• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643608)   Today's Articles (38)   Subscriber (50572)
For: Ekins S, Lage de Siqueira-Neto J, McCall LI, Sarker M, Yadav M, Ponder EL, Kallel EA, Kellar D, Chen S, Arkin M, Bunin BA, McKerrow JH, Talcott C. Machine Learning Models and Pathway Genome Data Base for Trypanosoma cruzi Drug Discovery. PLoS Negl Trop Dis 2015;9:e0003878. [PMID: 26114876 PMCID: PMC4482694 DOI: 10.1371/journal.pntd.0003878] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/05/2015] [Indexed: 12/21/2022]  Open
Number Cited by Other Article(s)
51
Scarim CB, Jornada DH, Chelucci RC, de Almeida L, Dos Santos JL, Chung MC. Current advances in drug discovery for Chagas disease. Eur J Med Chem 2018;155:824-838. [PMID: 30033393 DOI: 10.1016/j.ejmech.2018.06.040] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022]
52
Otta DA, de Araújo FF, de Rezende VB, Souza-Fagundes EM, Elói-Santos SM, Costa-Silva MF, Santos RA, Costa HA, Siqueira-Neto JL, Martins-Filho OA, Teixeira-Carvalho A. Identification of Anti-Trypanosoma cruzi Lead Compounds with Putative Immunomodulatory Activity. Antimicrob Agents Chemother 2018;62:e01834-17. [PMID: 29437629 PMCID: PMC5913944 DOI: 10.1128/aac.01834-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/21/2018] [Indexed: 12/13/2022]  Open
53
Cortés-Ruiz EM, Palomino-Hernández O, Rodríguez-Hernández KD, Espinoza B, Medina-Franco JL. Computational Methods to Discover Compounds for the Treatment of Chagas Disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018;113:119-142. [PMID: 30149904 DOI: 10.1016/bs.apcsb.2018.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
54
Ekins S, Clark AM, Dole K, Gregory K, Mcnutt AM, Spektor AC, Weatherall C, Litterman NK, Bunin BA. Data Mining and Computational Modeling of High-Throughput Screening Datasets. Methods Mol Biol 2018;1755:197-221. [PMID: 29671272 DOI: 10.1007/978-1-4939-7724-6_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
55
Korotcov A, Tkachenko V, Russo DP, Ekins S. Comparison of Deep Learning With Multiple Machine Learning Methods and Metrics Using Diverse Drug Discovery Data Sets. Mol Pharm 2017;14:4462-4475. [PMID: 29096442 PMCID: PMC5741413 DOI: 10.1021/acs.molpharmaceut.7b00578] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
56
Gad A, Manuel AT, K R J, John L, R S, V G SP, U C AJ. Virtual screening and repositioning of inconclusive molecules of beta-lactamase Bioassays-A data mining approach. Comput Biol Chem 2017;70:65-88. [PMID: 28822333 DOI: 10.1016/j.compbiolchem.2017.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/17/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
57
Xia X. Bioinformatics and Drug Discovery. Curr Top Med Chem 2017;17:1709-1726. [PMID: 27848897 PMCID: PMC5421137 DOI: 10.2174/1568026617666161116143440] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/11/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023]
58
Collaborative drug discovery for More Medicines for Tuberculosis (MM4TB). Drug Discov Today 2016;22:555-565. [PMID: 27884746 DOI: 10.1016/j.drudis.2016.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/11/2016] [Accepted: 10/21/2016] [Indexed: 01/30/2023]
59
Ekins S, Perryman AL, Clark AM, Reynolds RC, Freundlich JS. Machine Learning Model Analysis and Data Visualization with Small Molecules Tested in a Mouse Model of Mycobacterium tuberculosis Infection (2014-2015). J Chem Inf Model 2016;56:1332-43. [PMID: 27335215 PMCID: PMC4962118 DOI: 10.1021/acs.jcim.6b00004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
60
Ekins S, Mietchen D, Coffee M, Stratton TP, Freundlich JS, Freitas-Junior L, Muratov E, Siqueira-Neto J, Williams AJ, Andrade C. Open drug discovery for the Zika virus. F1000Res 2016;5:150. [PMID: 27134728 PMCID: PMC4841202 DOI: 10.12688/f1000research.8013.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2016] [Indexed: 01/20/2023]  Open
61
Clark AM, Dole K, Ekins S. Open Source Bayesian Models. 3. Composite Models for Prediction of Binned Responses. J Chem Inf Model 2016;56:275-85. [PMID: 26750305 PMCID: PMC4764945 DOI: 10.1021/acs.jcim.5b00555] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
62
Ekins S, Freundlich JS, Clark AM, Anantpadma M, Davey RA, Madrid P. Machine learning models identify molecules active against the Ebola virus in vitro. F1000Res 2016;4:1091. [PMID: 26834994 DOI: 10.12688/f1000research.7217.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/23/2015] [Indexed: 12/15/2022]  Open
63
Ekins S, Freundlich JS, Clark AM, Anantpadma M, Davey RA, Madrid P. Machine learning models identify molecules active against the Ebola virus in vitro. F1000Res 2015;4:1091. [PMID: 26834994 DOI: 10.12688/f1000research.7217.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2015] [Indexed: 12/23/2022]  Open
64
Ekins S, Freundlich JS, Clark AM, Anantpadma M, Davey RA, Madrid P. Machine learning models identify molecules active against the Ebola virus in vitro. F1000Res 2015;4:1091. [PMID: 26834994 PMCID: PMC4706063 DOI: 10.12688/f1000research.7217.3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/17/2017] [Indexed: 12/21/2022]  Open
PrevPage 2 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA