gamma- and beta-proteobacteria. A small overlap in the coding sequences of these adjacent genes is typical. This conserved genetic arrangement raises the possibility of a functional partnership between yqgE and yqgF.
Collapse
Affiliation(s)
- Dylan J McClung
- Department of Biology, The College of New Jersey, Ewing, NJ, USA
| | - Abigail Calixto
- Department of Biology, The College of New Jersey, Ewing, NJ, USA
| | | | - Raagni Kumar
- Department of Biology, The College of New Jersey, Ewing, NJ, USA
| | - Ellen L Neidle
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
90
|
Hoff G, Bertrand C, Piotrowski E, Thibessard A, Leblond P. Implication of RuvABC and RecG in homologous recombination in Streptomyces ambofaciens. Res Microbiol 2016; 168:26-35. [PMID: 27424811 DOI: 10.1016/j.resmic.2016.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
Abstract
Most bacterial organisms rely on homologous recombination to repair DNA double-strand breaks and for the post-replicative repair of DNA single-strand gaps. Homologous recombination can be divided into three steps: (i) a pre-synaptic step in which the DNA 3'-OH ends are processed, (ii) a recA-dependent synaptic step allowing the invasion of an intact copy and the formation of Holliday junctions, and (iii) a post-synaptic step consisting of migration and resolution of these junctions. Currently, little is known about factors involved in homologous recombination, especially for the post-synaptic step. In Escherichia coli, branch migration and resolution are performed by the RuvABC complex, but could also rely on the RecG helicase in a redundant manner. In this study, we show that recG and ruvABC are well-conserved among Streptomyces. ΔruvABC, ΔrecG and ΔruvABC ΔrecG mutant strains were constructed. ΔruvABC ΔrecG is only slightly affected by exposure to DNA damage (UV). We also show that conjugational recombination decreases in the absence of RuvABC and RecG, but that intra-chromosomal recombination is not affected. These data suggest that RuvABC and RecG are indeed involved in homologous recombination in Streptomyces ambofaciens and that alternative factors are able to take over Holliday junction in Streptomyces.
Collapse
Affiliation(s)
- Grégory Hoff
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France; INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France.
| | - Claire Bertrand
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France; INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France.
| | - Emilie Piotrowski
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France; INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France.
| | - Annabelle Thibessard
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France; INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France.
| | - Pierre Leblond
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France; INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France.
| |
Collapse
|
91
|
Li Q, Chen J, Minton NP, Zhang Y, Wen Z, Liu J, Yang H, Zeng Z, Ren X, Yang J, Gu Y, Jiang W, Jiang Y, Yang S. CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnol J 2016; 11:961-72. [PMID: 27213844 DOI: 10.1002/biot.201600053] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 11/05/2022]
Abstract
Solventogenic clostridia are important industrial microorganisms that produce various chemicals and fuels. Effective genetic tools would facilitate physiological studies aimed both at improving our understanding of metabolism and optimizing solvent productivity through metabolic engineering. Here we have developed an all-in-one, CRISPR-based genome editing plasmid, pNICKclos, that can be used to achieve successive rounds of gene editing in Clostridium acetobutylicum ATCC 824 and Clostridium beijerinckii NCIMB 8052 with efficiencies varying from 6.7% to 100% and 18.8% to 100%, respectively. The plasmid specifies the requisite target-specific guide RNA, the gene encoding the Streptococcus pyogenes Cas9 nickase and the genome editing template encompassing the gene-specific homology arms. It can be used to create single target mutants within three days, with a further two days required for the curing of the pNICKclos plasmid ready for a second round of mutagenesis. A S. pyogenes dCas9-mediated gene regulation control system, pdCASclos, was also developed and used in a CRISPRi strategy to successfully repress the expression of spo0A in C. acetobutylicum and C. beijerinckii. The combined application of the established high efficiency CRISPR-Cas9 based genome editing and regulation control systems will greatly accelerate future progress in the understanding and manipulation of metabolism in solventogenic clostridia.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Jun Chen
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Nigel P Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ying Zhang
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Zhiqiang Wen
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinle Liu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Haifeng Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Zhe Zeng
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaodan Ren
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Junjie Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yang Gu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Jiang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Research and Development Center of Industrial Biotechnology, Shanghai, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Research and Development Center of Industrial Biotechnology, Shanghai, China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, China.
