51
|
Noferesti SS, Sohel MMH, Hoelker M, Salilew-Wondim D, Tholen E, Looft C, Rings F, Neuhoff C, Schellander K, Tesfaye D. Controlled ovarian hyperstimulation induced changes in the expression of circulatory miRNA in bovine follicular fluid and blood plasma. J Ovarian Res 2015; 8:81. [PMID: 26645573 PMCID: PMC4673782 DOI: 10.1186/s13048-015-0208-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/24/2015] [Indexed: 12/12/2022] Open
Abstract
Background Despite its role in increasing the number of offspring during the lifetime of an individual animal, controlled ovarian hyperstimulation (COH) may have detrimental effects on oocyte development, embryo quality and endometrial receptivity. Circulating miRNAs in bio-fluids have been shown to be associated with various pathological conditions including cancers. Here we aimed to investigate the effect of COH on the level of extracellular miRNAs in bovine follicular fluid and blood plasma and elucidate their mode of circulation and potential molecular mechanisms to be affected in the reproductive tract. Method Twelve simmental heifers were estrous synchronized and six of them were hyperstimulated using FSH. Follicular fluid samples from experimental animals were collected using ovum pick up technique at day 0 of the estrous cycle and blood samples were collected at day 0, 3 and 7 of post ovulation. The expression profile of circulatory miRNAs in follicular fluid and blood plasma were performed using the human miRCURY LNA™ Universal RT miRNA PCR array system. A comparative threshold cycle method was used to determine the relative abundance of the miRNAs. Results A total of 504 and 402 miRNAs were detected in both bovine follicular fluid and blood plasma, respectively. Of these 57 and 21 miRNAs were found to be differentially expressed in follicular fluid and blood plasma, respectively derived from hyperstimulated versus unstimulated heifers. Bioinformatics analysis of those circulating miRNAs indicated that their potential target genes are involved in several pathways including TGF-beta signaling pathway, MAPK signaling pathway, pathways in cancer and Oocyte meiosis. Moreover, detail analysis of the mode of circulation of some candidates showed that most of the miRNA were found to be detected in both exosomal and Ago2 protein complex fraction of both follicular fluid and blood plasma. Conclusion Our data provide the consequence of hyperstimulation induced changes of extracellular miRNAs in bovine follicular fluid and blood plasma, which may have a potential role in regulating genes associated not only with bovine ovarian function but also involved in altering various physiological in bovine oocytes, embryos and modulating reproductive tract environment.
Collapse
Affiliation(s)
- Sina Seifi Noferesti
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, 53115, Germany
| | - Md Mahmodul Hasan Sohel
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, 53115, Germany.,Department of Animal Science, Faculty of Agriculture, Erciyes University, Kayseri, 38039, Turkey
| | - Michael Hoelker
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, 53115, Germany
| | - Dessie Salilew-Wondim
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, 53115, Germany
| | - Ernst Tholen
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, 53115, Germany
| | - Christian Looft
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, 53115, Germany
| | - Franca Rings
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, 53115, Germany
| | - Christiane Neuhoff
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, 53115, Germany
| | - Karl Schellander
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, 53115, Germany
| | - Dawit Tesfaye
- Animal Breeding and Husbandry Group, Institute of Animal Science, University of Bonn, Bonn, 53115, Germany.
| |
Collapse
|
52
|
Singh VK, Newman VL, Romaine PL, Hauer-Jensen M, Pollard HB. Use of biomarkers for assessing radiation injury and efficacy of countermeasures. Expert Rev Mol Diagn 2015; 16:65-81. [PMID: 26568096 PMCID: PMC4732464 DOI: 10.1586/14737159.2016.1121102] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Several candidate drugs for acute radiation syndrome (ARS) have been identified that have low toxicity and significant radioprotective and radiomitigative efficacy. Inasmuch as exposing healthy human volunteers to injurious levels of radiation is unethical, development and approval of new radiation countermeasures for ARS are therefore presently based on animal studies and Phase I safety study in healthy volunteers. The Animal Efficacy Rule, which underlies the Food and Drug Administration approval pathway, requires a sound understanding of the mechanisms of injury, drug efficacy, and efficacy biomarkers. In this context, it is important to identify biomarkers for radiation injury and drug efficacy that can extrapolate animal efficacy results, and can be used to convert drug doses deduced from animal studies to those that can be efficacious when used in humans. Here, we summarize the progress of studies to identify candidate biomarkers for the extent of radiation injury and for evaluation of countermeasure efficacy.
Collapse
Affiliation(s)
- Vijay K Singh
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Victoria L Newman
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Patricia Lp Romaine
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Martin Hauer-Jensen
- c Departments of Pharmaceutical Sciences, Surgery, and Pathology , University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare Systems , Little Rock , AR , USA
| | - Harvey B Pollard
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| |
Collapse
|
53
|
Islam A, Ghimbovschi S, Zhai M, Swift JM. An Exploration of Molecular Correlates Relevant to Radiation Combined Skin-Burn Trauma. PLoS One 2015; 10:e0134827. [PMID: 26247844 PMCID: PMC4527694 DOI: 10.1371/journal.pone.0134827] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/14/2015] [Indexed: 12/17/2022] Open
Abstract
Background Exposure to high dose radiation in combination with physical injuries such as burn or wound trauma can produce a more harmful set of medical complications requiring specialist interventions. Currently these interventions are unavailable as are the precise biomarkers needed to help both accurately assess and treat such conditions. In the present study, we tried to identify and explore the possible role of serum exosome microRNA (miRNA) signatures as potential biomarkers for radiation combined burn injury (RCBI). Methodology Female B6D2F1/J mice were assigned to four experimental groups (n = 6): sham control (SHAM), burn injury (BURN), radiation injury (RI) and combined radiation skin burn injury (CI). We performed serum multiplex cytokine analysis and serum exosome miRNA expression profiling to determine novel miRNA signatures and important biological pathways associated with radiation combined skin-burn trauma. Principal Findings Serum cytokines, IL-5 and MCP-1, were significantly induced only in CI mice (p<0.05). From 890 differentially expressed miRNAs identified, microarray analysis showed 47 distinct miRNA seed sequences significantly associated with CI mice compared to SHAM control mice (fold change ≥ 1.2, p<0.05). Furthermore, only two major miRNA seed sequences (miR-690 and miR-223) were validated to be differentially expressed for CI mice specifically (fold change ≥ 1.5, p<0.05). Conclusions Serum exosome miRNA signature data of adult mice, following RCBI, provides new insights into the molecular and biochemical pathways associated with radiation combined skin-burn trauma in vivo.
