51
|
Croucher NJ, Coupland PG, Stevenson AE, Callendrello A, Bentley SD, Hanage WP. Diversification of bacterial genome content through distinct mechanisms over different timescales. Nat Commun 2014; 5:5471. [PMID: 25407023 PMCID: PMC4263131 DOI: 10.1038/ncomms6471] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/03/2014] [Indexed: 12/16/2022] Open
Abstract
Bacterial populations often consist of multiple co-circulating lineages. Determining how such population structures arise requires understanding what drives bacterial diversification. Using 616 systematically sampled genomes, we show that Streptococcus pneumoniae lineages are typically characterized by combinations of infrequently transferred stable genomic islands: those moving primarily through transformation, along with integrative and conjugative elements and phage-related chromosomal islands. The only lineage containing extensive unique sequence corresponds to a set of atypical unencapsulated isolates that may represent a distinct species. However, prophage content is highly variable even within lineages, suggesting frequent horizontal transmission that would necessitate rapidly diversifying anti-phage mechanisms to prevent these viruses sweeping through populations. Correspondingly, two loci encoding Type I restriction-modification systems able to change their specificity over short timescales through intragenomic recombination are ubiquitous across the collection. Hence short-term pneumococcal variation is characterized by movement of phage and intragenomic rearrangements, with the slower transfer of stable loci distinguishing lineages. Populations of the pathogenic bacterium Streptococcus pneumoniae consist of distinct co-circulating lineages. Here, the authors show lineages are characterized by particular combinations of stable genomic islands, whereas prophage and restriction-modification systems vary over short timescales.
Collapse
Affiliation(s)
- Nicholas J Croucher
- 1] Centre for Communicable Disease Dynamics, Harvard School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, USA [2] Department of Infectious Disease Epidemiology, St. Mary's Campus, Imperial College, London W2 1PG, UK
| | - Paul G Coupland
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Abbie E Stevenson
- Centre for Communicable Disease Dynamics, Harvard School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, USA
| | - Alanna Callendrello
- Centre for Communicable Disease Dynamics, Harvard School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, USA
| | - Stephen D Bentley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - William P Hanage
- Centre for Communicable Disease Dynamics, Harvard School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
52
|
Khosravi Y, Dieye Y, Loke MF, Goh KL, Vadivelu J. Streptococcus mitis induces conversion of Helicobacter pylori to coccoid cells during co-culture in vitro. PLoS One 2014; 9:e112214. [PMID: 25386948 PMCID: PMC4227722 DOI: 10.1371/journal.pone.0112214] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 10/10/2014] [Indexed: 12/18/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a major gastric pathogen that has been associated with humans for more than 60,000 years. H. pylori causes different gastric diseases including dyspepsia, ulcers and gastric cancers. Disease development depends on several factors including the infecting H. pylori strain, environmental and host factors. Another factor that might influence H. pylori colonization and diseases is the gastric microbiota that was overlooked for long because of the belief that human stomach was a hostile environment that cannot support microbial life. Once established, H. pylori mainly resides in the gastric mucosa and interacts with the resident bacteria. How these interactions impact on H. pylori-caused diseases has been poorly studied in human. In this study, we analyzed the interactions between H. pylori and two bacteria, Streptococcus mitis and Lactobacillus fermentum that are present in the stomach of both healthy and gastric disease human patients. We have found that S. mitis produced and released one or more diffusible factors that induce growth inhibition and coccoid conversion of H. pylori cells. In contrast, both H. pylori and L. fermentum secreted factors that promote survival of S. mitis during the stationary phase of growth. Using a metabolomics approach, we identified compounds that might be responsible for the conversion of H. pylori from spiral to coccoid cells. This study provide evidences that gastric bacteria influences H. pylori physiology and therefore possibly the diseases this bacterium causes.
Collapse
Affiliation(s)
- Yalda Khosravi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yakhya Dieye
- Vice-chancellor's Office, University of Malaya, Kuala Lumpur, Malaysia
| | - Mun Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Khean Lee Goh
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
53
|
Rukke HV, Kalluru RS, Repnik U, Gerlini A, José RJ, Periselneris J, Marshall H, Griffiths G, Oggioni MR, Brown JS, Petersen FC. Protective role of the capsule and impact of serotype 4 switching on Streptococcus mitis. Infect Immun 2014; 82:3790-801. [PMID: 24958712 PMCID: PMC4187822 DOI: 10.1128/iai.01840-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/18/2014] [Indexed: 01/29/2023] Open
Abstract
The polysaccharide capsule surrounding Streptococcus pneumoniae is essential for virulence. Recently, Streptococcus mitis, a human commensal and a close relative of S. pneumoniae, was also shown to have a capsule. In this study, the S. mitis type strain switched capsule by acquisition of the serotype 4 capsule locus of S. pneumoniae TIGR4, following induction of competence for natural transformation. Comparison of the wild type with the capsule-switching mutant and with a capsule deletion mutant showed that the capsule protected S. mitis against phagocytosis by RAW 264.7 macrophages. This effect was enhanced in the S. mitis strain expressing the S. pneumoniae capsule, which showed, in addition, increased resistance against early clearance in a mouse model of lung infection. Expression of both capsules also favored survival in human blood, and the effect was again more pronounced for the capsule-switching mutant. S. mitis survival in horse blood or in a mouse model of bacteremia was not significantly different between the wild type and the mutant strains. In all models, S. pneumoniae TIGR4 showed higher rates of survival than the S. mitis type strain or the capsule-switching mutant, except in the lung model, in which significant differences between S. pneumoniae TIGR4 and the capsule-switching mutant were not observed. Thus, we identified conditions that showed a protective function for the capsule in S. mitis. Under such conditions, S. mitis resistance to clearance could be enhanced by capsule switching to serotype 4, but it was enhanced to levels lower than those for the virulent strain S. pneumoniae TIGR4.
Collapse
Affiliation(s)
- Håkon V Rukke
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Raja Sab Kalluru
- Department of Molecular Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Urska Repnik
- Department of Molecular Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Alice Gerlini
- Laboratorio Microbiologia Molecolare e Biotecnologia, Dipartimento Biologia Molecolare, Università di Siena, Siena, Italy UOC Batteriologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Ricardo J José
- Centre for Inflammation and Tissue Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London, United Kingdom
| | - Jimstan Periselneris
- Centre for Inflammation and Tissue Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London, United Kingdom
| | - Helina Marshall
- Centre for Inflammation and Tissue Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London, United Kingdom
| | - Gareth Griffiths
- Department of Molecular Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Marco Rinaldo Oggioni
- Laboratorio Microbiologia Molecolare e Biotecnologia, Dipartimento Biologia Molecolare, Università di Siena, Siena, Italy UOC Batteriologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Jeremy S Brown
- Centre for Inflammation and Tissue Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London, United Kingdom
| | - Fernanda C Petersen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
54
|
Kilian M, Riley DR, Jensen A, Brüggemann H, Tettelin H. Parallel evolution of Streptococcus pneumoniae and Streptococcus mitis to pathogenic and mutualistic lifestyles. mBio 2014; 5:e01490-14. [PMID: 25053789 PMCID: PMC4120201 DOI: 10.1128/mbio.01490-14] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 06/27/2014] [Indexed: 11/20/2022] Open
Abstract
The bacterium Streptococcus pneumoniae is one of the leading causes of fatal infections affecting humans. Intriguingly, phylogenetic analysis shows that the species constitutes one evolutionary lineage in a cluster of the otherwise commensal Streptococcus mitis strains, with which humans live in harmony. In a comparative analysis of 35 genomes, including phylogenetic analyses of all predicted genes, we have shown that the pathogenic pneumococcus has evolved into a master of genomic flexibility while lineages that evolved into the nonpathogenic S. mitis secured harmonious coexistence with their host by stabilizing an approximately 15%-reduced genome devoid of many virulence genes. Our data further provide evidence that interspecies gene transfer between S. pneumoniae and S. mitis occurs in a unidirectional manner, i.e., from S. mitis to S. pneumoniae. Import of genes from S. mitis and other mitis, anginosus, and salivarius group streptococci ensured allelic replacements and antigenic diversification and has been driving the evolution of the remarkable structural diversity of capsular polysaccharides of S. pneumoniae. Our study explains how the unique structural diversity of the pneumococcal capsule emerged and conceivably will continue to increase and reveals a striking example of the fragile border between the commensal and pathogenic lifestyles. While genomic plasticity enabling quick adaptation to environmental stress is a necessity for the pathogenic streptococci, the commensal lifestyle benefits from stability. Importance: One of the leading causes of fatal infections affecting humans, Streptococcus pneumoniae, and the commensal Streptococcus mitis are closely related obligate symbionts associated with hominids. Faced with a shortage of accessible hosts, the two opposing lifestyles evolved in parallel. We have shown that the nonpathogenic S. mitis secured harmonious coexistence with its host by stabilizing a reduced genome devoid of many virulence genes. Meanwhile, the pathogenic pneumococcus evolved into a master of genomic flexibility and imports genes from S. mitis and other related streptococci. This process ensured antigenic diversification and has been driving the evolution of the remarkable structural diversity of capsular polysaccharides of S. pneumoniae, which conceivably will continue to increase and present a challenge to disease prevention.
