51
|
Circadian rhythms of fetal liver transcription persist in the absence of canonical circadian clock gene expression rhythms in vivo. PLoS One 2012; 7:e30781. [PMID: 22383974 PMCID: PMC3285613 DOI: 10.1371/journal.pone.0030781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 12/21/2011] [Indexed: 11/30/2022] Open
Abstract
The cellular circadian clock and systemic cues drive rhythmicity in the transcriptome of adult peripheral tissues. However, the oscillating status of the circadian clocks in fetal tissues, and their response to maternal cues, are less clear. Most clock genes do not cycle in fetal livers from mice and rats, although tissue level rhythms rapidly emerge when fetal mouse liver explants are cultured in vitro. Thus, in the fetal mouse liver, the circadian clock does not oscillate at the cellular level (but is induced to oscillate in culture). To gain a comprehensive overview of the clock status in the fetal liver during late gestation, we performed microarray analyses on fetal liver tissues. In the fetal liver we did not observe circadian rhythms of clock gene expression or many other transcripts known to be rhythmically expressed in the adult liver. Nevertheless, JTK_CYCLE analysis identified some transcripts in the fetal liver that were rhythmically expressed, albeit at low amplitudes. Upon data filtering by coefficient of variation, the expression levels for transcripts related to pancreatic exocrine enzymes and zymogen secretion were found to undergo synchronized daily fluctuations at high amplitudes. These results suggest that maternal cues influence the fetal liver, despite the fact that we did not detect circadian rhythms of canonical clock gene expression in the fetal liver. These results raise important questions on the role of the circadian clock, or lack thereof, during ontogeny.
Collapse
|
52
|
Li C, Yu S, Zhong X, Wu J, Li X. Transcriptome comparison between fetal and adult mouse livers: implications for circadian clock mechanisms. PLoS One 2012; 7:e31292. [PMID: 22363607 PMCID: PMC3283632 DOI: 10.1371/journal.pone.0031292] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 01/05/2012] [Indexed: 11/18/2022] Open
Abstract
Microarray transcriptome analyses of fetal mouse liver did not detect circadian expression rhythms of clock genes or clock-controlled genes, although some rhythmic transcripts that were likely not driven by endogenous cellular clocks were identified. This finding reveals a key distinction between the circadian oscillators in fetal and adult mouse livers. Thus, in this study, the transcriptomes of fetal and adult livers were systematically compared to identify differences in the gene expression profiles between these two developmental stages. Approximately 1000 transcripts were differentially enriched between the fetal and adult livers. These transcripts represent genes with cellular functions characteristic of distinct developmental stages. Clock genes were also differentially expressed between the fetal and adult livers. Developmental differences in liver gene expression might have contributed to the differences in oscillation status and functional states of the cellular circadian clock between fetal and adult livers.
Collapse
Affiliation(s)
| | | | | | | | - Xiaodong Li
- National Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei Province, People's Republic of China
- * E-mail:
| |
Collapse
|
53
|
Kennaway DJ, Boden MJ, Varcoe TJ. Circadian rhythms and fertility. Mol Cell Endocrinol 2012; 349:56-61. [PMID: 21872642 DOI: 10.1016/j.mce.2011.08.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/11/2011] [Accepted: 08/12/2011] [Indexed: 01/28/2023]
Abstract
Circadian rhythms impact on a wide range of physiological systems and this impact extends to fertility, such that disruptions to timing systems can impact upon reproductive capacity. This is highlighted most obviously in mutant mouse models whereby deletion or mutation of single genes results not only in disrupted circadian rhythmicity, but also compromised male and female reproductive function. In this review, we discuss the presence of circadian clocks in female and male reproductive tissues and the role these clocks play in the generation of oestrus cycles, ovulation, sperm generation, implantation and the maintenance of pregnancy. Given the increased incidence of shiftwork and international travel which disrupt circadian rhythmicity, and the increasing prevalence of reproductive technologies whereby early embryo development occurs without external time cues, it is important for us to consider the role of circadian rhythms in fertility.
