51
|
Concordant divergence of mitogenomes and a mitonuclear gene cluster in bird lineages inhabiting different climates. Nat Ecol Evol 2018; 2:1258-1267. [DOI: 10.1038/s41559-018-0606-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/13/2018] [Indexed: 02/02/2023]
|
52
|
Experimental evidence that thermal selection shapes mitochondrial genome evolution. Sci Rep 2018; 8:9500. [PMID: 29934612 PMCID: PMC6015072 DOI: 10.1038/s41598-018-27805-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are essential organelles, found within eukaryotic cells, which contain their own DNA. Mitochondrial DNA (mtDNA) has traditionally been used in population genetic and biogeographic studies as a maternally-inherited and evolutionary-neutral genetic marker. However, it is now clear that polymorphisms within the mtDNA sequence are routinely non-neutral, and furthermore several studies have suggested that such mtDNA polymorphisms are also sensitive to thermal selection. These observations led to the formulation of the “mitochondrial climatic adaptation” hypothesis, for which all published evidence to date is correlational. Here, we use laboratory-based experimental evolution in the fruit fly, Drosophila melanogaster, to test whether thermal selection can shift population frequencies of two mtDNA haplogroups whose natural frequencies exhibit clinal associations with latitude along the Australian east-coast. We present experimental evidence that the thermal regime in which the laboratory populations were maintained drove changes in haplogroup frequencies across generations. Our results strengthen the emerging view that intra-specific mtDNA variants are sensitive to selection, and suggest spatial distributions of mtDNA variants in natural populations of metazoans might reflect adaptation to climatic environments rather than within-population coalescence and diffusion of selectively-neutral haplotypes across populations.
Collapse
|
53
|
Sharbrough J, Havird JC, Noe GR, Warren JM, Sloan DB. The Mitonuclear Dimension of Neanderthal and Denisovan Ancestry in Modern Human Genomes. Genome Biol Evol 2018; 9:1567-1581. [PMID: 28854627 PMCID: PMC5509035 DOI: 10.1093/gbe/evx114] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2017] [Indexed: 12/15/2022] Open
Abstract
Some human populations interbred with Neanderthals and Denisovans, resulting in substantial contributions to modern-human genomes. Therefore, it is now possible to use genomic data to investigate mechanisms that shaped historical gene flow between humans and our closest hominin relatives. More generally, in eukaryotes, mitonuclear interactions have been argued to play a disproportionate role in generating reproductive isolation. There is no evidence of mtDNA introgression into modern human populations, which means that all introgressed nuclear alleles from archaic hominins must function on a modern-human mitochondrial background. Therefore, mitonuclear interactions are also potentially relevant to hominin evolution. We performed a detailed accounting of mtDNA divergence among hominin lineages and used population-genomic data to test the hypothesis that mitonuclear incompatibilities have preferentially restricted the introgression of nuclear genes with mitochondrial functions. We found a small but significant underrepresentation of introgressed Neanderthal alleles at such nuclear loci. Structural analyses of mitochondrial enzyme complexes revealed that these effects are unlikely to be mediated by physically interacting sites in mitochondrial and nuclear gene products. We did not detect any underrepresentation of introgressed Denisovan alleles at mitochondrial-targeted loci, but this may reflect reduced power because locus-specific estimates of Denisovan introgression are more conservative. Overall, we conclude that genes involved in mitochondrial function may have been subject to distinct selection pressures during the history of introgression from archaic hominins but that mitonuclear incompatibilities have had, at most, a small role in shaping genome-wide introgression patterns, perhaps because of limited functional divergence in mtDNA and interacting nuclear genes.