Collapse
Affiliation(s)
- Aminul Islam
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland, United States of America
- * E-mail:
| | - Svetlana Ghimbovschi
- Children’s National Medical Center, Department of Integrative Systems Biology, Washington DC, United States of America
| | - Min Zhai
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland, United States of America
| | - Joshua M. Swift
- Naval Medical Research Center, Undersea Medicine Department, Silver Spring, Maryland, United States of America
| |
Collapse
|
54
|
Brzóska K, Kruszewski M. Toward the development of transcriptional biodosimetry for the identification of irradiated individuals and assessment of absorbed radiation dose. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:353-63. [PMID: 25972268 PMCID: PMC4510913 DOI: 10.1007/s00411-015-0603-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/30/2015] [Indexed: 05/03/2023]
Abstract
The most frequently used and the best established method of biological dosimetry at present is the dicentric chromosome assay, which is poorly suitable for a mass casualties scenario. This gives rise to the need for the development of new, high-throughput assays for rapid identification of the subjects exposed to ionizing radiation. In the present study, we tested the usefulness of gene expression analysis in blood cells for biological dosimetry. Human peripheral blood from three healthy donors was X-irradiated with doses of 0 (control), 0.6, and 2 Gy. The mRNA level of 16 genes (ATF3, BAX, BBC3, BCL2, CDKN1A, DDB2, FDXR, GADD45A, GDF15, MDM2, PLK3, SERPINE1, SESN2, TNFRSF10B, TNFSF4, and VWCE) was assessed by reverse transcription quantitative PCR 6, 12, 24, and 48 h after exposure with ITFG1 and DPM1 used as a reference genes. The panel of radiation-responsive genes was selected comprising GADD45A, CDKN1A, BAX, BBC3, DDB2, TNFSF4, GDF15, and FDXR. Cluster analysis showed that ΔC t values of the selected genes contained sufficient information to allow discrimination between irradiated and non-irradiated blood samples. The samples were clearly grouped according to the absorbed doses of radiation and not to the time interval after irradiation or to the blood donor.
Collapse
Affiliation(s)
- Kamil Brzóska
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland,
| | | |
Collapse
|
55
|
Challenges in using circulating miRNAs as cancer biomarkers. BIOMED RESEARCH INTERNATIONAL 2015; 2015:731479. [PMID: 25874226 PMCID: PMC4385632 DOI: 10.1155/2015/731479] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/06/2014] [Indexed: 02/06/2023]
Abstract
In the last years, circulating miRNAs have emerged as a new class of promising cancer biomarkers. Independent studies have shown the feasibility of using these small RNAs as tools for the diagnosis and prognosis of different types of malignancies as well as for predicting and possibly monitoring treatment response. However, despite an initial enthusiasm for their possible clinical application, widespread inconsistencies have been observed among the studies, and miRNA-based tools still represent the object of research within clinical diagnostic or treatment protocols. The poor overlap of results could be explained, at least in part, by preanalytical and analytical variables and donor-related factors that could generate artefacts, impairing an accurate quantification of circulating miRNAs. In fact, critical issues are represented by nonuniform sample choice, handling, and processing, as well as by blood cell contamination in sample preparation and lack of consensus for data normalization. In this review, we address the potential technical biases and individual-related parameters that can influence circulating miRNA studies' outcome. The exciting potential of circulating miRNAs as cancer biomarkers could confer an important advance in the disease management, but their clinical significance might not be proven without a global consensus of procedures and standardized protocols for their accurate detection.
Collapse
|
56
|
Duy J, Koehler JW, Honko AN, Minogue TD. Optimized microRNA purification from TRIzol-treated plasma. BMC Genomics 2015; 16:95. [PMID: 25765146 PMCID: PMC4342875 DOI: 10.1186/s12864-015-1299-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/29/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) represent new and potentially informative diagnostic targets for disease detection and prognosis. However, little work exists documenting the effect of TRIzol, a common viral inactivation and nucleic acid extraction reagent, on miRNA purification. Here, we developed an optimized protocol for miRNA extraction from plasma samples by evaluating five different RNA extraction kits, TRIzol phase separation, purification additives, and initial plasma sample volume. This method was then used for downstream profiling of plasma miRNAs found in archived samples from one nonhuman primate (NHP) experimentally challenged with Ebola virus by the aerosol route. RESULTS Comparison of real-time RT-PCR results for spiked-in and endogenous miRNA sequences determined extraction efficiencies from five different RNA purification kits. These experiments showed that 50 μL plasma processed using the QIAGEN miRNeasy Mini Kit with 5 μg of glycogen as a co-precipitant yielded the highest recovery of endogenous miRNAs. Using this optimized protocol, miRNAs from archived plasma samples of one rhesus macaque challenged with aerosolized Ebola virus was profiled using a targeted real-time PCR array. A total of 519 of the 752 unique miRNAs assayed were present in the plasma samples at day 0 and day 7 (time of death) post-exposure. Statistical analyses revealed 25 sequences significantly up- or down-regulated between day 0 and day 7 post infection, validating the utility of the extraction method for plasma miRNA profiling. CONCLUSIONS This study contributes to the knowledgebase of circulating miRNA extraction methods and expands on the potential applications of cell-free miRNA profiling for diagnostics and pathogenesis studies. Specifically, we optimized an extraction protocol for miRNAs from TRIzol-inactivated plasma samples that can be used for highly pathogenic viruses.