Collapse
Affiliation(s)
- David J Kennaway
- Robinson Institute, Research Centre for Reproductive Health, University of Adelaide, Adelaide, SA 5005, Australia.
| | | | | |
Collapse
|
54
|
Serón-Ferré M, Mendez N, Abarzua-Catalan L, Vilches N, Valenzuela FJ, Reynolds HE, Llanos AJ, Rojas A, Valenzuela GJ, Torres-Farfan C. Circadian rhythms in the fetus. Mol Cell Endocrinol 2012; 349:68-75. [PMID: 21840372 DOI: 10.1016/j.mce.2011.07.039] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/06/2011] [Accepted: 07/19/2011] [Indexed: 01/03/2023]
Abstract
Throughout gestation, the close relationship between mothers and their progeny ensures adequate development and a successful transition to postnatal life. By living inside the maternal compartment, the fetus is inevitably exposed to rhythms of the maternal internal milieu such as temperature; rhythms originated by maternal food intake and maternal melatonin, one of the few maternal hormones that cross the placenta unaltered. The fetus, immature by adult standards, is however perfectly fit to accomplish the dual functions of living in the uterine environment and developing the necessary tools to "mature" for the next step, i.e. to be a competent newborn. In the fetal physiological context, organ function differs from the same organ's function in the newborn and adult. This may also extend to the developing circadian system. The information reviewed here suggests that the fetal circadian system is organized differently from that of the adult. Moreover, the fetal circadian rhythm is not just present simply as the initial immature expression of a mechanism that has function in the postnatal animal only. We propose that the fetal suprachiasmatic nucleus (SCN) of the hypothalamus and fetal organs are peripheral maternal circadian oscillators, entrained by different maternal signals. Conceptually, the arrangement produces internal temporal order during fetal life, inside the maternal compartment. Following birth, it will allow for postnatal integration of the scattered fetal circadian clocks into an adult-like circadian system commanded by the SCN.
Collapse
Affiliation(s)
- María Serón-Ferré
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Universidad de Chile, Chile.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Abstract
In mammals, the circadian system is composed of the central clock in the hypothalamic suprachiasmatic nuclei and of peripheral clocks that are located in other neural structures and in cells of the peripheral tissues and organs. In adults, the system is hierarchically organized so that the central clock provides the other clocks in the body with information about the time of day. This information is needed for the adaptation of their functions to cyclically changing external conditions. During ontogenesis, the system undergoes substantial development and its sensitivity to external signals changes. Perinatally, maternal cues are responsible for setting the phase of the developing clock, while later postnatally, the LD cycle is dominant. The central clock attains its functional properties during a gradual and programmed process. Peripheral clocks begin to exhibit rhythmicity independent of each other at various developmental stages. During the early developmental stages, the peripheral clocks are set or driven by maternal feeding, but later the central clock becomes fully functional and begins to entrain the periphery. During the perinatal period, the central and peripheral clocks seem to be vulnerable to disturbances in external conditions. Further studies are needed to understand the processes of how the circadian system develops and what degree of plasticity and resilience it possesses during ontogenesis. These data may lead to an assessment of the contribution of disturbances of the circadian system during early ontogenesis to the occurrence of circadian diseases in adulthood.
Collapse
|
56
|
Zhou W, Li Y, Wang X, Wu L, Wang Y. MiR-206-mediated dynamic mechanism of the mammalian circadian clock. BMC SYSTEMS BIOLOGY 2011; 5:141. [PMID: 21902842 PMCID: PMC3201034 DOI: 10.1186/1752-0509-5-141] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 09/09/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND As a group of highly conserved small non-coding RNAs with a length of 21~23 nucleotides, microRNAs (miRNAs) regulate the gene expression post-transcriptionally by base pairing with the partial or full complementary sequences in target mRNAs, thus resulting in the repression of mRNA translation and the acceleration of mRNA degradation. Recent work has revealed that miRNAs are essential for the development and functioning of the skeletal muscles where they are. In particular, miR-206 has not only been identified as the only miRNA expressed in skeletal muscles, but also exhibited crucial roles in regulation of the muscle development. Although miRNAs are known to regulate various biological processes ranging from development to cancer, much less is known about their role in the dynamic regulation of the mammalian circadian clock. RESULTS A detailed dynamic model of miR-206-mediated mammalian circadian clock system was developed presently by using Hill-type terms, Michaelis-Menten type and mass action kinetics. Based on a system-theoretic approach, the model accurately predicts both the periodicity and the entrainment of the circadian clock. It also explores the dynamics properties of the oscillations mediated by miR-206 by means of sensitivity analysis and alterations of parameters. Our results show that miR-206 is an important regulator of the circadian clock in skeletal muscle, and thus by study of miR-206 the main features of its mediation on the clock may be captured. Simulations of these processes display that the amplitude and frequency of the oscillation can be significantly altered through the miR-206-mediated control. CONCLUSIONS MiR-206 has a profound effect on the dynamic mechanism of the mammalian circadian clock, both by control of the amplitude and control or alteration of the frequency to affect the level of the gene expression and to interfere with the temporal sequence of the gene production or delivery. This undoubtedly uncovers a new mechanism for regulation of the circadian clock at a post-transcriptional level and provides important insights into the normal development as well as the pathological conditions of skeletal muscles, such as the aging, chronic disease and cancer.