Collapse
Affiliation(s)
- Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Gregory R Noe
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO
| |
Collapse
|
54
|
Abstract
Genetic variation in mitochondrial DNA (mtDNA) provides adaptive potential although the underlying genetic architecture of fitness components within mtDNAs is not known. To dissect functional variation within mtDNAs, we first identified naturally occurring mtDNAs that conferred high or low fitness in Saccharomyces cerevisiae by comparing growth in strains containing identical nuclear genotypes but different mtDNAs. During respiratory growth under temperature and oxidative stress conditions, mitotype effects were largely independent of nuclear genotypes even in the presence of mito-nuclear interactions. Recombinant mtDNAs were generated to determine fitness components within high- and low-fitness mtDNAs. Based on phenotypic distributions of isogenic strains containing recombinant mtDNAs, we found that multiple loci contributed to mitotype fitness differences. These mitochondrial loci interacted in epistatic, nonadditive ways in certain environmental conditions. Mito-mito epistasis (i.e., nonadditive interactions between mitochondrial loci) influenced fitness in progeny from four different crosses, suggesting that mito-mito epistasis is a widespread phenomenon in yeast and other systems with recombining mtDNAs. Furthermore, we found that interruption of coadapted mito-mito interactions produced recombinant mtDNAs with lower fitness. Our results demonstrate that mito-mito epistasis results in functional variation through mitochondrial recombination in fungi, providing modes for adaptive evolution and the generation of mito-mito incompatibilities.
Collapse
|
55
|
Christen F, Desrosiers V, Dupont-Cyr BA, Vandenberg GW, Le François NR, Tardif JC, Dufresne F, Lamarre SG, Blier PU. Thermal tolerance and thermal sensitivity of heart mitochondria: Mitochondrial integrity and ROS production. Free Radic Biol Med 2018; 116:11-18. [PMID: 29294390 DOI: 10.1016/j.freeradbiomed.2017.12.037] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/17/2017] [Accepted: 12/29/2017] [Indexed: 12/21/2022]
Abstract
Cardiac mitochondrial metabolism provides 90% of the ATP necessary for the contractile exertion of the heart muscle. Mitochondria are therefore assumed to play a pivotal role in heart failure (HF), cardiovascular disease and ageing. Heat stress increases energy metabolism and oxygen demand in tissues throughout the body and imposes a major challenge on the heart, which is suspected of being the first organ to fail during heat stress. The underlying mechanisms inducing heart failure are still unclear. To pinpoint the processes implicated in HF during heat stress, we measured mitochondrial respiration rates and hydrogen peroxide production of isolated Arctic char (Salvelinus alpinus) heart mitochondria at 4 temperatures: 10°C (acclimation), 15°C, 20°C and 25°C (just over critical maximum). We found that at temperature ranges causing the loss of an organism's general homeostasis (between 20°C and 25°C) and with a substrate combination close to physiological conditions, the heat-induced increase in mitochondrial oxygen consumption levels off. More importantly, at the same state, hydrogen peroxide efflux increased by almost 50%. In addition, we found that individuals with low mitochondrial respiration rates produced more hydrogen peroxide at 10°C, 15°C and 20°C. This could indicate that individuals with cardiac mitochondria having a low respiratory capacity, have a more fragile heart and will be more prone to oxidative stress and HF, and less tolerant to temperature changes and other stressors. Our results show that, at temperatures close to the thermal limit, mitochondrial capacity is compromised and ROS production rates increase. This could potentially alter the performance of the cardiac muscle and lead to heat-induced HF underlining the important role that mitochondria play in setting thermal tolerance limits.