Collapse
Affiliation(s)
- Mogens Kilian
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - David R Riley
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anders Jensen
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Holger Brüggemann
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
55
|
Abstract
The Human Microbiome Project provided a census of bacterial populations in healthy individuals, but an understanding of the biomedical significance of this census has been hindered by limited taxonomic resolution. A high-resolution method termed oligotyping overcomes this limitation by evaluating individual nucleotide positions using Shannon entropy to identify the most information-rich nucleotide positions, which then define oligotypes. We have applied this method to comprehensively analyze the oral microbiome. Using Human Microbiome Project 16S rRNA gene sequence data for the nine sites in the oral cavity, we identified 493 oligotypes from the V1-V3 data and 360 oligotypes from the V3-V5 data. We associated these oligotypes with species-level taxon names by comparison with the Human Oral Microbiome Database. We discovered closely related oligotypes, differing sometimes by as little as a single nucleotide, that showed dramatically different distributions among oral sites and among individuals. We also detected potentially pathogenic taxa in high abundance in individual samples. Numerous oligotypes were preferentially located in plaque, others in keratinized gingiva or buccal mucosa, and some oligotypes were characteristic of habitat groupings such as throat, tonsils, tongue dorsum, hard palate, and saliva. The differing habitat distributions of closely related oligotypes suggest a level of ecological and functional biodiversity not previously recognized. We conclude that the Shannon entropy approach of oligotyping has the capacity to analyze entire microbiomes, discriminate between closely related but distinct taxa and, in combination with habitat analysis, provide deep insight into the microbial communities in health and disease.
Collapse
|
56
|
Hathaway LJ, Bättig P, Reber S, Rotzetter JU, Aebi S, Hauser C, Heller M, Kadioglu A, Mühlemann K. Streptococcus pneumoniae detects and responds to foreign bacterial peptide fragments in its environment. Open Biol 2014; 4:130224. [PMID: 24718598 PMCID: PMC4043112 DOI: 10.1098/rsob.130224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Streptococcus pneumoniae is an important cause of bacterial meningitis and pneumonia but usually colonizes the human nasopharynx harmlessly. As this niche is simultaneously populated by other bacterial species, we looked for a role and pathway of communication between pneumococci and other species. This paper shows that two proteins of non-encapsulated S. pneumoniae, AliB-like ORF 1 and ORF 2, bind specifically to peptides matching other species resulting in changes in the pneumococci. AliB-like ORF 1 binds specifically peptide SETTFGRDFN, matching 50S ribosomal subunit protein L4 of Enterobacteriaceae, and facilitates upregulation of competence for genetic transformation. AliB-like ORF 2 binds specifically peptides containing sequence FPPQS, matching proteins of Prevotella species common in healthy human nasopharyngeal microbiota. We found that AliB-like ORF 2 mediates the early phase of nasopharyngeal colonization in vivo. The ability of S. pneumoniae to bind and respond to peptides of other bacterial species occupying the same host niche may play a key role in adaptation to its environment and in interspecies communication. These findings reveal a completely new concept of pneumococcal interspecies communication which may have implications for communication between other bacterial species and for future interventional therapeutics.
Collapse
Affiliation(s)
- Lucy J Hathaway
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Cardoso LS, Suissas CE, Ramirez M, Antunes M, Pinto FR. Comparison of alternative mixture model methods to analyze bacterial CGH experiments with multi-genome arrays. BMC Res Notes 2014; 7:148. [PMID: 24629208 PMCID: PMC3995598 DOI: 10.1186/1756-0500-7-148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 03/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microarray-based comparative genomic hybridization (aCGH) is used for rapid comparison of genomes of different bacterial strains. The purpose is to evaluate the distribution of genes from sequenced bacterial strains (control) among unsequenced strains (test). We previously compared the use of single strain versus multiple strain control with arrays covering multiple genomes. The conclusion was that a multiple strain control promoted a better separation of signals between present and absent genes. FINDINGS We now extend our previous study by applying the Expectation-Maximization (EM) algorithm to fit a mixture model to the signal distribution in order to classify each gene as present or absent and by comparing different methods for analyzing aCGH data, using combinations of different control strain choices, two different statistical mixture models, with or without normalization, with or without logarithm transformation and with test-over-control or inverse signal ratio calculation. We also assessed the impact of replication on classification accuracy. Higher values of accuracy have been achieved using the ratio of control-over-test intensities, without logarithmic transformation and with a strain mix control. Normalization and the type of mixture model fitted by the EM algorithm did not have a significant impact on classification accuracy. Similarly, using the average of replicate arrays to perform the classification does not significantly improve the results. CONCLUSIONS Our work provides a guiding benchmark comparison of alternative methods to analyze aCGH results that can impact on the analysis of currently ongoing comparative genomic projects or in the re-analysis of published studies.
Collapse
|
58
|
Etzold S, Kober OI, Mackenzie DA, Tailford LE, Gunning AP, Walshaw J, Hemmings AM, Juge N. Structural basis for adaptation of lactobacilli to gastrointestinal mucus. Environ Microbiol 2014; 16:888-903. [PMID: 24373178 DOI: 10.1111/1462-2920.12377] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/17/2013] [Accepted: 12/17/2013] [Indexed: 12/01/2022]
Abstract
The mucus layer covering the gastrointestinal (GI) epithelium is critical in selecting and maintaining homeostatic interactions with our gut bacteria. However, the underpinning mechanisms of these interactions are not understood. Here, we provide structural and functional insights into the canonical mucus-binding protein (MUB), a multi-repeat cell-surface adhesin found in Lactobacillus inhabitants of the GI tract. X-ray crystallography together with small-angle X-ray scattering demonstrated a 'beads on a string' arrangement of repeats, generating 174 nm long protein fibrils, as shown by atomic force microscopy. Each repeat consists of tandemly arranged Ig- and mucin-binding protein (MucBP) modules. The binding of full-length MUB was confined to mucus via multiple interactions involving terminal sialylated mucin glycans. While individual MUB domains showed structural similarity to fimbrial proteins from Gram-positive pathogens, the particular organization of MUB provides a structural explanation for the mechanisms in which lactobacilli have adapted to their host niche by maximizing interactions with the mucus receptors, potentiating the retention of bacteria within the mucus layer. Together, this study reveals functional and structural features which may affect tropism of microbes across mucus and along the GI tract, providing unique insights into the mechanisms adopted by commensals and probiotics to adapt to the mucosal environment.
Collapse
Affiliation(s)
- Sabrina Etzold
- Institute of Food Research, Gut Health and Food Safety Institute Strategic Programme, Norwich Research Park, Norwich, NR4 7UA, UK
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Meiers M, Volz C, Eisel J, Maurer P, Henrich B, Hakenbeck R. Altered lipid composition in Streptococcus pneumoniae cpoA mutants. BMC Microbiol 2014; 14:12. [PMID: 24443834 PMCID: PMC3901891 DOI: 10.1186/1471-2180-14-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 01/16/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Penicillin-resistance in Streptococcus pneumoniae is mainly due to alterations in genes encoding the target enzymes for beta-lactams, the penicillin-binding proteins (PBPs). However, non-PBP genes are altered in beta-lactam-resistant laboratory mutants and confer decreased susceptibility to beta-lactam antibiotics. Two piperacillin resistant laboratory mutants of Streptococcus pneumoniae R6 contain mutations in the putative glycosyltransferase gene cpoA. The CpoA gene is part of an operon including another putative glycosyltransferase gene spr0982, both of which being homologous to glycolipid synthases present in other Gram-positive bacteria. RESULTS We now show that the cpoA mutants as well as a cpoA deletion mutant are defective in the synthesis of galactosyl-glucosyl-diacylglycerol (GalGlcDAG) in vivo consistent with the in vitro function of CpoA as α-GalGlcDAG synthase as shown previously. In addition, the proportion of phosphatidylglycerol increased relative to cardiolipin in cpoA mutants. Moreover, cpoA mutants are more susceptible to acidic stress, have an increased requirement for Mg(2+) at low pH, reveal a higher resistance to lysis inducing conditions and are hypersensitive to bacitracin. CONCLUSIONS The data show that deficiency of the major glycolipid GalGlcDAG causes a pleitotropic phenotype of cpoA mutant cells consistent with severe membrane alterations. We suggest that the cpoA mutations selected with piperacillin are directed against the lytic response induced by the beta-lactam antibiotic.