| |
Collapse
|
92
|
Bell JC, Kowalczykowski SC. RecA: Regulation and Mechanism of a Molecular Search Engine. Trends Biochem Sci 2016; 41:491-507. [PMID: 27156117 PMCID: PMC4892382 DOI: 10.1016/j.tibs.2016.04.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 11/19/2022]
Abstract
Homologous recombination maintains genomic integrity by repairing broken chromosomes. The broken chromosome is partially resected to produce single-stranded DNA (ssDNA) that is used to search for homologous double-stranded DNA (dsDNA). This homology driven 'search and rescue' is catalyzed by a class of DNA strand exchange proteins that are defined in relation to Escherichia coli RecA, which forms a filament on ssDNA. Here, we review the regulation of RecA filament assembly and the mechanism by which RecA quickly and efficiently searches for and identifies a unique homologous sequence among a vast excess of heterologous DNA. Given that RecA is the prototypic DNA strand exchange protein, its behavior affords insight into the actions of eukaryotic RAD51 orthologs and their regulators, BRCA2 and other tumor suppressors.
Collapse
Affiliation(s)
- Jason C Bell
- Department of Microbiology and Molecular Genetics and Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Stephen C Kowalczykowski
- Department of Microbiology and Molecular Genetics and Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
93
|
Singh A, Bhagavat R, Vijayan M, Chandra N. A comparative analysis of the DNA recombination repair pathway in mycobacterial genomes. Tuberculosis (Edinb) 2016; 99:109-119. [PMID: 27450012 DOI: 10.1016/j.tube.2016.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/19/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
In prokaryotes, repair by homologous recombination provides a major means to reinstate the genetic information lost in DNA damage. Recombination repair pathway in mycobacteria has multiple differences as compared to that in Escherichia coli. Of about 20 proteins known to be involved in the pathway, a set of 9 proteins, namely, RecF, RecO, RecR, RecA, SSBa, RuvA, RuvB and RuvC was found to be indispensable among the 43 mycobacterial strains. A domain level analysis indicated that most domains involved in recombination repair are unique to these proteins and are present as single copies in the genomes. Synteny analysis reveals that the gene order of proteins involved in the pathway is not conserved, suggesting that they may be regulated differently in different species. Sequence conservation among the same protein from different strains suggests the importance of RecO-RecA and RecFOR-RecA presynaptic pathways in the repair of double strand-breaks and single strand-breaks respectively. New annotations obtained from the analysis, include identification of a protein with a probable Holliday junction binding role present in 41 mycobacterial genomes and that of a RecB-like nuclease, containing a cas4 domain, present in 42 genomes. New insights into the binding of small molecules to the relevant proteins are provided by binding pocket analysis using three dimensional structural models. Analysis of the various features of the recombination repair pathway, presented here, is likely to provide a framework for further exploring stress response and emergence of drug resistance in mycobacteria.
Collapse
Affiliation(s)
- Amandeep Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Raghu Bhagavat
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - M Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India.
| |
Collapse
|
94
|
Regulation of genetic flux between bacteria by restriction-modification systems. Proc Natl Acad Sci U S A 2016; 113:5658-63. [PMID: 27140615 DOI: 10.1073/pnas.1603257113] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Restriction-modification (R-M) systems are often regarded as bacteria's innate immune systems, protecting cells from infection by mobile genetic elements (MGEs). Their diversification has been recently associated with the emergence of particularly virulent lineages. However, we have previously found more R-M systems in genomes carrying more MGEs. Furthermore, it has been suggested that R-M systems might favor genetic transfer by producing recombinogenic double-stranded DNA ends. To test whether R-M systems favor or disfavor genetic exchanges, we analyzed their frequency with respect to the inferred events of homologous recombination and horizontal gene transfer within 79 bacterial species. Genetic exchanges were more frequent in bacteria with larger genomes and in those encoding more R-M systems. We created a recognition target motif predictor for Type II R-M systems that identifies genomes encoding systems with similar restriction sites. We found more genetic exchanges between these genomes, independently of their evolutionary distance. Our results reconcile previous studies by showing that R-M systems are more abundant in promiscuous species, wherein they establish preferential paths of genetic exchange within and between lineages with cognate R-M systems. Because the repertoire and/or specificity of R-M systems in bacterial lineages vary quickly, the preferential fluxes of genetic transfer within species are expected to constantly change, producing time-dependent networks of gene transfer.