Collapse
Affiliation(s)
- Felix Christen
- Université du Québec à Rimouski, Département de biologie, Rimouski, Québec, Canada G5L3A1
| | - Véronique Desrosiers
- Université du Québec à Rimouski, Département de biologie, Rimouski, Québec, Canada G5L3A1
| | - Bernard A Dupont-Cyr
- Université du Québec à Rimouski, Département de biologie, Rimouski, Québec, Canada G5L3A1
| | - Grant W Vandenberg
- Université Laval, Département de sciences animales, Québec, Canada G1V 0A6
| | | | - Jean-Claude Tardif
- Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada H1T 1C8
| | - France Dufresne
- Université du Québec à Rimouski, Département de biologie, Rimouski, Québec, Canada G5L3A1
| | - Simon G Lamarre
- Université de Moncton, Département de biologie, Moncton, New-Brunswick, Canada E1A 3E9
| | - Pierre U Blier
- Université du Québec à Rimouski, Département de biologie, Rimouski, Québec, Canada G5L3A1.
| |
Collapse
|
56
|
Koch RE, Hill GE. Behavioural mating displays depend on mitochondrial function: a potential mechanism for linking behaviour to individual condition. Biol Rev Camb Philos Soc 2018; 93:1387-1398. [DOI: 10.1111/brv.12400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Rebecca E. Koch
- Department of Biological Sciences; Auburn University; Auburn AL 36849 U.S.A
| | - Geoffrey E. Hill
- Department of Biological Sciences; Auburn University; Auburn AL 36849 U.S.A
| |
Collapse
|
57
|
Hill GE. Mitonuclear Mate Choice: A Missing Component of Sexual Selection Theory? Bioessays 2018; 40. [DOI: 10.1002/bies.201700191] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/18/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Geoffrey E. Hill
- Department of Biological Sciences; Auburn University; Auburn Alabama 36849-5414
| |
Collapse
|
58
|
Abstract
Mitochondrial DNA (mtDNA), which is essential for mitochondrial and cell function, is replicated and transcribed in the organelle by proteins that are entirely coded in the nucleus. Replication of mtDNA is challenged not only by threats related to the replication machinery and orchestration of DNA synthesis, but also by factors linked to the peculiarity of this genome. Indeed the architecture, organization, copy number, and location of mtDNA, which are markedly distinct from the nuclear genome, require ad hoc and complex regulation to ensure coordinated replication. As a consequence sub-optimal mtDNA replication, which results from compromised regulation of these factors, is generally associated with mitochondrial dysfunction and disease. Mitochondrial DNA replication should be considered in the context of the organelle and the whole cell, and not just a single genome or a single replication event. Major threats to mtDNA replication are linked to its dependence on both mitochondrial and nuclear factors, which require exquisite coordination of these crucial subcellular compartments. Moreover, regulation of replication events deals with a dynamic population of multiple mtDNA molecules rather than with a fixed number of genome copies, as it is the case for nuclear DNA. Importantly, the mechanistic aspects of mtDNA replication are still debated. We describe here major challenges for human mtDNA replication, the mechanistic aspects of the process that are to a large extent original, and their consequences on disease.
Collapse
Affiliation(s)
- Miria Ricchetti
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Stem Cells and Development, 75724 Cedex15, Paris, France; Team Stability of Nuclear and Mitochondrial DNA, CNRS UMR 3738, 75724, Cedex15, Paris, France.
| |
Collapse
|
59
|
Intraspecific variation and plasticity in mitochondrial oxygen binding affinity as a response to environmental temperature. Sci Rep 2017; 7:16238. [PMID: 29176558 PMCID: PMC5701142 DOI: 10.1038/s41598-017-16598-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/15/2017] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial function has been suggested to underlie constraints on whole-organism aerobic performance and associated hypoxia and thermal tolerance limits, but most studies have focused on measures of maximum mitochondrial capacity. Here we investigated whether variation in mitochondrial oxygen kinetics could contribute to local adaptation and plasticity in response to temperature using two subspecies of the Atlantic killifish (Fundulus heteroclitus) acclimated to a range of temperatures (5, 15, and 33 °C). The southern subspecies of F. heteroclitus, which has superior thermal and hypoxia tolerances compared to the northern subspecies, exhibited lower mitochondrial O2 P50 (higher O2 affinity). Acclimation to thermal extremes (5 or 33 °C) altered mitochondrial O2 P50 in both subspecies consistent with the effects of thermal acclimation on whole-organism thermal tolerance limits. We also examined differences between subspecies and thermal acclimation effects on whole-blood Hb O2-P50 to assess whether variation in oxygen delivery is involved in these responses. In contrast to the clear differences between subspecies in mitochondrial O2-P50 there were no differences in whole-blood Hb-O2 P50 between subspecies. Taken together these findings support a general role for mitochondrial oxygen kinetics in differentiating whole-organism aerobic performance and thus in influencing species responses to environmental change.