Collapse
Affiliation(s)
| | | | | | | | | | - Regine Hakenbeck
- Department of Microbiology, University of Kaiserslautern, Gottlieb-Daimler-Strasse, Gebäude 23, D-67663 Kaiserslautern, Germany.
| |
Collapse
|
60
|
Schumann P, Maier T. MALDI-TOF Mass Spectrometry Applied to Classification and Identification of Bacteria. METHODS IN MICROBIOLOGY 2014. [DOI: 10.1016/bs.mim.2014.06.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
61
|
Brenciani A, Tiberi E, Tili E, Mingoia M, Palmieri C, Varaldo PE, Giovanetti E. Genetic determinants and elements associated with antibiotic resistance in viridans group streptococci. J Antimicrob Chemother 2013; 69:1197-204. [PMID: 24343896 DOI: 10.1093/jac/dkt495] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To investigate the distribution of erythromycin, tetracycline and chloramphenicol resistance mechanisms and determinants and the relevant genetic environments and elements in viridans group streptococci (VGS). METHODS A total of 263 VGS collected from routine throat swabs in 2010-12 and identified to the species level were studied. Antibiotic resistance determinants and the relevant genetic contexts and elements were determined using amplification and sequencing assays and restriction analysis. RESULTS The investigation provided original information on the distribution of resistance mechanisms, determinants and genetic elements in VGS. Erythromycin-resistant isolates totalled 148 (56.3%; 37 belonging to the cMLS phenotype and 111 belonging to the M phenotype); there were 72 (27.4%) and 7 (2.7%) tetracycline- and chloramphenicol-resistant isolates, respectively. A number of variants of known genetic contexts and elements carrying determinants of resistance to these antibiotics were detected, including the mega element, Φ10394.4, Tn2009, Tn2010, the IQ element, Tn917, Tn3872, Tn6002, Tn916, Tn5801, a tet(O) fragment from ICE2096-RD.2 and ICESp23FST81. CONCLUSIONS These findings shed new light on the distribution of antibiotic resistance mechanisms and determinants and their genetic environments in VGS, for which very few such data are currently available. The high frequency and broad variety of such elements supports the notion that VGS may be important reservoirs of resistance genes for the more pathogenic streptococci. The high rates of macrolide resistance confirm the persistence of a marked prevalence of resistant VGS in Europe, where macrolide resistance is, conversely, declining among the major streptococcal pathogens.
Collapse
Affiliation(s)
- Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, 60126 Ancona, Italy
| | | | | | | | | | | | | |
Collapse
|
62
|
Kant R, de Vos WM, Palva A, Satokari R. Immunostimulatory CpG motifs in the genomes of gut bacteria and their role in human health and disease. J Med Microbiol 2013; 63:293-308. [PMID: 24255136 DOI: 10.1099/jmm.0.064220-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptor (TLR) signalling plays an important role in epithelial and immune cells of the intestine. TLR9 recognizes unmethylated CpG motifs in bacterial DNA, and TLR9 signalling maintains the gut epithelial homeostasis. Here, we carried out a bioinformatic analysis of the frequency of CpG motifs in the genomes of gut commensal bacteria across major bacterial phyla. The frequency of potentially immunostimulatory CpG motifs (all CpG hexamers) or purine-purine-CG-pyrimidine-pyrimidine hexamers was linearly dependent on the genomic G+C content. We found that species belonging to Proteobacteria, Bacteroidetes and Actinobacteria (including bifidobacteria) carried high counts of GTCGTT, the optimal motif stimulating human TLR9. We also found that Enterococcus faecalis, Lactobacillus casei, Lactobacillus plantarum and Lactobacillus rhamnosus, whose strains have been marketed as probiotics, had high counts of GTCGTT motifs. As gut bacterial species differ significantly in their genomic content of CpG motifs, the overall load of CpG motifs in the intestine depends on the species assembly of microbiota and their cell numbers. The optimal CpG motif content of microbiota may depend on the host's physiological status and, consequently, on an adequate level of TLR9 signalling. We speculate that microbiota with increased numbers of microbes with CpG motif-rich DNA could better support mucosal functions in healthy individuals and improve the T-helper 1 (Th1)/Th2 imbalance in allergic diseases. In autoimmune disorders, CpG motif-rich DNA could, however, further increase the Th1-type immune responsiveness. Estimation of the load of microbe-associated molecular patterns, including CpG motifs, in gut microbiota could shed new light on host-microbe interactions across a range of diseases.
Collapse
Affiliation(s)
- Ravi Kant
- Department of Veterinary Biosciences, University of Helsinki, PO Box 66, FI-00014, Helsinki, Finland
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.,Haartman Institute, University of Helsinki, PO Box 21, FI-00014, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, PO Box 66, FI-00014, Helsinki, Finland
| | - Airi Palva
- Department of Veterinary Biosciences, University of Helsinki, PO Box 66, FI-00014, Helsinki, Finland
| | - Reetta Satokari
- Department of Veterinary Biosciences, University of Helsinki, PO Box 66, FI-00014, Helsinki, Finland
| |
Collapse
|
63
|
Wyres KL, van Tonder A, Lambertsen LM, Hakenbeck R, Parkhill J, Bentley SD, Brueggemann AB. Evidence of antimicrobial resistance-conferring genetic elements among pneumococci isolated prior to 1974. BMC Genomics 2013; 14:500. [PMID: 23879707 PMCID: PMC3726389 DOI: 10.1186/1471-2164-14-500] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/23/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Antimicrobial resistance among pneumococci has greatly increased over the past two to three decades. Resistance to tetracycline (tet(M)), chloramphenicol (cat) and macrolides (erm(B) and/or mef(A/E)) is generally conferred by acquisition of specific genes that are associated with mobile genetic elements, including those of the Tn916 and Tn5252 families. The first tetracycline-, chloramphenicol- and macrolide-resistant pneumococci were detected between 1962 and 1970; however, until now the oldest pneumococcus shown to harbour Tn916 and/or Tn5252 was isolated in 1974. In this study the genomes of 38 pneumococci isolated prior to 1974 were probed for the presence of tet(M), cat, erm(B), mef(A/E) and int (integrase) to indicate the presence of Tn916/Tn5252-like elements. RESULTS Two Tn916-like, tet(M)-containing, elements were identified among pneumococci dated 1967 and 1968. The former element was highly similar to that of the PMEN1 multidrug-resistant, globally-distributed pneumococcal reference strain, which was isolated in 1984. The latter element was associated with a streptococcal phage. A third, novel genetic element, designated ICESpPN1, was identified in the genome of an isolate dated 1972. ICESpPN1 contained a region of similarity to Tn5252, a region of similarity to a pneumococcal pathogenicity island and novel lantibiotic synthesis/export-associated genes. CONCLUSIONS These data confirm the existence of pneumococcal Tn916 elements in the first decade within which pneumococcal tetracycline resistance was described. Furthermore, the discovery of ICESpPN1 demonstrates the dynamic variability of pneumococcal genetic elements and is contrasted with the evidence for Tn916 stability.
Collapse
Affiliation(s)
- Kelly L Wyres
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - Andries van Tonder
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - Lotte M Lambertsen
- Department of Microbiology Surveillance and Research, Statens Serum Institut, 5 Artillerivej, Copenhagen 2300, Denmark
| | - Regine Hakenbeck
- Department of Microbiology, University Kaiserslautern, Kaiserslautern, Germany
| | - Julian Parkhill
- Pathogen Genomics Team, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Stephen D Bentley
- Pathogen Genomics Team, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Angela B Brueggemann
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| |
Collapse
|
64
|
Characterization of Tn5801.Sag, a variant of Staphylococcus aureus Tn916 family transposon Tn5801 that is widespread in clinical isolates of Streptococcus agalactiae. Antimicrob Agents Chemother 2013; 57:4570-4. [PMID: 23817370 DOI: 10.1128/aac.00521-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tn5801, originally detected in Staphylococcus aureus Mu50, is a Tn916 family element in which a unique int gene (int5801) replaces the int and xis genes in Tn916 (int916 and xis916). Among 62 tet(M)-positive tetracycline-resistant Streptococcus agalactiae isolates, 43 harbored Tn916, whereas 19 harbored a Tn5801-like element (Tn5801.Sag, ∼20.6 kb). Tn5801.Sag was characterized (PCR mapping, partial sequencing, and chromosomal integration) and compared to other Tn5801-like elements. Similar to Tn5801 from S. aureus Mu50, tested in parallel, Tn5801.Sag was unable to undergo circularization and conjugal transfer.
Collapse
|
65
|
Shahinas D, Thornton CS, Tamber GS, Arya G, Wong A, Jamieson FB, Ma JH, Alexander DC, Low DE, Pillai DR. Comparative Genomic Analyses of Streptococcus pseudopneumoniae Provide Insight into Virulence and Commensalism Dynamics. PLoS One 2013; 8:e65670. [PMID: 23840352 PMCID: PMC3686770 DOI: 10.1371/journal.pone.0065670] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/26/2013] [Indexed: 01/31/2023] Open
Abstract
Streptococcus pseudopneumoniae (SPPN) is a recently described species of the viridans group streptococci (VGS). Although the pathogenic potential of S. pseudopneumoniae remains uncertain, it is most commonly isolated from patients with underlying medical conditions, such as chronic obstructive pulmonary disease. S. pseudopneumoniae can be distinguished from the closely related species, S. pneumoniae and S. mitis, by phenotypic characteristics, including optochin resistance in the presence of 5% CO2, bile insolubility, and the lack of the pneumococcal capsule. Previously, we reported the draft genome sequence of S. pseudopneumoniae IS7493, a clinical isolate obtained from an immunocompromised patient with documented pneumonia. Here, we use comparative genomics approaches to identify similarities and key differences between S. pseudopneumoniae IS7493, S. pneumoniae and S. mitis. The genome structure of S. pseudopneumoniae IS7493 is most closely related to that of S. pneumoniae R6, but several recombination events are evident. Analysis of gene content reveals numerous unique features that distinguish S. pseudopneumoniae from other streptococci. The presence of loci for competence, iron transport, pneumolysin production and antimicrobial resistance reinforce the phylogenetic position of S. pseudopneumoniae as an intermediate species between S. pneumoniae and S. mitis. Additionally, the presence of several virulence factors and antibiotic resistance mechanisms suggest the potential of this commensal species to become pathogenic or to contribute to increasing antibiotic resistance levels seen among the VGS.