Collapse
Affiliation(s)
- Janice Duy
- Diagnostic Systems Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter St., Fort Detrick, Frederick, MD, 21701, USA.
| | - Jeffrey W Koehler
- Diagnostic Systems Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter St., Fort Detrick, Frederick, MD, 21701, USA.
| | - Anna N Honko
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 8200 Research Plaza, Fort Detrick, Frederick, MD, 21701, USA. .,Virology Division, U.S. Army Medical Institute of Infectious Diseases, 1425 Porter St., Fort Detrick, Frederick, MD, 21701, USA.
| | - Timothy D Minogue
- Diagnostic Systems Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter St., Fort Detrick, Frederick, MD, 21701, USA.
| |
Collapse
|
57
|
Lee KF, Chen YC, Hsu PWC, Liu IY, Wu LSH. MicroRNA expression profiling altered by variant dosage of radiation exposure. BIOMED RESEARCH INTERNATIONAL 2014; 2014:456323. [PMID: 25313363 PMCID: PMC4182081 DOI: 10.1155/2014/456323] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/14/2014] [Accepted: 08/16/2014] [Indexed: 01/10/2023]
Abstract
Various biological effects are associated with radiation exposure. Irradiated cells may elevate the risk for genetic instability, mutation, and cancer under low levels of radiation exposure, in addition to being able to extend the postradiation side effects in normal tissues. Radiation-induced bystander effect (RIBE) is the focus of rigorous research as it may promote the development of cancer even at low radiation doses. Alterations in the DNA sequence could not explain these biological effects of radiation and it is thought that epigenetics factors may be involved. Indeed, some microRNAs (or miRNAs) have been found to correlate radiation-induced damages and may be potential biomarkers for the various biological effects caused by different levels of radiation exposure. However, the regulatory role that miRNA plays in this aspect remains elusive. In this study, we profiled the expression changes in miRNA under fractionated radiation exposure in human peripheral blood mononuclear cells. By utilizing publicly available microRNA knowledge bases and performing cross validations with our previous gene expression profiling under the same radiation condition, we identified various miRNA-gene interactions specific to different doses of radiation treatment, providing new insights for the molecular underpinnings of radiation injury.
Collapse
Affiliation(s)
- Kuei-Fang Lee
- Institute of Medical Sciences, Tzu Chi University, No. 701, Zhongyang Road, Section 3, Hualien 97004, Taiwan
- Laboratory for Cytogenetics, Center for Genetic Counseling, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
| | - Yi-Cheng Chen
- Department of Computer Science & Information Engineering, Tamkang University, New Taipei City 25137, Taiwan
| | - Paul Wei-Che Hsu
- Bioinformatics Core Laboratory, Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ingrid Y. Liu
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan
| | - Lawrence Shih-Hsin Wu
- Institute of Medical Sciences, Tzu Chi University, No. 701, Zhongyang Road, Section 3, Hualien 97004, Taiwan
| |
Collapse
|
58
|
Forensic miRNA: potential biomarker for body fluids? Forensic Sci Int Genet 2014; 14:1-10. [PMID: 25280377 DOI: 10.1016/j.fsigen.2014.09.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/06/2014] [Accepted: 09/01/2014] [Indexed: 12/13/2022]
Abstract
In forensic investigation, body fluids represent an important support to professionals when detected, collected and correctly identified. Through many years, various approaches were used, namely serology-based methodologies however, their lack of sensitivity and specificity became difficult to set aside. In order to sidetrack the problem, miRNA profiling surged with a real potential to be used to identify evidences like urine, blood, menstrual blood, saliva, semen and vaginal secretions. MiRNAs are small RNA structures with 20-25 nt whose proprieties makes them less prone to degradation processes when compared to mRNA which is extremely important once, in a crime scene, biological evidences might be exposed to several unfavorable environmental factors. Recently, published studies were able to identify some specific miRNAs, however their results were not always reproducible by others which can possibly be the reflection of different workflow strategies for their profiling studies. Given the current blast of interest in miRNAs, it is important to acknowledge potential limitations of miRNA profiling, yet, the lack of such studies are evident. This review pretends to gather all the information to date and assessed a multitude of factors that have a potential aptitude to discrediting miRNA profiling, such as: methodological approaches, environmental factors, physiological conditions, gender, pathologies and samples storage. It can be asserted that much has yet to be made, but we pretend to highlight a potential answer for the ultimate question: Can miRNA profiling be used as the forensic biomarker for body fluids identification?
