51
|
Peng M, Chen C, Hulbert A, Brock MV, Yu F. Non-blood circulating tumor DNA detection in cancer. Oncotarget 2017; 8:69162-69173. [PMID: 28978187 PMCID: PMC5620327 DOI: 10.18632/oncotarget.19942] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023] Open
Abstract
Tumor DNA contains specific somatic alterations that are crucial for the diagnosis and treatment of cancer. Due to the spatial and temporal intra-tumor heterogeneity, multi-sampling is needed to adequately characterize the somatic alterations. Tissue biopsy, however, is limited by the restricted access to sample and the challenges to recapitulate the tumor clonal diversity. Non-blood circulating tumor DNA are tumor DNA fragments presents in non-blood body fluids, such as urine, saliva, sputum, stool, pleural fluid, and cerebrospinal fluid (CSF). Recent studies have demonstrated the presence of tumor DNA in these non-blood body fluids and their application to the diagnosis, screening, and monitoring of cancers. Non-blood circulating tumor DNA has an enormous potential for large-scale screening of local neoplasms because of its non-invasive nature, close proximity to the tumors, easiness and it is an economically viable option. It permits longitudinal assessments and allows sequential monitoring of response and progression. Enrichment of tumor DNA of local cancers in non-blood body fluids may help to archive a higher sensitivity than in plasma ctDNA. The direct contact of cancerous cells and body fluid may facilitate the detection of tumor DNA. Furthermore, normal DNA always dilutes the plasma ctDNA, which may be aggravated by inflammation and injury when very high amounts of normal DNA are released into the circulation. Altogether, our review indicate that non-blood circulating tumor DNA presents an option where the disease can be tracked in a simple and less-invasive manner, allowing for serial sampling informing of the tumor heterogeneity and response to treatment.
Collapse
Affiliation(s)
- Muyun Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R China
| | - Chen Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R China
| | - Alicia Hulbert
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Malcolm V Brock
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R China
| |
Collapse
|
52
|
Analysis of DNA Methylation Status in Bodily Fluids for Early Detection of Cancer. Int J Mol Sci 2017; 18:ijms18040735. [PMID: 28358330 PMCID: PMC5412321 DOI: 10.3390/ijms18040735] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 02/07/2023] Open
Abstract
Epigenetic alterations by promoter DNA hypermethylation and gene silencing in cancer have been reported over the past few decades. DNA hypermethylation has great potential to serve as a screening marker, a prognostic marker, and a therapeutic surveillance marker in cancer clinics. Some bodily fluids, such as stool or urine, were obtainable without any invasion to the body. Thus, such bodily fluids were suitable samples for high throughput cancer surveillance. Analyzing the methylation status of bodily fluids around the cancer tissue may, additionally, lead to the early detection of cancer, because several genes in cancer tissues are reported to be cancer-specifically hypermethylated. Recently, several studies that analyzed the methylation status of DNA in bodily fluids were conducted, and some of the results have potential for future development and further clinical use. In fact, a stool DNA test was approved by the U.S. Food and Drug Administration (FDA) for the screening of colorectal cancer. Another promising methylation marker has been identified in various bodily fluids for several cancers. We reviewed studies that analyzed DNA methylation in bodily fluids as a less-invasive cancer screening.
Collapse
|
53
|
Olkhov-Mitsel E, Savio AJ, Kron KJ, Pethe VV, Hermanns T, Fleshner NE, van Rhijn BW, van der Kwast TH, Zlotta AR, Bapat B. Epigenome-Wide DNA Methylation Profiling Identifies Differential Methylation Biomarkers in High-Grade Bladder Cancer. Transl Oncol 2017; 10:168-177. [PMID: 28167242 PMCID: PMC5293735 DOI: 10.1016/j.tranon.2017.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 01/22/2023] Open
Abstract
Epigenetic changes, including CpG island hypermethylation, occur frequently in bladder cancer (BC) and may be exploited for BC detection and distinction between high-grade (HG) and low-grade (LG) disease. Genome-wide methylation analysis was performed using Agilent Human CpG Island Microarrays to determine epigenetic differences between LG and HG cases. Pathway enrichment analysis and functional annotation determined that the most frequently methylated pathways in HG BC were enriched for anterior/posterior pattern specification, embryonic skeletal system development, neuron fate commitment, DNA binding, and transcription factor activity. We identified 990 probes comprising a 32-gene panel that completely distinguished LG from HG based on methylation. Selected genes from this panel, EOMES, GP5, PAX6, TCF4, and ZSCAN12, were selected for quantitative polymerase chain reaction–based validation by MethyLight in an independent series (n = 84) of normal bladder samples and LG and HG cases. GP5 and ZSCAN12, two novel methylated genes in BC, were significantly hypermethylated in HG versus LG BC (P ≤ .03). We validated our data in a second independent cohort of LG and HG BC cases (n = 42) from The Cancer Genome Atlas (TCGA). Probes representing our 32-gene panel were significantly differentially methylated in LG versus HG tumors (P ≤ .04). These results indicate the ability to distinguish normal tissue from cancer, as well as LG from HG, based on methylation and reveal important pathways dysregulated in HG BC. Our findings were corroborated using publicly available data sets from TCGA. Ultimately, the creation of a methylation panel, including GP5 and ZSCAN12, able to distinguish between disease phenotypes will improve disease management and patient outcomes.