Collapse
Affiliation(s)
- Dea Shahinas
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- * E-mail:
| | - Christina S. Thornton
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| | | | | | | | - Frances B. Jamieson
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Public Health Ontario, Toronto, Canada
| | - Jennifer H. Ma
- Public Health Ontario, Toronto, Canada
- DNA Core Facility, Public Health Ontario, Toronto, Canada
| | - David C. Alexander
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Public Health Ontario, Toronto, Canada
- DNA Core Facility, Public Health Ontario, Toronto, Canada
| | - Donald E. Low
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Dylan R. Pillai
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Pathology and Laboratory Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
66
|
Jans C, Follador R, Hochstrasser M, Lacroix C, Meile L, Stevens MJA. Comparative genome analysis of Streptococcus infantarius subsp. infantarius CJ18, an African fermented camel milk isolate with adaptations to dairy environment. BMC Genomics 2013; 14:200. [PMID: 23521820 PMCID: PMC3640971 DOI: 10.1186/1471-2164-14-200] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 03/13/2013] [Indexed: 12/14/2022] Open
Abstract
Background Streptococcus infantarius subsp. infantarius (Sii) belongs to the Streptococcus bovis/Streptococcus equinus complex associated with several human and animal infections. Sii is a predominant bacterium in spontaneously fermented milk products in Africa. The genome sequence of Sii strain CJ18 was compared with that of other Streptococcus species to identify dairy adaptations including genome decay such as in Streptococcus thermophilus, traits for its competitiveness in spontaneous milk fermentation and to assess potential health risks for consumers. Results The genome of Sii CJ18 harbors several unique regions in comparison to Sii ATCC BAA-102T, among others an enlarged exo- and capsular polysaccharide operon; Streptococcus thermophilus-associated genes; a region containing metabolic and hypothetical genes mostly unique to CJ18 and the dairy isolate Streptococcus gallolyticus subsp. macedonicus; and a second oligopeptide transport operon. Dairy adaptations in CJ18 are reflected by a high percentage of pseudogenes (4.9%) representing genome decay which includes the inactivation of the lactose phosphotransferase system (lacIIABC) by multiple transposases integration. The presence of lacS and lacZ genes is the major dairy adaptation affecting lactose metabolism pathways also due to the disruption of lacIIABC. We constructed mutant strains of lacS, lacZ and lacIIABC and analyzed the resulting strains of CJ18 to confirm the redirection of lactose metabolism via LacS and LacZ. Natural competence genes are conserved in both Sii strains, but CJ18 contains a lower number of CRISPR spacers which indicates a reduced defense capability against alien DNA. No classical streptococcal virulence factors were detected in both Sii strains apart from those involved in adhesion which should be considered niche factors. Sii-specific virulence factors are not described. Several Sii-specific regions encoding uncharacterized proteins provide new leads for virulence analyses and investigation of the unclear association of dairy and clinical Sii with human diseases. Conclusions The genome of the African dairy isolate Sii CJ18 clearly differs from the human isolate ATCC BAA-102T. CJ18 possesses a high natural competence predisposition likely explaining the enlarged genome. Metabolic adaptations to the dairy environment are evident and especially lactose uptake corresponds to S. thermophilus. Genome decay is not as advanced as in S. thermophilus (10-19%) possibly due to a shorter history in dairy fermentations.
Collapse
Affiliation(s)
- Christoph Jans
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, ETH Zurich, Zurich, CH 8092, Switzerland
| | | | | | | | | | | |
Collapse
|
67
|
Rolo D, S. Simões A, Domenech A, Fenoll A, Liñares J, de Lencastre H, Ardanuy C, Sá-Leão R. Disease isolates of Streptococcus pseudopneumoniae and non-typeable S. pneumoniae presumptively identified as atypical S. pneumoniae in Spain. PLoS One 2013; 8:e57047. [PMID: 23437306 PMCID: PMC3578818 DOI: 10.1371/journal.pone.0057047] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 01/16/2013] [Indexed: 11/27/2022] Open
Abstract
We aimed to obtain insights on the nature of a collection of isolates presumptively identified as atypical Streptococcus pneumoniae recovered from invasive and non-invasive infections in Spain. One-hundred and thirty-two isolates were characterized by: optochin susceptibility in ambient and CO2-enriched atmosphere; bile solubility; PCR-based assays targeting pneumococcal genes lytA, ply, pspA, cpsA, Spn9802, aliB-like ORF2, and a specific 16S rRNA region; multilocus sequence analysis; and antimicrobial susceptibility. By multilocus sequence analysis, 61 isolates were S. pseudopneumoniae, 34 were pneumococci, 13 were S. mitis, and 24 remained unclassified as non-pneumococci. Among S. pseudopneumoniae isolates, 51 (83.6%) were collected from respiratory tract samples; eight isolates were obtained from sterile sources. High frequency of non-susceptibility to penicillin (60.7%) and erythromycin (42.6%) was found. Only 50.8% of the S. pseudopneumoniae isolates displayed the typical optochin phenotype originally described for this species. None harbored the cpsA gene or the pneumococcal typical lytA restriction fragment length polymorphism. The Spn9802 and the specific 16S rRNA regions were detected among the majority of the S. pseudopneumoniae isolates (n = 59 and n = 49, respectively). The ply and pspA genes were rarely found. A high genetic diversity was found and 59 profiles were identified. Among the S. pneumoniae, 23 were capsulated and 11 were non-typeable. Three non-typeable isolates, associated to international non-capsulated lineages, were recovered from invasive disease sources. In conclusion, half of the atypical pneumococcal clinical isolates were, in fact, S. pseudopneumoniae and one-fourth were other streptococci. We identified S. pseudopneumoniae and non-typeable pneumococci as cause of disease in Spain including invasive disease.
Collapse
Affiliation(s)
- Dora Rolo
- Institut d'Investigació Biomèdica de Bellvitge, Hospital Universitari de Bellvitge, Microbiology Department, Universistat de Barcelona, Barcelona, Spain
- Centro de investigación en red de enfermedades respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Alexandra S. Simões
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Arnau Domenech
- Institut d'Investigació Biomèdica de Bellvitge, Hospital Universitari de Bellvitge, Microbiology Department, Universistat de Barcelona, Barcelona, Spain
- Centro de investigación en red de enfermedades respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Asunción Fenoll
- National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Josefina Liñares
- Institut d'Investigació Biomèdica de Bellvitge, Hospital Universitari de Bellvitge, Microbiology Department, Universistat de Barcelona, Barcelona, Spain
- Centro de investigación en red de enfermedades respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Hermínia de Lencastre
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- Laboratory of Microbiology, The Rockefeller University, New York, New York, United States of America
| | - Carmen Ardanuy
- Institut d'Investigació Biomèdica de Bellvitge, Hospital Universitari de Bellvitge, Microbiology Department, Universistat de Barcelona, Barcelona, Spain
- Centro de investigación en red de enfermedades respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Sá-Leão
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
68
|
Johnston C, Martin B, Granadel C, Polard P, Claverys JP. Programmed protection of foreign DNA from restriction allows pathogenicity island exchange during pneumococcal transformation. PLoS Pathog 2013; 9:e1003178. [PMID: 23459610 PMCID: PMC3573125 DOI: 10.1371/journal.ppat.1003178] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/20/2012] [Indexed: 11/19/2022] Open
Abstract
In bacteria, transformation and restriction-modification (R-M) systems play potentially antagonistic roles. While the former, proposed as a form of sexuality, relies on internalized foreign DNA to create genetic diversity, the latter degrade foreign DNA to protect from bacteriophage attack. The human pathogen Streptococcus pneumoniae is transformable and possesses either of two R-M systems, DpnI and DpnII, which respectively restrict methylated or unmethylated double-stranded (ds) DNA. S. pneumoniae DpnII strains possess DpnM, which methylates dsDNA to protect it from DpnII restriction, and a second methylase, DpnA, which is induced during competence for genetic transformation and is unusual in that it methylates single-stranded (ss) DNA. DpnA was tentatively ascribed the role of protecting internalized plasmids from DpnII restriction, but this seems unlikely in light of recent results establishing that pneumococcal transformation was not evolved to favor plasmid exchange. Here we validate an alternative hypothesis, showing that DpnA plays a crucial role in the protection of internalized foreign DNA, enabling exchange of pathogenicity islands and more generally of variable regions between pneumococcal isolates. We show that transformation of a 21.7 kb heterologous region is reduced by more than 4 logs in dpnA mutant cells and provide evidence that the specific induction of dpnA during competence is critical for full protection. We suggest that the integration of a restrictase/ssDNA-methylase couplet into the competence regulon maintains protection from bacteriophage attack whilst simultaneously enabling exchange of pathogenicicy islands. This protective role of DpnA is likely to be of particular importance for pneumococcal virulence by allowing free variation of capsule serotype in DpnII strains via integration of DpnI capsule loci, contributing to the documented escape of pneumococci from capsule-based vaccines. Generally, this finding is the first evidence for a mechanism that actively promotes genetic diversity of S. pneumoniae through programmed protection and incorporation of foreign DNA. Natural genetic transformation can compensate for the absence of sexual reproduction in bacteria, allowing genetic diversification by recombination. It proceeds through the internalization of single stranded (ss) DNA fragments created from an exogenous double stranded (ds) DNA substrate, which are incorporated into the genome by homology. On the other hand, restriction-modification (R-M) systems, which protect bacteria from bacteriophage attack by degrading invading foreign DNA, potentially antagonize transformation. About half of the strains of the naturally transformable species and human pathogen Streptococcus pneumoniae possess an R-M system, DpnII, restricting unmethylated dsDNA. DpnII strains possess DpnA which is unusual in that it methylates ssDNA. Here we show that DpnA plays a crucial role in the protection of internalized heterologous transforming ssDNA, preventing the post-replicative destruction by DpnII of transformants produced by chromosomal integration of heterogolous DNA by virtue of flanking homology. This protective role of DpnA is of particular importance for acquisition of pathogenicity islands, such as capsule loci, from non-DpnII origin by DpnII strains, likely contributing to pneumococcal virulence via escape from capsule-based vaccines. Generally, this finding is the first evidence for a mechanism that actively promotes genetic diversity of S. pneumoniae through active protection and incorporation of foreign DNA.