Collapse
|
59
|
Kim SB, Zhang L, Barron S, Shay JW. Inhibition of microRNA-31-5p protects human colonic epithelial cells against ionizing radiation. LIFE SCIENCES IN SPACE RESEARCH 2014; 1:67-73. [PMID: 26432591 DOI: 10.1016/j.lssr.2014.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 06/05/2023]
Abstract
MicroRNAs (miRNAs), endogenous non-coding small RNAs, are sensitive to environmental changes, and their differential expression is important for adaptation to the environment. However, application of miRNAs as a clinical prognostic or diagnostic tool remains unproven. In this study we demonstrate a chronic/persistent change of miRNAs from the plasma of a colorectal cancer susceptible mouse model (CPC;Apc) about 250 days after exposure to a simulated solar particle event (SPE). Differentially expressed miRNAs were identified compared to unirradiated control mice, including miR-31-5p, which we investigated further. To address the cellular function of miR-31-5p, we transfected a miR-31-5p mimic (sense) or inhibitor (antisense) into immortalized human colonic epithelial cells followed by gamma-irradiation. A miR-31-5p mimic sensitized but a miR-31-5p inhibitor protected colonic epithelial cells against radiation induced killing. We found that the miR-31-5p mimic inhibited the induction of hMLH1 expression after irradiation, whereas the miR-31-5p inhibitor increased the basal level of hMLH1 expression. The miR-31-5p inhibitor failed to modulate radiosensitivity in an hMLH1-deficient HCT116 colon cancer cell line but protected HCT116 3-6 and DLD-1 (both hMLH1-positive) colon cancer cell lines. Our findings demonstrate that miR-31-5p has an important role in radiation responses through regulation of hMLH1 expression. Targeting this pathway could be a promising therapeutic strategy for future personalized anti-cancer radiotherapy.
Collapse
Affiliation(s)
- Sang Bum Kim
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, United States
| | - Lu Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, United States
| | - Summer Barron
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, United States
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, United States.
| |
Collapse
|
60
|
Chaudhry MA. Radiation-induced microRNA: Discovery, functional analysis, and cancer radiotherapy. J Cell Biochem 2014; 115:436-49. [DOI: 10.1002/jcb.24694] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 12/26/2022]
Affiliation(s)
- M. Ahmad Chaudhry
- Department of Medical Laboratory and Radiation Sciences; University of Vermont; Burlington Vermont 05405
| |
Collapse
|
61
|
Summerer I, Niyazi M, Unger K, Pitea A, Zangen V, Hess J, Atkinson MJ, Belka C, Moertl S, Zitzelsberger H. Changes in circulating microRNAs after radiochemotherapy in head and neck cancer patients. Radiat Oncol 2013; 8:296. [PMID: 24373621 PMCID: PMC3882107 DOI: 10.1186/1748-717x-8-296] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/23/2013] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Circulating microRNAs (miRNAs) are easily accessible and have already proven to be useful as prognostic markers in cancer patients. However, their origin and function in the circulation is still under discussion. In the present study we analyzed changes in the miRNAs in blood plasma of head and neck squamous cell carcinoma (HNSCC) patients in response to radiochemotherapy and compared them to the changes in a cell culture model of primary HNSCC cells undergoing simulated anti-cancer therapy. MATERIALS AND METHODS MiRNA-profiles were analyzed by qRT-PCR arrays in paired blood plasma samples of HNSCC patients before therapy and after two days of treatment. Candidate miRNAs were validated by single qRT-PCR assays. An in vitro radiochemotherapy model using primary HNSCC cell cultures was established to test the possible tumor origin of the circulating miRNAs. Microarray analysis was performed on primary HNSCC cell cultures followed by validation of deregulated miRNAs via qRT-PCR. RESULTS Unsupervised clustering of the expression profiles using the six most regulated miRNAs (miR-425-5p, miR-21-5p, miR-106b-5p, miR-590-5p, miR-574-3p, miR-885-3p) significantly (p = 0.012) separated plasma samples collected prior to treatment from plasma samples collected after two days of radiochemotherapy. MiRNA profiling of primary HNSCC cell cultures treated in vitro with radiochemotherapy revealed differentially expressed miRNAs that were also observed to be therapy-responsive in blood plasma of the patients (miR-425-5p, miR-21-5p, miR-106b-5p, miR-93-5p) and are therefore likely to stem from the tumor. Of these candidate marker miRNAs we were able to validate by qRT-PCR a deregulation of eight plasma miRNAs as well as miR-425-5p and miR-93-5p in primary HNSCC cultures after radiochemotherapy. CONCLUSION Changes in the abundance of circulating miRNAs during radiochemotherapy reflect the therapy response of primary HNSCC cells after an in vitro treatment. Therefore, the responsive miRNAs (miR-425-5p, miR-93-5p) may represent novel biomarkers for therapy monitoring. The prognostic value of this exciting observation requires confirmation using an independent patient cohort that includes clinical follow-up data.