Collapse
Affiliation(s)
- Ekaterina Olkhov-Mitsel
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9; Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada, M5S 1A1.
| | - Andrea J Savio
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9; Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada, M5S 1A1.
| | - Ken J Kron
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9; Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada, M5S 1A1.
| | - Vaijayanti V Pethe
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9.
| | - Thomas Hermanns
- Department of Surgery and Surgical Oncology, Division of Urology, The Princess Margaret Cancer Centre, University Health Network, 610 University Ave., Toronto, Ontario, Canada, M5G 2M9.
| | - Neil E Fleshner
- Department of Surgery and Surgical Oncology, Division of Urology, The Princess Margaret Cancer Centre, University Health Network, 610 University Ave., Toronto, Ontario, Canada, M5G 2M9.
| | - Bas W van Rhijn
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9; Department of Surgery and Surgical Oncology, Division of Urology, The Princess Margaret Cancer Centre, University Health Network, 610 University Ave., Toronto, Ontario, Canada, M5G 2M9.
| | - Theodorus H van der Kwast
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada, M5S 1A1; Department of Pathology, University Health Network, 200 Elizabeth St., Toronto, Ontario, Canada, M5G 2C4.
| | - Alexandre R Zlotta
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9; Department of Surgery, Division of Urology, Sinai Health System, 600 University Ave., Toronto, Ontario, Canada, M5G 1X5.
| | - Bharati Bapat
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 60 Murray St., Toronto, Ontario, Canada, M5T 3L9; Department of Laboratory Medicine and Pathobiology, University of Toronto, 27 King's College Circle, Toronto, Ontario, Canada, M5S 1A1; Department of Pathology, University Health Network, 200 Elizabeth St., Toronto, Ontario, Canada, M5G 2C4.
| |
Collapse
|
54
|
An epigenetic biomarker combination of PCDH17 and POU4F2 detects bladder cancer accurately by methylation analyses of urine sediment DNA in Han Chinese. Oncotarget 2016; 7:2754-64. [PMID: 26700620 PMCID: PMC4823069 DOI: 10.18632/oncotarget.6666] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 11/20/2015] [Indexed: 12/03/2022] Open
Abstract
To develop a routine and effectual procedure of detecting bladder cancer (BlCa), an optimized combination of epigenetic biomarkers that work synergistically with high sensitivity and specificity is necessary. In this study, methylation levels of seven biomarkers (EOMES, GDF15, NID2, PCDH17, POU4F2, TCF21, and ZNF154) in 148 individuals—which including 58 urothelial cell carcinoma (UCC) patients, 20 infected urinary calculi (IUC) patients, 20 kidney cancer (KC) patients,20 prostate cancer (PC) patients, and 30 healthy volunteers (HV)—were quantified by qMSP using the urine sediment DNA. Receiver operating characteristic (ROC) curves were generated for each biomarker. The combining predictors of possible combinations were calculated through logistic regression model. Subsequently, ROC curves of the three best performing combinations were constructed. Then, we validated the three best performing combinations and POU4F2 in another 72 UCC, 21 IUC, 26 KC and 22 PC, and 23 HV urine samples. The combination of POU4F2/PCDH17 has yielded the highest sensitivity and specificity of 90.00% and 93.96% in all the 312 individuals, showing the capability of detecting BlCa effectively among pathologically varied sample groups.
Collapse
|
55
|
Rodrigues MFSD, Esteves CM, Xavier FCA, Nunes FD. Methylation status of homeobox genes in common human cancers. Genomics 2016; 108:185-193. [PMID: 27826049 DOI: 10.1016/j.ygeno.2016.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/27/2016] [Accepted: 11/01/2016] [Indexed: 02/06/2023]
Abstract
Approximately 300 homeobox loci were identified in the euchromatic regions of the human genome, of which 235 are probable functional genes and 65 are likely pseudogenes. Many of these genes play important roles in embryonic development and cell differentiation. Dysregulation of homeobox gene expression is a frequent occurrence in cancer. Accumulating evidence suggests that as genetics disorders, epigenetic modifications alter the expression of oncogenes and tumor suppressor genes driving tumorigenesis and perhaps play a more central role in the evolution and progression of this disease. Here, we described the current knowledge regarding homeobox gene DNA methylation in human cancer and describe its relevance in the diagnosis, therapeutic response and prognosis of different types of human cancers.