Collapse
Affiliation(s)
- Calum Johnston
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
| | - Bernard Martin
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
| | - Chantal Granadel
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
| | - Patrice Polard
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
| | - Jean-Pierre Claverys
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
- * E-mail:
| |
Collapse
|
69
|
Cheung MK, Lam WY, Fung WYW, Law PTW, Au CH, Nong W, Kam KM, Kwan HS, Tsui SKW. Sputum microbiota in tuberculosis as revealed by 16S rRNA pyrosequencing. PLoS One 2013; 8:e54574. [PMID: 23365674 PMCID: PMC3554703 DOI: 10.1371/journal.pone.0054574] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/12/2012] [Indexed: 01/31/2023] Open
Abstract
Background Tuberculosis (TB) remains a global threat in the 21st century. Traditional studies of the disease are focused on the single pathogen Mycobacterium tuberculosis. Recent studies have revealed associations of some diseases with an imbalance in the microbial community. Characterization of the TB microbiota could allow a better understanding of the disease. Methodology/Principal Findings Here, the sputum microbiota in TB infection was examined by using 16S rRNA pyrosequencing. A total of 829,873 high-quality sequencing reads were generated from 22 TB and 14 control sputum samples. Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Fusobacteria were the five major bacterial phyla recovered, which together composed over 98% of the microbial community. Proteobacteria and Bacteroidetes were more represented in the TB samples and Firmicutes was more predominant in the controls. Sixteen major bacterial genera were recovered. Streptococcus, Neisseria and Prevotella were the most predominant genera, which were dominated by several operational taxonomic units grouped at a 97% similarity level. Actinomyces, Fusobacterium, Leptotrichia, Prevotella, Streptococcus, and Veillonella were found in all TB samples, possibly representing the core genera in TB sputum microbiota. The less represented genera Mogibacterium, Moryella and Oribacterium were enriched statistically in the TB samples, while a genus belonging to the unclassified Lactobacillales was enriched in the controls. The diversity of microbiota was similar in the TB and control samples. Conclusions/Significance The composition and diversity of sputum microbiota in TB infection was characterized for the first time by using high-throughput pyrosequencing. It lays the framework for examination of potential roles played by the diverse microbiota in TB pathogenesis and progression, and could ultimately facilitate advances in TB treatment.
Collapse
Affiliation(s)
- Man Kit Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai Yip Lam
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wendy Yin Wan Fung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Patrick Tik Wan Law
- Core Facilities Genome Sequencing Laboratory, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun Hang Au
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenyan Nong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kai Man Kam
- Tuberculosis Reference Laboratory, Department of Health, Hong Kong SAR, China
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- * E-mail: (HSK); (SKWT)
| | - Stephen Kwok Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
- * E-mail: (HSK); (SKWT)
| |
Collapse
|
70
|
Roth A, Reichmann P, Hakenbeck R. The capsule of Streptococcus pneumoniae contributes to virulence in the insect model Manduca sexta. J Mol Microbiol Biotechnol 2012; 22:326-34. [PMID: 23221622 DOI: 10.1159/000345327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The polysaccharide capsule of Streptococcus pneumoniae is one of the most important virulence factors responsible for human infections and in mouse infection models as well. Larvae of Manduca sexta were used as an alternative animal model in order to test the impact of the pneumococcal capsule on virulence in the insect host. The unencapsulated S. pneumoniae strain R6 was able to cause disease and induce killing in the larvae, and similar results were obtained with related commensal species. However, using the same dose of S. pneumoniae, encapsulated strains including the type 2 D39 strain, the progenitor of R6, and genetically unrelated S. pneumoniae strains of serotype 2, 4, 6B, 23F and 19A, all had increased virulence potential compared to the R6 strain. Between 20 and 70% of the larvae were affected after 96 h compared to 12% observed with R6. Two type 6B S. pneumoniae strains were more virulent compared to the other strains. S. pneumoniae R6 transformants producing the type 6B capsule showed a similar elevated disease potential, confirming the contribution of the pneumococcal polysaccharide capsule to virulence in M. sexta.
Collapse
Affiliation(s)
- Angelika Roth
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany.
| | | | | |
Collapse
|
71
|
Occurrence and evolution of the paralogous zinc metalloproteases IgA1 protease, ZmpB, ZmpC, and ZmpD in Streptococcus pneumoniae and related commensal species. mBio 2012; 3:mBio.00303-12. [PMID: 23033471 PMCID: PMC3518915 DOI: 10.1128/mbio.00303-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distribution, genome location, and evolution of the four paralogous zinc metalloproteases, IgA1 protease, ZmpB, ZmpC, and ZmpD, in Streptococcus pneumoniae and related commensal species were studied by in silico analysis of whole genomes and by activity screening of 154 representatives of 20 species. ZmpB was ubiquitous in the Mitis and Salivarius groups of the genus Streptococcus and in the genera Gemella and Granulicatella, with the exception of a fragmented gene in Streptococcus thermophilus, the only species with a nonhuman habitat. IgA1 protease activity was observed in all members of S. pneumoniae, S. pseudopneumoniae, S. oralis, S. sanguinis, and Gemella haemolysans, was variably present in S. mitis and S. infantis, and absent in S. gordonii, S. parasanguinis, S. cristatus, S. oligofermentans, S. australis, S. peroris, and S. suis. Phylogenetic analysis of 297 zmp sequences and representative housekeeping genes provided evidence for an unprecedented selection for genetic diversification of the iga, zmpB, and zmpD genes in S. pneumoniae and evidence of very frequent intraspecies transfer of entire genes and combination of genes. Presumably due to their adaptation to a commensal lifestyle, largely unaffected by adaptive mucosal immune factors, the corresponding genes in commensal streptococci have remained conserved. The widespread distribution and significant sequence diversity indicate an ancient origin of the zinc metalloproteases predating the emergence of the humanoid species. zmpB, which appears to be the ancestral gene, subsequently duplicated and successfully diversified into distinct functions, is likely to serve an important but yet unknown housekeeping function associated with the human host. The paralogous zinc metalloproteases IgA1 protease, ZmpB, ZmpC, and ZmpD have been identified as crucial for virulence of the human pathogen Streptococcus pneumoniae. This study maps the presence of the corresponding genes and enzyme activities in S. pneumoniae and in related commensal species of the genera Streptococcus, Gemella, and Granulicatella. The distribution, genome location, and sequence diversification indicate that zmpB is the ancestral gene predating the evolution of today’s humanoid species. The ZmpB protease may play an important but yet unidentified role in the association of streptococci of the Mitis and Salivarius groups with their human host, as it is ubiquitous in these two groups, except for a fragmented gene in Streptococcus thermophilus, the only species not associated with humans. The relative sequence diversification of the IgA1 protease, ZmpB, and ZmpD is striking evidence of differences in selection for diversification of these surface-exposed proteins in the pathogen S. pneumoniae compared to the closely related commensal streptococci.
Collapse
|
72
|
Sauerbier J, Maurer P, Rieger M, Hakenbeck R. Streptococcus pneumoniae R6 interspecies transformation: genetic analysis of penicillin resistance determinants and genome-wide recombination events. Mol Microbiol 2012; 86:692-706. [PMID: 22931193 DOI: 10.1111/mmi.12009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2012] [Indexed: 11/28/2022]
Abstract
Interspecies gene transfer has been implicated as the major driving force for the evolution of penicillin resistance in Streptococcus pneumoniae. Genomic alterations of S. pneumoniae R6 introduced during four successive transformations with DNA of the high-level penicillin-resistant Streptococcus mitis B6 with beta-lactam selection have now been determined and the contribution of genes to high resistance levels was analysed genetically. Essential for high level resistance to penicillins of the transformant CCCB was the combination of murM(B) (6) and the 3' region of pbp2b(B) (6) . Sequences of both genes were detected in clinical isolates of S. pneumoniae, confirming the participation of S. mitis in the global gene pool of beta-lactam resistance determinants. The S. mitis PBP1b gene which contains an authentic stop codon within the transpeptidase domain is now shown to contribute only marginal to resistance, but it is possible that the presence of its transglycosylase domain is important in the context of cognate PBPs. The genome sequence of CCCB revealed 36 recombination events, including deletion and acquisition of genes and repeat elements. A total of 78 genes were affected representing 67 kb or 3.3% of the genome, documenting extensive alterations scattered throughout the genome.