Collapse
Affiliation(s)
- Wei Zhou
- Bioinformatics Center, College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yan Li
- Department of Materials Science & Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116023, China
| | - Xia Wang
- Bioinformatics Center, College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lianqi Wu
- Department of Materials Science & Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116023, China
| | - Yonghua Wang
- Bioinformatics Center, College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
57
|
Kowalska E, Moriggi E, Bauer C, Dibner C, Brown SA. The circadian clock starts ticking at a developmentally early stage. J Biol Rhythms 2011; 25:442-9. [PMID: 21135160 DOI: 10.1177/0748730410385281] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although overt diurnal rhythms of behavior do not begin until well after birth, molecular studies suggest that the circadian clock may begin much earlier at a cellular level: mouse embryonic fibroblasts, for example, already possess robust clocks. By multiple criteria, we found no circadian clock present in mouse embryonic stem cells. Nevertheless, upon their differentiation into neurons, circadian gene expression was observed. In the first steps along the pathway from ES cells to neurons, a neural precursor cell (NPC) line already showed robust circadian oscillations. Therefore, at a cellular level, the circadian clock likely begins at the very earliest stages of mammalian development.
Collapse
Affiliation(s)
- Elzbieta Kowalska
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
58
|
Hughes ATL, Guilding C, Piggins HD. Neuropeptide signaling differentially affects phase maintenance and rhythm generation in SCN and extra-SCN circadian oscillators. PLoS One 2011; 6:e18926. [PMID: 21559484 PMCID: PMC3084722 DOI: 10.1371/journal.pone.0018926] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 03/11/2011] [Indexed: 02/02/2023] Open
Abstract
Circadian rhythms in physiology and behavior are coordinated by the brain's dominant circadian pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus. Vasoactive intestinal polypeptide (VIP) and its receptor, VPAC(2), play important roles in the functioning of the SCN pacemaker. Mice lacking VPAC(2) receptors (Vipr2(-/-)) express disrupted behavioral and metabolic rhythms and show altered SCN neuronal activity and clock gene expression. Within the brain, the SCN is not the only site containing endogenous circadian oscillators, nor is it the only site of VPAC(2) receptor expression; both VPAC(2) receptors and rhythmic clock gene/protein expression have been noted in the arcuate (Arc) and dorsomedial (DMH) nuclei of the mediobasal hypothalamus, and in the pituitary gland. The functional role of VPAC(2) receptors in rhythm generation and maintenance in these tissues is, however, unknown. We used wild type (WT) and Vipr2(-/-) mice expressing a luciferase reporter (PER2::LUC) to investigate whether circadian rhythms in the clock gene protein PER2 in these extra-SCN tissues were compromised by the absence of the VPAC(2) receptor. Vipr2(-/-) SCN cultures expressed significantly lower amplitude PER2::LUC oscillations than WT SCN. Surprisingly, in Vipr2(-/-) Arc/ME/PT complex (Arc, median eminence and pars tuberalis), DMH and pituitary, the period, amplitude and rate of damping of rhythms were not significantly different to WT. Intriguingly, while we found WT SCN and Arc/ME/PT tissues to maintain a consistent circadian phase when cultured, the phase of corresponding Vipr2(-/-) cultures was reset by cull/culture procedure. These data demonstrate that while the main rhythm parameters of extra-SCN circadian oscillations are maintained in Vipr2(-/-) mice, the ability of these oscillators to resist phase shifts is compromised. These deficiencies may contribute towards the aberrant behavior and metabolism associated with Vipr2(-/-) animals. Further, our data indicate a link between circadian rhythm strength and the ability of tissues to resist circadian phase resetting.