Collapse
Affiliation(s)
- Isolde Summerer
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, Ingolstaedter Landstr 1, 85764, Neuherberg, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University of Munich, Marchioninistr 15, 81377, Munich, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, Ingolstaedter Landstr 1, 85764, Neuherberg, Germany
- Clinical Cooperation Group ‘Personalized Radiotherapy of Head and Neck Cancer’, Helmholtz Center Munich, Ingolstaedter Landstr 1, 85764, Neuherberg, Germany
| | - Adriana Pitea
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, Ingolstaedter Landstr 1, 85764, Neuherberg, Germany
| | - Verena Zangen
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, Ingolstaedter Landstr 1, 85764, Neuherberg, Germany
- Clinical Cooperation Group ‘Personalized Radiotherapy of Head and Neck Cancer’, Helmholtz Center Munich, Ingolstaedter Landstr 1, 85764, Neuherberg, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, Ingolstaedter Landstr 1, 85764, Neuherberg, Germany
- Clinical Cooperation Group ‘Personalized Radiotherapy of Head and Neck Cancer’, Helmholtz Center Munich, Ingolstaedter Landstr 1, 85764, Neuherberg, Germany
| | - Michael J Atkinson
- Institute of Radiation Biology, Helmholtz Center Munich, Ingolstaedter Landstr 1, 85764, Neuherberg, Germany
| | - Claus Belka
- Department of Radiation Oncology, University of Munich, Marchioninistr 15, 81377, Munich, Germany
- Clinical Cooperation Group ‘Personalized Radiotherapy of Head and Neck Cancer’, Helmholtz Center Munich, Ingolstaedter Landstr 1, 85764, Neuherberg, Germany
| | - Simone Moertl
- Institute of Radiation Biology, Helmholtz Center Munich, Ingolstaedter Landstr 1, 85764, Neuherberg, Germany
| | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, Ingolstaedter Landstr 1, 85764, Neuherberg, Germany
- Clinical Cooperation Group ‘Personalized Radiotherapy of Head and Neck Cancer’, Helmholtz Center Munich, Ingolstaedter Landstr 1, 85764, Neuherberg, Germany
| |
Collapse
|
62
|
Sohel MMH, Hoelker M, Noferesti SS, Salilew-Wondim D, Tholen E, Looft C, Rings F, Uddin MJ, Spencer TE, Schellander K, Tesfaye D. Exosomal and Non-Exosomal Transport of Extra-Cellular microRNAs in Follicular Fluid: Implications for Bovine Oocyte Developmental Competence. PLoS One 2013; 8:e78505. [PMID: 24223816 PMCID: PMC3817212 DOI: 10.1371/journal.pone.0078505] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 09/14/2013] [Indexed: 12/22/2022] Open
Abstract
Cell-cell communication within the follicle involves many signaling molecules, and this process may be mediated by secretion and uptake of exosomes that contain several bioactive molecules including extra-cellular miRNAs. Follicular fluid and cells from individual follicles of cattle were grouped based on Brilliant Cresyl Blue (BCB) staining of the corresponding oocytes. Both Exoquick precipitation and differential ultracentrifugation were used to separate the exosome and non-exosomal fraction of follicular fluid. Following miRNA isolation from both fractions, the human miRCURY LNA™ Universal RT miRNA PCR array system was used to profile miRNA expression. This analysis found that miRNAs were present in both exosomal and non-exosomal fraction of bovine follicular fluid. We found 25 miRNAs differentially expressed (16 up and 9 down) in exosomes and 30 miRNAs differentially expressed (21 up and 9 down) in non-exosomal fraction of follicular fluid in comparison of BCB- versus BCB+ oocyte groups. Expression of selected miRNAs was detected in theca, granulosa and cumulus oocyte complex. To further explore the potential roles of these follicular fluid derived extra-cellular miRNAs, the potential target genes were predicted, and functional annotation and pathway analysis revealed most of these pathways are known regulators of follicular development and oocyte growth. In order to validate exosome mediated cell-cell communication within follicular microenvironment, we demonstrated uptake of exosomes and resulting increase of endogenous miRNA level and subsequent alteration of mRNA levels in follicular cells in vitro. This study demonstrates for the first time, the presence of exosome or non-exosome mediated transfer of miRNA in the bovine follicular fluid, and oocyte growth dependent variation in extra-cellular miRNA signatures in the follicular environment.
Collapse
Affiliation(s)
| | - Michael Hoelker
- Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
| | | | | | - Ernst Tholen
- Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
| | - Christian Looft
- Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
| | - Franca Rings
- Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
| | | | - Thomas E. Spencer
- Department of Animal Sciences, Washington State University, Pullman, Washington, United States of America
| | - Karl Schellander
- Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
| | - Dawit Tesfaye
- Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
63
|
A comparison of miRNA isolation and RT-qPCR technologies and their effects on quantification accuracy and repeatability. Biotechniques 2013; 54:155-64. [PMID: 23477383 DOI: 10.2144/000114002] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 02/19/2013] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) are short (~22 nucleotides), non-coding RNA molecules that post-transcriptionally regulate gene expression. As the miRNA field is still in its relative infancy, there is currently a lack of consensus regarding optimal methodologies for miRNA quantification, data analysis and data standardization. To investigate miRNA measurement we selected a panel of both synthetic miRNA spikes and endogenous miRNAs to evaluate assay performance, copy number estimation, and relative quantification. We compared two different miRNA quantification methodologies and also assessed the impact of short RNA enrichment on the miRNA measurement. We found that both short RNA enrichment and quantification strategy used had a significant impact on miRNA measurement. Our findings illustrate that miRNA quantification can be influenced by the choice of methodology and this must be considered when interpreting miRNA analyses. Furthermore, we show that synthetic miRNA spikes can be used as effective experimental controls for the short RNA enrichment procedure.