Collapse
Affiliation(s)
- Julia Sauerbier
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | |
Collapse
|
73
|
Gualdi L, Hayre JK, Gerlini A, Bidossi A, Colomba L, Trappetti C, Pozzi G, Docquier JD, Andrew P, Ricci S, Oggioni MR. Regulation of neuraminidase expression in Streptococcus pneumoniae. BMC Microbiol 2012; 12:200. [PMID: 22963456 PMCID: PMC3509027 DOI: 10.1186/1471-2180-12-200] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 09/05/2012] [Indexed: 12/23/2022] Open
Abstract
Background Sialic acid (N-acetylneuraminic acid; NeuNAc) is one of the most important carbohydrates for Streptococcus pneumoniae due of its role as a carbon and energy source, receptor for adhesion and invasion and molecular signal for promotion of biofilm formation, nasopharyngeal carriage and invasion of the lung. Results In this work, NeuNAc and its metabolic derivative N-acetyl mannosamine (ManNAc) were used to analyze regulatory mechanisms of the neuraminidase locus expression. Genomic and metabolic comparison to Streptococcus mitis, Streptococcus oralis, Streptococcus gordonii and Streptococcus sanguinis elucidates the metabolic association of the two amino sugars to different parts of the locus coding for the two main pneumococcal neuraminidases and confirms the substrate specificity of the respective ABC transporters. Quantitative gene expression analysis shows repression of the locus by glucose and induction of all predicted transcriptional units by ManNAc and NeuNAc, each inducing with higher efficiency the operon encoding for the transporter with higher specificity for the respective amino sugar. Cytofluorimetric analysis demonstrated enhanced surface exposure of NanA on pneumococci grown in NeuNAc and ManNAc and an activity assay allowed to quantify approximately twelve times as much neuraminidase activity on induced cells as opposed to glucose grown cells. Conclusions The present data increase the understanding of metabolic regulation of the nanAB locus and indicate that experiments aimed at the elucidation of the relevance of neuraminidases in pneumococcal virulence should possibly not be carried out on bacteria grown in glucose containing media.
Collapse
Affiliation(s)
- Luciana Gualdi
- Dipartimento di Biotecnologie, Università di Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Croucher NJ, Harris SR, Barquist L, Parkhill J, Bentley SD. A high-resolution view of genome-wide pneumococcal transformation. PLoS Pathog 2012; 8:e1002745. [PMID: 22719250 PMCID: PMC3375284 DOI: 10.1371/journal.ppat.1002745] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/27/2012] [Indexed: 01/03/2023] Open
Abstract
Transformation is an important mechanism of microbial evolution through which bacteria have been observed to rapidly adapt in response to clinical interventions; examples include facilitating vaccine evasion and the development of penicillin resistance in the major respiratory pathogen Streptococcus pneumoniae. To characterise the process in detail, the genomes of 124 S. pneumoniae isolates produced through in vitro transformation were sequenced and recombination events detected. Those recombinations importing the selected marker were independent of unselected events elsewhere in the genome, the positions of which were not significantly affected by local sequence similarity between donor and recipient or mismatch repair processes. However, both types of recombinations were sometimes mosaic, with multiple non-contiguous segments originating from the same molecule of donor DNA. The lengths of the unselected events were exponentially distributed with a mean of 2.3 kb, implying that recombinations are stochastically resolved with a fixed per base probability of 4.4×10(-4) bp(-1). This distribution of recombination sizes, coupled with an observed under representation of large insertions within transferred sequence, suggests transformation has the potential to reduce the size of bacterial genomes, and is unlikely to act as an efficient mechanism for the uptake of accessory genomic loci.
Collapse
Affiliation(s)
- Nicholas J Croucher
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom.
| | | | | | | | | |
Collapse
|
75
|
Hakenbeck R, Brückner R, Denapaite D, Maurer P. Molecular mechanisms of β-lactam resistance in Streptococcus pneumoniae. Future Microbiol 2012; 7:395-410. [PMID: 22393892 DOI: 10.2217/fmb.12.2] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alterations in the target enzymes for β-lactam antibiotics, the penicillin-binding proteins (PBPs), have been recognized as a major resistance mechanism in Streptococcus pneumoniae. Mutations in PBPs that confer a reduced affinity to β-lactams have been identified in laboratory mutants and clinical isolates, and document an astounding variability of sites involved in this phenotype. Whereas point mutations are selected in the laboratory, clinical isolates display a mosaic structure of the affected PBP genes, the result of interspecies gene transfer and recombination events. Depending on the selective β-lactam, different combinations of PBP genes and mutations within are involved in conferring resistance, and astoundingly in non-PBP genes as well.
Collapse
Affiliation(s)
- Regine Hakenbeck
- Department of Microbiology, University of Kaiserslautern, Paul Ehrlich Strasse 23, D-67663 Kaiserslautern, Germany.
| | | | | | | |
Collapse
|
76
|
Kindblom C, Davies J, Herzberg M, Svensäter G, Wickström C. Salivary proteins promote proteolytic activity in Streptococcus mitis biovar 2 and Streptococcus mutans. Mol Oral Microbiol 2012; 27:362-72. [DOI: 10.1111/j.2041-1014.2012.00650.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
77
|
Denapaite D, Brückner R, Hakenbeck R, Vollmer W. Biosynthesis of teichoic acids in Streptococcus pneumoniae and closely related species: lessons from genomes. Microb Drug Resist 2012; 18:344-58. [PMID: 22432701 DOI: 10.1089/mdr.2012.0026] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cell wall of Streptococcus pneumoniae contains an unusually complex wall teichoic acid (WTA), which has identical repeating units as the membrane-anchored lipoteichoic acid (LTA). Both polymers share a common cytoplasmic pathway of precursor synthesis, but several TA enzymes have remained elusive. Bioinformatic analysis of the genome of various pneumococcal strains, including choline-independent mutant strains, has allowed us to identify the missing TA genes. We present here the deduced complete pathways of WTA and LTA synthesis in S. pneumoniae and point to the variations occurring in different pneumococcal strains and in closely related species such as Streptococcus oralis and Streptococcus mitis.
Collapse
|
78
|
Abstract
Competence for natural genetic transformation is widespread in the genus Streptococcus. The current view is that all streptococcal species possess this property. In addition to the proteins required for DNA uptake and recombination, competent streptococci secrete muralytic enzymes termed fratricins. Since the synthesis and secretion of these cell wall-degrading enzymes are always coupled to competence development in streptococci, fratricins are believed to carry out an important function associated with natural transformation. This minireview summarizes what is known about the properties of fratricins and discusses their possible biological roles in streptococcal transformation.
Collapse
|
79
|
Identification of a pheA gene associated with Streptococcus mitis by using suppression subtractive hybridization. Appl Environ Microbiol 2012; 78:3004-9. [PMID: 22307284 DOI: 10.1128/aem.07510-11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We performed suppression subtractive hybridization to identify genomic differences between Streptococcus mitis and Streptococcus pneumoniae. Based on the pheA gene, a primer set specific to S. mitis detection was found in 18 out of 103 S. mitis-specific clones. Our findings would be useful for discrimination of S. mitis from other closely related cocci in the oral environment.
Collapse
|
80
|
Nelson KE, Jones-Nelson B. Pathogen Genomics and the Potential for Understanding Diseases in the Developing World. ADVANCES IN MICROBIAL ECOLOGY 2012. [PMCID: PMC7120252 DOI: 10.1007/978-1-4614-2182-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Approximately 46% and 32% of deaths among children under five globally occur in sub-Saharan Africa and South Asia, respectively. Over 80% of the 4.2 million child deaths in Africa are caused by infectious diseases, sharply contrasted to Europe where 39% of the 0.15 million child deaths are attributable to infectious diseases (Fig. 5.1) (Black et al. 2010). Hence, despite the remarkable public health advancements in hygiene, sanitation, antimicrobial drugs and vaccine strategies of the twenty-first century, the burden of infectious diseases remains unacceptably high in the developing world.
Collapse
Affiliation(s)
- Karen E. Nelson
- J. Craig Venter Institute (JCVI), 9704 Medical Center Drive, Rockville, 20850 Maryland USA
| | | |
Collapse
|
81
|
Rukke HV, Hegna IK, Petersen FC. Identification of a functional capsule locus in Streptococcus mitis. Mol Oral Microbiol 2011; 27:95-108. [PMID: 22394468 DOI: 10.1111/j.2041-1014.2011.00635.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The polysaccharide capsule of Streptococcus pneumoniae is a hallmark for virulence in humans. In its close relative Streptococcus mitis, a common human commensal, analysis of the sequenced genomes of six strains revealed the presence of a putative capsule locus in four of them. We constructed an isogenic S. mitis mutant from the type strain that lacked the 19 open reading frames in the capsule locus (Δcps mutant), using a deletion strategy similar to previous capsule functional studies in S. pneumoniae. Transmission electron microscopy and atomic force microscopy revealed a capsule-like structure in the S. mitis type strain that was absent or reduced in the Δcps mutant. Since S. mitis are predominant oral colonizers of tooth surfaces, we addressed the relevance of the capsule locus for the S. mitis overall surface properties, autoaggregation and biofilm formation. The capsule deletion resulted in a mutant with approximately two-fold increase in hydrophobicity. Binding to the Stains-all cationic dye was reduced by 40%, suggesting a reduction in the overall negative surface charge of the mutant. The mutant exhibited also increased autoaggregation in coaggregation buffer, and up to six-fold increase in biofilm levels. The results suggested that the capsule locus is associated with production of a capsule-like structure in S. mitis and indicated that the S. mitis capsule-like structure may confer surface attributes similar to those associated with the capsule in S. pneumoniae.