Collapse
Affiliation(s)
- Alun T L Hughes
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| | | | | |
Collapse
|
59
|
O'Reilly LP, Watkins SC, Smithgall TE. An unexpected role for the clock protein timeless in developmental apoptosis. PLoS One 2011; 6:e17157. [PMID: 21359199 PMCID: PMC3040764 DOI: 10.1371/journal.pone.0017157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 01/24/2011] [Indexed: 12/27/2022] Open
Abstract
Background Programmed cell death is critical not only in adult tissue homeostasis but for embryogenesis as well. One of the earliest steps in development, formation of the proamniotic cavity, involves coordinated apoptosis of embryonic cells. Recent work from our group demonstrated that c-Src protein-tyrosine kinase activity triggers differentiation of mouse embryonic stem (mES) cells to primitive ectoderm-like cells. In this report, we identified Timeless (Tim), the mammalian ortholog of a Drosophila circadian rhythm protein, as a binding partner and substrate for c-Src and probed its role in the differentiation of mES cells. Methodology/Principal Findings To determine whether Tim is involved in ES cell differentiation, Tim protein levels were stably suppressed using shRNA. Tim-defective ES cell lines were then tested for embryoid body (EB) formation, which models early mammalian development. Remarkably, confocal microscopy revealed that EBs formed from the Tim-knockdown ES cells failed to cavitate. Cells retained within the centers of the failed cavities strongly expressed the pluripotency marker Oct4, suggesting that further development is arrested without Tim. Immunoblots revealed reduced basal Caspase activity in the Tim-defective EBs compared to wild-type controls. Furthermore, EBs formed from Tim-knockdown cells demonstrated resistance to staurosporine-induced apoptosis, consistent with a link between Tim and programmed cell death during cavitation. Conclusions/Significance Our data demonstrate a novel function for the clock protein Tim during a key stage of early development. Specifically, EBs formed from ES cells lacking Tim showed reduced caspase activity and failed to cavitate. As a consequence, further development was halted, and the cells present in the failed cavity remained pluripotent. These findings reveal a new function for Tim in the coordination of ES cell differentiation, and raise the intriguing possibility that circadian rhythms and early development may be intimately linked.
Collapse
Affiliation(s)
- Linda P O'Reilly
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | | | | |
Collapse
|
60
|
Nováková M, Sládek M, Sumová A. Exposure of pregnant rats to restricted feeding schedule synchronizes the SCN clocks of their fetuses under constant light but not under a light-dark regime. J Biol Rhythms 2011; 25:350-60. [PMID: 20876815 DOI: 10.1177/0748730410377967] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The circadian clock in the suprachiasmatic nucleus (SCN) develops gradually during the prenatal and early postnatal period. In the rat, this period lasts from around the 15th day of gestation until the 10th day of postnatal development. The circadian system of fetuses and newborn pups is entrained mostly by nonphotic maternal cues during prenatal and early postnatal development. The aim of the present study was to ascertain whether exposure of pregnant rats to a restricted feeding (RF) regime was able to entrain the circadian clock in the SCN of their fetuses during the prenatal period. The potency of RF as an entraining cue was tested under conditions when pregnant rats were entrained to an external light/dark (LD) cycle as well as under conditions when the external timing signal was lacking, i.e., under constant light (LL). The control groups were fed ad libitum and the experimental groups had restricted access to food for 6 h during their resting time throughout pregnancy. Daily profiles of Avp and c-fos gene expression were examined by in situ hybridization in the SCN of 1-day-old pups. The data demonstrated that RF in pregnant rats kept under LD cycle did not notably affect the daily rhythms of c-fos and Avp expression in the SCN of pups. The SCN profiles of Avp and c-fos gene expression did not exhibit circadian rhythms in pups born to mothers maintained in LL and fed ad libitum, likely due to desynchrony among the pups within a litter. However, RF in the pregnant rats kept under LL restored the circadian rhythmicity of c-fos and Avp expression in the SCN of their newborn pups. The results suggest that the fetal SCN clock is dominantly entrained by rhythmic signals from the maternal SCN. However, under conditions when the rhythmic signaling might be lacking, such as LL, regular food intake of the mothers may also play an important role in synchronization of the fetal SCN clock during prenatal ontogenesis.
Collapse
Affiliation(s)
- Marta Nováková
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | |
Collapse
|