Collapse
|
95
|
Huang SH, Kobryn K. The Borrelia burgdorferi telomere resolvase, ResT, anneals ssDNA complexed with its cognate ssDNA-binding protein. Nucleic Acids Res 2016; 44:5288-98. [PMID: 27131360 PMCID: PMC4914115 DOI: 10.1093/nar/gkw344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/18/2016] [Indexed: 11/12/2022] Open
Abstract
Spirochetes of the genus Borrelia possess unusual genomes that consist in a linear chromosome and multiple linear and circular plasmids. The linear replicons are terminated by covalently closed hairpin ends, referred to as hairpin telomeres. The hairpin telomeres represent a simple solution to the end-replication problem. Deoxyribonucleic acid replication initiates internally and proceeds bidirectionally toward the hairpin telomeres. The telomere resolvase, ResT, forms the hairpin telomeres from replicated telomere intermediates in a reaction with similarities to those promoted by type IB topoisomerases and tyrosine recombinases. ResT has also been shown to possess DNA single-strand annealing activity. We report here that ResT promotes single-strand annealing of both free DNA strands and ssDNA complexed with single-stranded DNA binding protein (SSB). The annealing of complementary strands bound by SSB requires a ResT-SSB interaction that is mediated by the conserved amphipathic C-terminal tail of SSB. These properties of ResT are similar to those demonstrated for the recombination mediator protein, RecO, of the RecF pathway. Borrelia burgdorferi is unusual in lacking identifiable homologs of the RecFOR proteins. We propose that ResT may provide missing RecFOR functions.
Collapse
Affiliation(s)
- Shu Hui Huang
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | - Kerri Kobryn
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
96
|
CORDOVA CAIOM, HOELTGEBAUM DANIELAL, MACHADO LAÍSD, SANTOS LARISSADOS. Molecular biology of mycoplasmas: from the minimum cell concept to the artificial cell. ACTA ACUST UNITED AC 2016; 88 Suppl 1:599-607. [DOI: 10.1590/0001-3765201620150164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/02/2015] [Indexed: 11/21/2022]
Abstract
ABSTRACT Mycoplasmas are a large group of bacteria, sorted into different genera in the Mollicutes class, whose main characteristic in common, besides the small genome, is the absence of cell wall. They are considered cellular and molecular biology study models. We present an updated review of the molecular biology of these model microorganisms and the development of replicative vectors for the transformation of mycoplasmas. Synthetic biology studies inspired by these pioneering works became possible and won the attention of the mainstream media. For the first time, an artificial genome was synthesized (a minimal genome produced from consensus sequences obtained from mycoplasmas). For the first time, a functional artificial cell has been constructed by introducing a genome completely synthesized within a cell envelope of a mycoplasma obtained by transformation techniques. Therefore, this article offers an updated insight to the state of the art of these peculiar organisms' molecular biology.
Collapse
|
97
|
Timmins J, Moe E. A Decade of Biochemical and Structural Studies of the DNA Repair Machinery of Deinococcus radiodurans: Major Findings, Functional and Mechanistic Insight and Challenges. Comput Struct Biotechnol J 2016; 14:168-176. [PMID: 27924191 PMCID: PMC5128194 DOI: 10.1016/j.csbj.2016.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/02/2016] [Accepted: 04/07/2016] [Indexed: 10/27/2022] Open
Affiliation(s)
- Joanna Timmins
- Université Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France
- CNRS, IBS, F-38044 Grenoble, France
- CEA, IBS, F-38044 Grenoble, France
| | - Elin Moe
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, UiT the Arctic University of Norway, N-9037 Tromsø, Norway
- Instituto de Tecnologia Quimica e Biologica (ITQB), Universidade Nova de Lisboa, Av da Republica (EAN), 2780-157 Oeiras, Portugal
| |
Collapse
|
98
|
Lloyd RG, Rudolph CJ. 25 years on and no end in sight: a perspective on the role of RecG protein. Curr Genet 2016; 62:827-840. [PMID: 27038615 PMCID: PMC5055574 DOI: 10.1007/s00294-016-0589-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/02/2016] [Indexed: 11/27/2022]
Abstract
The RecG protein of Escherichia coli is a double-stranded DNA translocase that unwinds a variety of branched substrates in vitro. Although initially associated with homologous recombination and DNA repair, studies of cells lacking RecG over the past 25 years have led to the suggestion that the protein might be multi-functional and associated with a number of additional cellular processes, including initiation of origin-independent DNA replication, the rescue of stalled or damaged replication forks, replication restart, stationary phase or stress-induced 'adaptive' mutations and most recently, naïve adaptation in CRISPR-Cas immunity. Here we discuss the possibility that many of the phenotypes of recG mutant cells that have led to this conclusion may stem from a single defect, namely the failure to prevent re-replication of the chromosome. We also present data indicating that this failure does indeed contribute substantially to the much-reduced recovery of recombinants in conjugational crosses with strains lacking both RecG and the RuvABC Holliday junction resolvase.