Collapse
Affiliation(s)
- H V Rukke
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| | | | | |
Collapse
|
82
|
Denapaite D, Hakenbeck R. A new variant of the capsule 3 cluster occurs in Streptococcus pneumoniae from deceased wild chimpanzees. PLoS One 2011; 6:e25119. [PMID: 21969869 PMCID: PMC3182177 DOI: 10.1371/journal.pone.0025119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/25/2011] [Indexed: 11/18/2022] Open
Abstract
The presence of new Streptococcus pneumoniae clones in dead wild chimpanzees from the Taï National Park, Côte d'Ivoire, with previous respiratory problems has been demonstrated recently by DNA sequence analysis from samples obtained from the deceased apes. In order to broadenour understanding on the relatedness of these pneumococcal clones to those from humans, the gene locus responsible for biosynthesis of the capsule polysaccharide (CPS) has now been characterized. DNA sequence analysis of PCR fragments identified a cluster named cps3(Taï) containing the four genes typical for serotype 3 CPS, but lacking a 5'-region of ≥2 kb which is degenerated in other cps3 loci and not required for type 3 biosynthesis. CPS3 is composed of a simple disaccharide repeat unit comprising glucose and glucuronic acid (GlcUA). The two genes ugd responsible for GlcUA synthesis and wchE encoding the type 3 synthase are essential for CPS3 biosynthesis, whereas both, galU and the 3'-truncated gene pgm are not required due to the presence of homologues elsewhere in the genome. The DNA sequence of cps3(Taï) diverged considerably from those of other cps3 loci. Also, the gene pgm(Taï) represents a full length version with a nonsense mutation at codon 179. The two genes ugd(Taï) and wchE(Taï) including the promoter region were transformed into a nonencapsulated laboratory strain S. pneumoniae R6. Transformants which expressed type 3 capsule polysaccharide were readily obtained, documenting that the gene products are functional. In summary, the data indicate that cps3(Taï) evolved independent from other cps3 loci, suggesting the presence of specialized serotype 3 S. pneumoniae clones endemic to the Taï National Park area.
Collapse
Affiliation(s)
- Dalia Denapaite
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany
| | | |
Collapse
|
83
|
In vitro destruction of Streptococcus pneumoniae biofilms with bacterial and phage peptidoglycan hydrolases. Antimicrob Agents Chemother 2011; 55:4144-8. [PMID: 21746941 DOI: 10.1128/aac.00492-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Host- and phage-coded cell wall hydrolases have been used to fight Streptococcus pneumoniae growing as planktonic cells in vitro as well as in animal models. Until now, however, the usefulness of these enzymes in biofilm-grown pneumococci has gone untested. The antipneumococcal activity of different cell wall hydrolases produced by S. pneumoniae and a number of its phages was examined in an in vitro biofilm model. The major pneumococcal autolysin LytA, an N-acetylmuramoyl-l-alanine amidase, showed the greatest efficiency in disintegrating S. pneumoniae biofilms. The phage-encoded lysozymes Cpl-1 and Cpl-7 were also very efficient. Biofilms formed by the close pneumococcal relatives Streptococcus pseudopneumoniae and Streptococcus oralis were also destroyed by the phage endolysins but not by the S. pneumoniae autolysin LytA. A cooperative effect of LytA and Cpl-1 in the disintegration of S. pneumoniae biofilms was recorded.
Collapse
|
84
|
Welker M. Proteomics for routine identification of microorganisms. Proteomics 2011; 11:3143-53. [DOI: 10.1002/pmic.201100049] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/31/2011] [Accepted: 04/20/2011] [Indexed: 11/10/2022]
|
85
|
Shallom SJ, Weeks JN, Galindo CL, McIver L, Sun Z, McCormick J, Adams LG, Garner HR. A species independent universal bio-detection microarray for pathogen forensics and phylogenetic classification of unknown microorganisms. BMC Microbiol 2011; 11:132. [PMID: 21672191 PMCID: PMC3130645 DOI: 10.1186/1471-2180-11-132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 06/14/2011] [Indexed: 12/18/2022] Open
Abstract
Background The ability to differentiate a bioterrorist attack or an accidental release of a research pathogen from a naturally occurring pandemic or disease event is crucial to the safety and security of this nation by enabling an appropriate and rapid response. It is critical in samples from an infected patient, the environment, or a laboratory to quickly and accurately identify the precise pathogen including natural or engineered variants and to classify new pathogens in relation to those that are known. Current approaches for pathogen detection rely on prior genomic sequence information. Given the enormous spectrum of genetic possibilities, a field deployable, robust technology, such as a universal (any species) microarray has near-term potential to address these needs. Results A new and comprehensive sequence-independent array (Universal Bio-Signature Detection Array) was designed with approximately 373,000 probes. The main feature of this array is that the probes are computationally derived and sequence independent. There is one probe for each possible 9-mer sequence, thus 49 (262,144) probes. Each genome hybridized on this array has a unique pattern of signal intensities corresponding to each of these probes. These signal intensities were used to generate an un-biased cluster analysis of signal intensity hybridization patterns that can easily distinguish species into accepted and known phylogenomic relationships. Within limits, the array is highly sensitive and is able to detect synthetically mixed pathogens. Examples of unique hybridization signal intensity patterns are presented for different Brucella species as well as relevant host species and other pathogens. These results demonstrate the utility of the UBDA array as a diagnostic tool in pathogen forensics. Conclusions This pathogen detection system is fast, accurate and can be applied to any species. Hybridization patterns are unique to a specific genome and these can be used to decipher the identity of a mixed pathogen sample and can separate hosts and pathogens into their respective phylogenomic relationships. This technology can also differentiate between different species and classify genomes into their known clades. The development of this technology will result in the creation of an integrated biomarker-specific bio-signature, multiple select agent specific detection system.
Collapse
Affiliation(s)
- Shamira J Shallom
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, USA
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Madhour A, Maurer P, Hakenbeck R. Cell surface proteins in S. pneumoniae, S. mitis and S. oralis. IRANIAN JOURNAL OF MICROBIOLOGY 2011; 3:58-67. [PMID: 22347584 PMCID: PMC3279804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVES Streptococcus pneumoniae, a major human pathogen, is closely related to the commensal species S. mitis and S. oralis. S. pneumoniae surface proteins are implicated in virulence and host interaction of this species, but many of them have recently been detected in S. mitis B6 in silico. We tested for the presence of such genes usinga set of eight S. mitis and eleven S. oralis strains from different geographic locations. MATERIALS AND METHODS An oligonucleotide microarray was designed based on the genomes of S. pneumoniae R6 and TIGR4 as well as S. mitis B6 to include 63 cell surface proteins. The S. pneumoniae genes encoding neuraminidases, hyaluronidase and pneumolysin were also included. In addition to comparative genomic hybridization experiments, homologues were identified in silico in the genome of S. oralis Uo5. RESULTS AND CONCLUSIONS The results document that many S. pneumoniae related surface proteins are ubiquitously present among the Mitis group of streptococci. All 19 samples hybridized with the pavA probe representing a gene important for adherence and invasion of S. pneumoniae. Only eight genes were not recognized in any strain, including the S. pneumoniae PcpC gene as the only virulence gene of the S. pneumoniae core genome.The fact that only 12 out of 26 genes present in the S. oralis Uo5 genome could be detected by microarray analysis confirms the sequence variation of surface components.
Collapse
Affiliation(s)
| | | | - R Hakenbeck
- Corresponding author: Regine Hakenbeck Address: Department of Microbiology, University of Kaiserslautern, Paul-Ehrlich Str. 23, D-67663 Kaiserslautern. Tel: +49-631-2052353. FAX: +49-631-2053799.
| |
Collapse
|
87
|
Abstract
Streptococcus oralis, a commensal species of the human oral cavity, belongs to the Mitis group of streptococci, which includes one of the major human pathogens as well, S. pneumoniae. We report here the first complete genome sequence of this species. S. oralis Uo5, a high-level penicillin- and multiple-antibiotic-resistant isolate from Hungary, is competent for genetic transformation under laboratory conditions. Comparative and functional genomics of Uo5 will be important in understanding the evolution of pathogenesis among Mitis streptococci and their potential to engage in interspecies gene transfer.