Collapse
|
60
|
Aw WC, Garvin MR, Melvin RG, Ballard JWO. Sex-specific influences of mtDNA mitotype and diet on mitochondrial functions and physiological traits in Drosophila melanogaster. PLoS One 2017; 12:e0187554. [PMID: 29166659 PMCID: PMC5699850 DOI: 10.1371/journal.pone.0187554] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/20/2017] [Indexed: 01/01/2023] Open
Abstract
Here we determine the sex-specific influence of mtDNA type (mitotype) and diet on mitochondrial functions and physiology in two Drosophila melanogaster lines. In many species, males and females differ in aspects of their energy production. These sex-specific influences may be caused by differences in evolutionary history and physiological functions. We predicted the influence of mtDNA mutations should be stronger in males than females as a result of the organelle's maternal mode of inheritance in the majority of metazoans. In contrast, we predicted the influence of diet would be greater in females due to higher metabolic flexibility. We included four diets that differed in their protein: carbohydrate (P:C) ratios as they are the two-major energy-yielding macronutrients in the fly diet. We assayed four mitochondrial function traits (Complex I oxidative phosphorylation, reactive oxygen species production, superoxide dismutase activity, and mtDNA copy number) and four physiological traits (fecundity, longevity, lipid content, and starvation resistance). Traits were assayed at 11 d and 25 d of age. Consistent with predictions we observe that the mitotype influenced males more than females supporting the hypothesis of a sex-specific selective sieve in the mitochondrial genome caused by the maternal inheritance of mitochondria. Also, consistent with predictions, we found that the diet influenced females more than males.
Collapse
Affiliation(s)
- Wen C. Aw
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Sydney, Australia
| | - Michael R. Garvin
- School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Richard G. Melvin
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Sydney, Australia
| | - J. William O. Ballard
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
61
|
Affiliation(s)
- David M. Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
62
|
Fine-scale genetic structure due to adaptive divergence among microhabitats. Heredity (Edinb) 2017; 118:594-604. [PMID: 28295034 DOI: 10.1038/hdy.2017.6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/20/2016] [Accepted: 01/22/2017] [Indexed: 02/03/2023] Open
Abstract
It has been suggested that adaptive evolution on ecological timescales shapes communities. However, adaptation among environments relies on isolation or large selection coefficients that exceed migration effects. This reliance is tempered if adaptation is polygenic-does not depend on one allele completely replacing another but instead requires small allele frequency changes at many loci. Thus, whether individuals can evolve adaptation to fine-scale habitat variation (for example, microhabitats) is not resolved. Here we analyze the genetic divergence of the teleost fish, Fundulus heteroclitus, among microhabitats that are <200 m apart in three separate saltmarshes using 4741 single-nucleotide polymorphisms (SNPs). Among these SNPs, 1.3-2.3% have large and highly significant differences among microhabitats (mean FST=0.15; false discovery rate ⩽1%). The divergence among microhabitats for these outlier SNPs is larger than that among populations, exceeds neutral expectation and indicates surprising population structure among microhabitats. Thus, we suggest that polygenic selection is surprisingly effective in altering allele frequencies among many different SNPs that share similar biological functions in response to environmental and ecological differences over very small geographic distances. We acknowledge the evolutionary difficulty of large genetic divergence among well-connected habitats. Therefore, these studies are only the first step to discern whether natural selection is responsible and capable of effecting genetic divergence on such a fine scale.
Collapse
|