Collapse
|
64
|
Khan SY, Tariq MA, Perrott JP, Brumbaugh CD, Kim HJ, Shabbir MI, Ramesh GT, Pourmand N. Distinctive microRNA expression signatures in proton-irradiated mice. Mol Cell Biochem 2013; 382:225-35. [PMID: 23817773 DOI: 10.1007/s11010-013-1738-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/14/2013] [Indexed: 12/13/2022]
Abstract
Proton particles comprise the most abundant ionizing radiation (IR) in outer space. These high energy particles are known to cause frequent double- and single-stranded DNA lesions that can lead to cancer and tumor formation. Understanding the mechanism of cellular response to proton-derived IR is vital for determining health risks to astronauts during space missions. Our understanding of the consequences of these high energy charged particles on microRNA (miRNA) regulation is still in infancy. miRNAs are non-coding, single-stranded RNAs of ~22 nucleotides that constitute a novel class of gene regulators. They regulate diverse biological processes, and each miRNA can control hundreds of gene targets. To investigate the effect of proton radiation on these master regulators, we examined the miRNA expression in selected mice organs that had been exposed to whole-body proton irradiation (2 Gy), and compared this to control mice (0 Gy exposure). RNA was isolated from three tissues (testis, brain, and liver) from treated and control mice and subjected to high-throughput small RNA sequencing. Bioinformatics analysis of small RNA sequencing data revealed dysregulation of (p < 0.05; 20 up- and 10 down-regulated) 14 mouse testis, 8 liver, and 8 brain miRNAs. The statistically significant and unique miRNA expression pattern found among three different proton-treated mouse tissues indicates a tissue-specific response to proton radiation. In addition to known miRNAs, sequencing revealed differential expression of 11 miRNAs in proton-irradiated mice that have not been previously reported in association with radiation exposure and cancer. The dysregulation of miRNAs on exposure to proton radiation suggest a possible mechanism of proton particles involvement in the onset of cell tumorgenesis. In summary, we have established that specific miRNAs are vulnerable to proton radiation, that such differential expression profile may depend upon the tissue, and that there are more miRNAs affected by proton radiation than have been previously observed.
Collapse
Affiliation(s)
- Shahid Yar Khan
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Herceg Z, Lambert MP, van Veldhoven K, Demetriou C, Vineis P, Smith MT, Straif K, Wild CP. Towards incorporating epigenetic mechanisms into carcinogen identification and evaluation. Carcinogenesis 2013; 34:1955-67. [PMID: 23749751 DOI: 10.1093/carcin/bgt212] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Remarkable progress in the field of epigenetics has turned academic, medical and public attention to the potential applications of these new advances in medicine and various fields of biomedical research. The result is a broader appreciation of epigenetic phenomena in the a etiology of common human diseases, most notably cancer. These advances also represent an exciting opportunity to incorporate epigenetics and epigenomics into carcinogen identification and safety assessment. Current epigenetic studies, including major international sequencing projects, are expected to generate information for establishing the 'normal' epigenome of tissues and cell types as well as the physiological variability of the epigenome against which carcinogen exposure can be assessed. Recently, epigenetic events have emerged as key mechanisms in cancer development, and while our search of the Monograph Volume 100 revealed that epigenetics have played a modest role in evaluating human carcinogens by the International Agency for Research on Cancer (IARC) Monographs so far, epigenetic data might play a pivotal role in the future. Here, we review (i) the current status of incorporation of epigenetics in carcinogen evaluation in the IARC Monographs Programme, (ii) potential modes of action for epigenetic carcinogens, (iii) current in vivo and in vitro technologies to detect epigenetic carcinogens, (iv) genomic regions and epigenetic modifications and their biological consequences and (v) critical technological and biological issues in assessment of epigenetic carcinogens. We also discuss the issues related to opportunities and challenges in the application of epigenetic testing in carcinogen identification and evaluation. Although the application of epigenetic assays in carcinogen evaluation is still in its infancy, important data are being generated and valuable scientific resources are being established that should catalyse future applications of epigenetic testing.
Collapse
Affiliation(s)
- Zdenko Herceg
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, F-69008 Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Jacob NK, Cooley JV, Yee TN, Jacob J, Alder H, Wickramasinghe P, Maclean KH, Chakravarti A. Identification of sensitive serum microRNA biomarkers for radiation biodosimetry. PLoS One 2013; 8:e57603. [PMID: 23451251 PMCID: PMC3581493 DOI: 10.1371/journal.pone.0057603] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/22/2013] [Indexed: 12/13/2022] Open
Abstract
Exposure to ionizing radiation through environmental, occupational or a nuclear reactor accident such as the recent Fukushima Daiichi incident often results in major consequences to human health. The injury caused by radiation can manifest as acute radiation syndromes within weeks in organs with proliferating cells such as hematopoietic and gastrointestinal systems. Cancers, fibrosis and degenerative diseases are also reported in organs with differentiated cells, months or years later. Studies conducted on atom bomb survivors, nuclear reactor workers and animal models have shown a direct correlation of these effects with the absorbed dose. Physical dosimeters and the available radio-responsive biologics in body fluids, whose responses are rather indirect, have limitations to accurately evaluate the extent of post exposure damage. We have used an amplification-free, hybridization based quantitative assay utilizing the nCounter multiplex platform developed by nanoString Technologies to compare the levels of over 600 miRNAs in serum from mice irradiated at a range of 1 to 12 Gy at 24 and 48 hr time points. Development of a novel normalization strategy using multiple spike-in oligonucleotides allowed accurate measurement of radiation dose and time dependent changes in serum miRNAs. The response of several evolutionarily conserved miRNAs abundant in serum, were found to be robust and sensitive in the dose range relevant for medical triage and in patients who receive total body radiation as preparative regimen for bone marrow transplantation. Notably, miRNA-150, abundant in lymphocytes, exhibited a dose and time dependent decrease in serum, which we propose as a sensitive marker indicative of lymphocyte depletion and bone marrow damage. Our study has identified several markers useful for evaluation of an individual's response by minimally invasive methods, relevant to triage in case of a radiation accident and evaluation of toxicity and response during and after therapeutic radiation.