Collapse
|
88
|
Croucher NJ, Vernikos GS, Parkhill J, Bentley SD. Identification, variation and transcription of pneumococcal repeat sequences. BMC Genomics 2011; 12:120. [PMID: 21333003 PMCID: PMC3049150 DOI: 10.1186/1471-2164-12-120] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 02/18/2011] [Indexed: 11/10/2022] Open
Abstract
Background Small interspersed repeats are commonly found in many bacterial chromosomes. Two families of repeats (BOX and RUP) have previously been identified in the genome of Streptococcus pneumoniae, a nasopharyngeal commensal and respiratory pathogen of humans. However, little is known about the role they play in pneumococcal genetics. Results Analysis of the genome of S. pneumoniae ATCC 700669 revealed the presence of a third repeat family, which we have named SPRITE. All three repeats are present at a reduced density in the genome of the closely related species S. mitis. However, they are almost entirely absent from all other streptococci, although a set of elements related to the pneumococcal BOX repeat was identified in the zoonotic pathogen S. suis. In conjunction with information regarding their distribution within the pneumococcal chromosome, this suggests that it is unlikely that these repeats are specialised sequences performing a particular role for the host, but rather that they constitute parasitic elements. However, comparing insertion sites between pneumococcal sequences indicates that they appear to transpose at a much lower rate than IS elements. Some large BOX elements in S. pneumoniae were found to encode open reading frames on both strands of the genome, whilst another was found to form a composite RNA structure with two T box riboswitches. In multiple cases, such BOX elements were demonstrated as being expressed using directional RNA-seq and RT-PCR. Conclusions BOX, RUP and SPRITE repeats appear to have proliferated extensively throughout the pneumococcal chromosome during the species' past, but novel insertions are currently occurring at a relatively slow rate. Through their extensive secondary structures, they seem likely to affect the expression of genes with which they are co-transcribed. Software for annotation of these repeats is freely available from ftp://ftp.sanger.ac.uk/pub/pathogens/strep_repeats/.
Collapse
Affiliation(s)
- Nicholas J Croucher
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | | | | | | |
Collapse
|
89
|
Welker M, Moore ER. Applications of whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry in systematic microbiology. Syst Appl Microbiol 2011; 34:2-11. [DOI: 10.1016/j.syapm.2010.11.013] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 11/19/2010] [Accepted: 11/21/2010] [Indexed: 10/18/2022]
|
90
|
Camilli R, Bonnal RJP, Del Grosso M, Iacono M, Corti G, Rizzi E, Marchetti M, Mulas L, Iannelli F, Superti F, Oggioni MR, De Bellis G, Pantosti A. Complete genome sequence of a serotype 11A, ST62 Streptococcus pneumoniae invasive isolate. BMC Microbiol 2011; 11:25. [PMID: 21284853 PMCID: PMC3055811 DOI: 10.1186/1471-2180-11-25] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 02/01/2011] [Indexed: 11/13/2022] Open
Abstract
Background Streptococcus pneumoniae is an important human pathogen representing a major cause of morbidity and mortality worldwide. We sequenced the genome of a serotype 11A, ST62 S. pneumoniae invasive isolate (AP200), that was erythromycin-resistant due to the presence of the erm(TR) determinant, and carried out analysis of the genome organization and comparison with other pneumococcal genomes. Results The genome sequence of S. pneumoniae AP200 is 2,130,580 base pair in length. The genome carries 2216 coding sequences (CDS), 56 tRNA, and 12 rRNA genes. Of the CDSs, 72.9% have a predicted biological known function. AP200 contains the pilus islet 2 and, although its phenotype corresponds to serotype 11A, it contains an 11D capsular locus. Chromosomal rearrangements resulting from a large inversion across the replication axis, and horizontal gene transfer events were observed. The chromosomal inversion is likely implicated in the rebalance of the chromosomal architecture affected by the insertions of two large exogenous elements, the erm(TR)-carrying Tn1806 and a functional prophage designated ϕSpn_200. Tn1806 is 52,457 bp in size and comprises 49 ORFs. Comparative analysis of Tn1806 revealed the presence of a similar genetic element or part of it in related species such as Streptococcus pyogenes and also in the anaerobic species Finegoldia magna, Anaerococcus prevotii and Clostridium difficile. The genome of ϕSpn_200 is 35,989 bp in size and is organized in 47 ORFs grouped into five functional modules. Prophages similar to ϕSpn_200 were found in pneumococci and in other streptococcal species, showing a high degree of exchange of functional modules. ϕSpn_200 viral particles have morphologic characteristics typical of the Siphoviridae family and are capable of infecting a pneumococcal recipient strain. Conclusions The sequence of S. pneumoniae AP200 chromosome revealed a dynamic genome, characterized by chromosomal rearrangements and horizontal gene transfers. The overall diversity of AP200 is driven mainly by the presence of the exogenous elements Tn1806 and ϕSpn_200 that show large gene exchanges with other genetic elements of different bacterial species. These genetic elements likely provide AP200 with additional genes, such as those conferring antibiotic-resistance, promoting its adaptation to the environment.
Collapse
Affiliation(s)
- Romina Camilli
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Mitchell J. Streptococcus mitis: walking the line between commensalism and pathogenesis. Mol Oral Microbiol 2011; 26:89-98. [PMID: 21375700 DOI: 10.1111/j.2041-1014.2010.00601.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Streptococcus mitis is a viridans streptococcus and a normal commensal of the human oropharynx. However, S. mitis can escape from this niche and cause a variety of infectious complications including infective endocarditis, bacteraemia and septicaemia. It uses a variety of strategies to effectively colonize the human oropharynx. These include expression of adhesins, immunoglobulin A proteases and toxins, and modulation of the host immune system. These various colonization factors allow S. mitis to compete for space and nutrients in the face of its more pathogenic oropharyngeal microbial neighbours. However, it is likely that in vulnerable immune-compromised patients S. mitis will use the same colonization and immune modulation factors as virulence factors promoting its opportunistic pathogenesis. The recent publication of a complete genome sequence for S. mitis strain B6 will allow researchers to thoroughly investigate which genes are involved in S. mitis host colonization and pathogenesis. Moreover, it will help to give insight into where S. mitis fits in the complicated oral microbiome. This review will discuss the current knowledge of S. mitis factors involved in host colonization, their potential role in virulence and what needs to be done to fully understand how a an oral commensal successfully transitions to a virulent pathogen.
Collapse
Affiliation(s)
- J Mitchell
- University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
92
|
Marx P, Nuhn M, Kovács M, Hakenbeck R, Brückner R. Identification of genes for small non-coding RNAs that belong to the regulon of the two-component regulatory system CiaRH in Streptococcus. BMC Genomics 2010; 11:661. [PMID: 21106082 PMCID: PMC3091779 DOI: 10.1186/1471-2164-11-661] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 11/24/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Post-transcriptional regulation by small RNAs (sRNAs) in bacteria is now recognized as a wide-spread regulatory mechanism modulating a variety of physiological responses including virulence. In Streptococcus pneumoniae, an important human pathogen, the first sRNAs to be described were found in the regulon of the CiaRH two-component regulatory system. Five of these sRNAs were detected and designated csRNAs for cia-dependent small RNAs. CiaRH pleiotropically affects β-lactam resistance, autolysis, virulence, and competence development by yet to be defined molecular mechanisms. Since CiaRH is highly conserved among streptococci, it is of interest to determine if csRNAs are also included in the CiaRH regulon in this group of organisms consisting of commensal as well as pathogenic species. Knowledge on the participation of csRNAs in CiaRH-dependent regulatory events will be the key to define the physiological role of this important control system. RESULTS Genes for csRNAs were predicted in streptococcal genomes and data base entries other than S. pneumoniae by searching for CiaR-activated promoters located in intergenic regions that are followed by a transcriptional terminator. 61 different candidate genes were obtained specifying csRNAs ranging in size from 51 to 202 nt. Comparing these genes among each other revealed 40 different csRNA types. All streptococcal genomes harbored csRNA genes, their numbers varying between two and six. To validate these predictions, S. mitis, S. oralis, and S. sanguinis were subjected to csRNA-specific northern blot analysis. In addition, a csRNA gene from S. thermophilus plasmid pST0 introduced into S. pneumoniae was also tested. Each of the csRNAs was detected on these blots and showed the anticipated sizes. Thus, the method applied here is able to predict csRNAs with high precision. CONCLUSIONS The results of this study strongly suggest that genes for small non-coding RNAs, csRNAs, are part of the regulon of the two-component regulatory system CiaRH in all streptococci.
Collapse
Affiliation(s)
- Patrick Marx
- Department of Microbiology, University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
93
|
Detection of large numbers of pneumococcal virulence genes in streptococci of the mitis group. J Clin Microbiol 2010; 48:2762-9. [PMID: 20519466 DOI: 10.1128/jcm.01746-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Seven streptococcal isolates from the mitis group were analyzed for the presence of pneumococcal gene homologues by comparative genomic hybridization studies with microarrays based on open reading frames from the genomes of Streptococcus pneumoniae TIGR4 and R6. The diversity of pneumolysin (ply) and neuraminidase A (nanA) gene sequences was explored in more detail in a collection of 14 S. pseudopneumoniae and 29 mitis group isolates, respectively. The mitis group isolates used in the microarray experiments included a type strain (NCTC 12261), two S. mitis isolates from the nasopharynxes of children, one S. mitis isolate from a case of infective endocarditis, one S. mitis isolate from a dental abscess, and one S. oralis isolate and one S. pseudopneumoniae isolate from the nasopharynxes of children. The results of the microarray study showed that the 5 S. mitis isolates had homologues to between 67 and 82% of pneumococcal virulence genes, S. oralis hybridized to 83% of pneumococcal virulence genes, and S. pseudopneumoniae hybridized to 92% of identified pneumococcal virulence genes. Comparison of the pneumolysin, mitilysin (mly), and newly identified pseudopneumolysin (pply) gene sequences revealed that mly and pply genes are more closely related to each other than either is to ply. In contrast, the nanA gene sequences in the pneumococcus and streptococci from the mitis group are closely clustered together, sharing 99.4 to 99.7% sequence identity with pneumococcal nanA alleles.
Collapse
|