Collapse
Affiliation(s)
- Robert G Lloyd
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Christian J Rudolph
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
99
|
Ivančić-Baće I, Cass SD, Wearne SJ, Bolt EL. Different genome stability proteins underpin primed and naïve adaptation in E. coli CRISPR-Cas immunity. Nucleic Acids Res 2015; 43:10821-30. [PMID: 26578567 PMCID: PMC4678826 DOI: 10.1093/nar/gkv1213] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 10/28/2015] [Indexed: 12/18/2022] Open
Abstract
CRISPR-Cas is a prokaryotic immune system built from capture and integration of invader DNA into CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loci, termed 'Adaptation', which is dependent on Cas1 and Cas2 proteins. In Escherichia coli, Cascade-Cas3 degrades invader DNA to effect immunity, termed 'Interference'. Adaptation can interact with interference ('primed'), or is independent of it ('naïve'). We demonstrate that primed adaptation requires the RecG helicase and PriA protein to be present. Genetic analysis of mutant phenotypes suggests that RecG is needed to dissipate R-loops at blocked replication forks. Additionally, we identify that DNA polymerase I is important for both primed and naive adaptation, and that RecB is needed for naïve adaptation. Purified Cas1-Cas2 protein shows specificity for binding to and nicking forked DNA within single strand gaps, and collapsing forks into DNA duplexes. The data suggest that different genome stability systems interact with primed or naïve adaptation when responding to blocked or collapsed invader DNA replication. In this model, RecG and Cas3 proteins respond to invader DNA replication forks that are blocked by Cascade interference, enabling DNA capture. RecBCD targets DNA ends at collapsed forks, enabling DNA capture without interference. DNA polymerase I is proposed to fill DNA gaps during spacer integration.
Collapse
Affiliation(s)
- Ivana Ivančić-Baće
- Faculty of Science, Department of Molecular Biology, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Simon D Cass
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, NG72UH, UK
| | - Stephen J Wearne
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, NG72UH, UK
| | - Edward L Bolt
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, NG72UH, UK
| |
Collapse
|
100
|
Kowalczykowski SC. An Overview of the Molecular Mechanisms of Recombinational DNA Repair. Cold Spring Harb Perspect Biol 2015; 7:a016410. [PMID: 26525148 PMCID: PMC4632670 DOI: 10.1101/cshperspect.a016410] [Citation(s) in RCA: 320] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recombinational DNA repair is a universal aspect of DNA metabolism and is essential for genomic integrity. It is a template-directed process that uses a second chromosomal copy (sister, daughter, or homolog) to ensure proper repair of broken chromosomes. The key steps of recombination are conserved from phage through human, and an overview of those steps is provided in this review. The first step is resection by helicases and nucleases to produce single-stranded DNA (ssDNA) that defines the homologous locus. The ssDNA is a scaffold for assembly of the RecA/RAD51 filament, which promotes the homology search. On finding homology, the nucleoprotein filament catalyzes exchange of DNA strands to form a joint molecule. Recombination is controlled by regulating the fate of both RecA/RAD51 filaments and DNA pairing intermediates. Finally, intermediates that mature into Holliday structures are disjoined by either nucleolytic resolution or topological dissolution.
Collapse
Affiliation(s)
- Stephen C Kowalczykowski
- Department of Microbiology & Molecular Genetics and Department of Molecular and Cellular Biology, University of California, Davis, Davis, California 95616
| |
Collapse
|