Collapse
Affiliation(s)
- Naduparambil Korah Jacob
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Wang Y, Taniguchi T. MicroRNAs and DNA damage response: implications for cancer therapy. Cell Cycle 2012; 12:32-42. [PMID: 23255103 DOI: 10.4161/cc.23051] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The DNA damage response (DDR) pathways play critical roles in protecting the genome from DNA damage. Abrogation of DDR often results in elevated genomic instability and cellular sensitivity to DNA damaging agents. Many proteins involved in DDR are subjected to precise regulation at multiple levels, such as transcriptional control and posttranslational modifications, in response to DNA damage. MicroRNAs (miRNAs) are a class of small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. The expression levels of some miRNAs change in response to DNA damage. Some miRNAs, such as miR-24, 138, 96 and 182, have been implicated in DDR and/or DNA repair and affect cellular sensitivity to DNA damaging agents. In this review, we summarize recent findings related to the emerging roles of miRNAs in regulating DDR and DNA repair and discuss their potential in cancer therapy.
Collapse
Affiliation(s)
- Yemin Wang
- Howard Hughes Medical Institute, Human Biology and Public Health Sciences Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
68
|
Patnaik SK, Dahlgaard J, Mazin W, Kannisto E, Jensen T, Knudsen S, Yendamuri S. Expression of microRNAs in the NCI-60 cancer cell-lines. PLoS One 2012; 7:e49918. [PMID: 23209617 PMCID: PMC3509128 DOI: 10.1371/journal.pone.0049918] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/15/2012] [Indexed: 12/18/2022] Open
Abstract
The NCI-60 panel of 60 human cancer cell-lines of nine different tissues of origin has been extensively characterized in biological, molecular and pharmacological studies. Analyses of data from such studies have provided valuable information for understanding cellular processes and developing strategies for the diagnosis and treatment of cancer. Here, Affymetrix® GeneChip™ miRNA version 1 oligonucleotide microarrays were used to quantify 847 microRNAs to generate an expression dataset of 495 (58.4%) microRNAs that were identified as expressed in at least one cell-line of the NCI-60 panel. Accuracy of the microRNA measurements was partly confirmed by reverse transcription and polymerase chain reaction assays. Similar to that seen among the four existing NCI-60 microRNA datasets, the concordance of the new expression dataset with the other four was modest, with mean Pearson correlation coefficients of 0.37–0.54. In spite of this, comparable results with different datasets were noted in clustering of the cell-lines by their microRNA expression, differential expression of microRNAs by the lines’ tissue of origin, and correlation of specific microRNAs with the doubling-time of cells or their radiation sensitivity. Mutation status of the cell-lines for the TP53, PTEN and BRAF but not CDKN2A or KRAS cancer-related genes was found to be associated with changes in expression of specific microRNAs. The microRNA dataset generated here should be valuable to those working in the field of microRNAs as well as in integromic studies of the NCI-60 panel.
Collapse
Affiliation(s)
- Santosh K Patnaik
- Department of Thoracic Surgery, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
MicroRNA expression profiles of whole blood in lung adenocarcinoma. PLoS One 2012; 7:e46045. [PMID: 23029380 PMCID: PMC3460960 DOI: 10.1371/journal.pone.0046045] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/28/2012] [Indexed: 12/21/2022] Open
Abstract
The association of lung cancer with changes in microRNAs in plasma shown in multiple studies suggests a utility for circulating microRNA biomarkers in non-invasive detection of the disease. We examined if presence of lung cancer is reflected in whole blood microRNA expression as well, possibly because of a systemic response. Locked nucleic acid microarrays were used to quantify the global expression of microRNAs in whole blood of 22 patients with lung adenocarcinoma and 23 controls, ten of whom had a radiographically detected non-cancerous lung nodule and the other 13 were at high risk for developing lung cancer because of a smoking history of >20 pack-years. Cases and controls differed significantly for age with a mean difference of 10.7 years, but not for gender, race, smoking history, blood hemoglobin, platelet count, or white blood cell count. Of 1282 quantified human microRNAs, 395 (31%) were identified as expressed in the study’s subjects, with 96 (24%) differentially expressed between cases and controls. Classification analyses of microRNA expression data were performed using linear kernel support vector machines (SVM) and top-scoring pairs (TSP) methods, and classifiers to identify presence of lung adenocarcinoma were internally cross-validated. In leave-one-out cross-validation, the TSP classifiers had sensitivity and specificity of 91% and 100%, respectively. The values with SVM were both 91%. In a Monte Carlo cross-validation, average sensitivity and specificity values were 86% and 97%, respectively, with TSP, and 88% and 89%, respectively, with SVM. MicroRNAs miR-190b, miR-630, miR-942, and miR-1284 were the most frequent constituents of the classifiers generated during the analyses. These results suggest that whole blood microRNA expression profiles can be used to distinguish lung cancer cases from clinically relevant controls. Further studies are needed to validate this observation, including in non-adenocarcinomatous lung cancers, and to clarify upon the confounding effect of age.
Collapse
|
70
|
Mikaelian I, Scicchitano M, Mendes O, Thomas RA, Leroy BE. Frontiers in preclinical safety biomarkers: microRNAs and messenger RNAs. Toxicol Pathol 2012; 41:18-31. [PMID: 22659243 DOI: 10.1177/0192623312448939] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The measurement of plasma microRNAs (miRNAs) and messenger RNAs (mRNAs) is the most recent effort to identify novel biomarkers in preclinical safety. These genomic markers often display tissue-specific expression, may be released from the tissues into the plasma during toxic events, change early and with high magnitude in tissues and in the blood during specific organ toxicities, and can be measured using multiplex formats. Their validation as biomarkers has been challenged by the technical difficulties. In particular, the concentration of miRNAs in the plasma depends on contamination by miRNAs originating from blood cells and platelets, and the relative fraction of miRNAs in complexes with Argonaute 2, high-density lipoproteins, and in exosomes and microvesicles. In spite of these hurdles, considerable progress has recently been made in assessing the potential value of miRNAs in the clinic, especially in cancer patients and cardiovascular diseases. The future of miRNAs and mRNAs as biomarkers of disease and organ toxicity depends on our ability to characterize their kinetics and to establish robust collection and measurement methods. This review covers the basic biology of miRNAs and the published literature on the use of miRNAs and mRNAs as biomarkers of specific target organ toxicity.
Collapse
|
71
|
Zampetaki A, Mayr M. Analytical challenges and technical limitations in assessing circulating miRNAs. Thromb Haemost 2012; 108:592-8. [PMID: 22627831 DOI: 10.1160/th12-02-0097] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 04/17/2012] [Indexed: 12/21/2022]
Abstract
MiRNAs are emerging as promising biomarkers in cardiovascular diseases and may constitute a novel mechanism of intercellular communication. Accurate quantification of circulating miRNAs is essential. A variety of technological approaches and platforms have been developed with increased sensitivity and specificity for the detection and quantification of circulating miRNAs. In this review, we focus on the technical aspects and discuss the analytical challenges in profiling circulating miRNAs.
Collapse
Affiliation(s)
- Anna Zampetaki
- King's British Heart Foundation Centre, King's College London, London, UK.
| | | |
Collapse
|
72
|
Wang YJ, Wu SJ, Guo KY, Chen C, Xie Q, Gu WW, Cai L, Zou F. ¹⁸F-FDG uptake by spleen helps rapidly predict the dose level after total body irradiation in a Tibetan minipig model. Eur Radiol 2012; 22:1844-51. [PMID: 22549103 DOI: 10.1007/s00330-012-2451-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/14/2012] [Accepted: 03/19/2012] [Indexed: 02/24/2023]
Abstract
OBJECTIVES To investigate whether (18)F- FDG uptake can be applied in dosimetry to facilitate the rapid and accurate evaluation of individual radiation doses after a nuclear accident. METHODS Forty-eight Tibetan minipigs were randomised into a control group (n = 3) and treatment groups (n = 45). (18)F-FDG combined positron-emission tomography and computed tomography (PET/CT) were carried out before total body irradiation (TBI) and at 6, 24 and 72 h after receiving TBI doses ranging from 1 to 11 Gy. Spleen tissues and blood samples were also collected for histological examination, apoptosis and blood analysis. RESULTS Mean standardised uptake values (SUVs) of the spleen showed significant differences between the experimental and the control groups. Spleen SUV at 6 h post-irradiation showed significant correlation with radiation dose; Spearman's correlation coefficient was 0.97 (P < 0.01). Histological observations showed that damage to the splenic lymphocyte became more severe with an increase in the radiation dose. Moreover, apoptosis was one of the major routes of splenic lymphocyte death, which was also confirmed by flow cytometry analysis. CONCLUSIONS In the Tibetan minipig model, radiation doses have a close relationship with the (18)F-FDG uptake of the spleen. This finding suggests that (18)F-FDG PET/CT may be useful for the rapid detection of individual radiation doses.
Collapse
Affiliation(s)
- Yu Jue Wang
- Department of Laboratory Animal Center, Southern Medical University, 1838 Guangzhou North Road, 510515, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Mi QS, Weiland M, Qi RQ, Gao XH, Poisson LM, Zhou L. Identification of mouse serum miRNA endogenous references by global gene expression profiles. PLoS One 2012; 7:e31278. [PMID: 22348064 PMCID: PMC3277497 DOI: 10.1371/journal.pone.0031278] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 01/05/2012] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs (miRNAs) are recently discovered small non-coding RNAs and can serve as serum biomarkers for disease diagnosis and prognoses. Lack of reliable serum miRNA endogenous references for normalization in miRNA gene expression makes single miRNA assays inaccurate. Using TaqMan® real-time PCR miRNA arrays with a global gene expression normalization strategy, we have analyzed serum miRNA expression profiles of 20 female mice of NOD/ShiLtJ (n = 8), NOR/LtJ (n = 6), and C57BL/6J (n = 6) at different ages and disease conditions. We identified five miRNAs, miR-146a, miR-16, miR-195, miR-30e and miR-744, to be stably expressed in all strains, which could serve as mouse serum miRNA endogenous references for single assay experiments.
Collapse
Affiliation(s)
- Qing-Sheng Mi
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, Michigan, United States of America
- Department of Dermatology, Henry Ford Health System, Detroit, Michigan, United States of America
- Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan, United States of America
- * E-mail: (QSM); (LZ)
| | - Matthew Weiland
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, Michigan, United States of America
- Department of Dermatology, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Rui-Qun Qi
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, Michigan, United States of America
- Department of Dermatology, Henry Ford Health System, Detroit, Michigan, United States of America
- Department of Dermatology, No 1 Hospital, China Medical University, Shenyang, China
| | - Xing-Hua Gao
- Department of Dermatology, No 1 Hospital, China Medical University, Shenyang, China
| | - Laila M. Poisson
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Li Zhou
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, Michigan, United States of America
- Department of Dermatology, Henry Ford Health System, Detroit, Michigan, United States of America
- Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan, United States of America
- * E-mail: (QSM); (LZ)
| |
Collapse
|