Collapse
Affiliation(s)
| | | | | | - Fabio Daumas Nunes
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
56
|
Krabbe LM, Woldu SL, Shariat SF, Lotan Y. Improving diagnostic molecular tests to monitor urothelial carcinoma recurrence. Expert Rev Mol Diagn 2016; 16:1189-1199. [PMID: 27696932 DOI: 10.1080/14737159.2016.1244006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The high recurrence rates associated with non-muscle invasive bladder cancer require close surveillance with cystoscopy, an invasive and expensive procedure with risk of missing cancer. Finding an accurate urinary biomarker that can detect recurrent disease would represent a significant advancement in management. Areas covered: This review summarizes the commercially-available urinary biomarkers including cytology, UroVysion, BTA, NMP22, uCyt+, and Cxbladder assays. Additionally, we review recent investigational urinary biomarkers that hold promise in bladder cancer surveillance. Expert commentary: The quest for a reliable urinary biomarker for bladder cancer is decades-old and seems intuitive given the direct contact of urine with malignant urothelium. Beyond urine cytology, there are many commercially-available products approved for surveillance. However, none of the assays are routinely used due to lack of sensitivity and/or specificity. As such, emerging technologies, in particular the '-omic' technologies have resulted in a proliferation of promising reports on novel biomarkers in recent literature.
Collapse
Affiliation(s)
- Laura-Maria Krabbe
- a Department of Urology , UT Southwestern Medical Center , Dallas , TX , USA.,b Department of Urology , University of Muenster Medical Center , Muenster , Germany
| | - Solomon L Woldu
- a Department of Urology , UT Southwestern Medical Center , Dallas , TX , USA
| | - Shahrokh F Shariat
- a Department of Urology , UT Southwestern Medical Center , Dallas , TX , USA.,c Department of Urology, Comprehensive Cancer Center , Medical University of Vienna , Vienna , Austria.,d Department of Urology and Medical Oncology , Weill Medical College of Cornell University , New York , NY , USA
| | - Yair Lotan
- a Department of Urology , UT Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
57
|
Zhang Y, Xu YZ, Sun N, Liu JH, Chen FF, Guan XL, Li A, Wang F, Zhao QF, Wang HY, Song SS, Yu W, Zhao JN, Li XJ. Long noncoding RNA expression profile in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Res Ther 2016; 18:227. [PMID: 27716329 PMCID: PMC5053204 DOI: 10.1186/s13075-016-1129-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/20/2016] [Indexed: 01/07/2023] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have recently received wide attention as key molecules that mediate a variety of physiological and pathological processes by regulating gene expression; however, knowledge of lncRNAs in rheumatoid arthritis (RA) is limited. Thus, we investigated the lncRNA expression profile in fibroblast-like synoviocytes (FLSs) from patients with RA and explored the function of abundantly expressed lncRNAs. Methods LncRNA and mRNA microarrays were performed to identify differentially expressed lncRNAs in RA FLSs compared with normal FLSs. Quantitative polymerase chain reaction (qPCR) was used to validate the results, and correlation analysis was used to analyze the relationship between these aberrantly expressed lncRNAs and clinical characteristics. A receiver operating characteristic (ROC) curve was constructed to evaluate the diagnostic value of the lncRNAs identified. Results According to the gene expression profiles, 135 lncRNAs were differentially expressed between RA and normal FLSs. Furthermore, qPCR data showed that lncRNA ENST00000483588 was up-regulated and that three lncRNAs (ENST00000438399, uc004afb.1, and ENST00000452247) were down-regulated in RA FLSs. The expression level of ENST00000483588 was positively correlated with the level of C-reactive protein and the Simplified Disease Activity Index score. Moreover, the areas under the ROC curve were 0.85, 0.92, 0.97, and 0.92 for ENST00000483588, ENST00000438399, uc004afb.1, and ENST00000452247, respectively. Conclusions The results indicate that the dysregulation of ENST00000483588, ENST00000438399, uc004afb.1, and ENST00000452247 may be involved in the pathological processes of RA and that these lncRNAs may have potential value for the diagnosis and assessment of the disease activity of RA. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-1129-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Clinical Laboratory Science, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Yu-Zhong Xu
- Department of Clinical Laboratory Science, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Ning Sun
- Department of Clinical Laboratory Science, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Jian-Hong Liu
- Department of Clinical Laboratory Science, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Fang-Fang Chen
- Department of Clinical Laboratory Science, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Xiao-Long Guan
- Department of Clinical Laboratory Science, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Ang Li
- Department of Clinical Laboratory Science, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Fei Wang
- Department of Clinical Laboratory Science, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Qin-Fei Zhao
- Department of Clinical Laboratory Science, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Hai-Yong Wang
- Department of Clinical Laboratory Science, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Shu-Sheng Song
- Department of Clinical Laboratory Science, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Wei Yu
- Department of Clinical Laboratory Science, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Jian-Ning Zhao
- Department of Osteology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China
| | - Xiao-Jun Li
- Department of Clinical Laboratory Science, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China. .,State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
58
|
Riethdorf S, Pantel K. Liquid biopsies for surveillance and monitoring treatment response of bladder cancer. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:379. [PMID: 27826581 DOI: 10.21037/atm.2016.08.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sabine Riethdorf
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
59
|
An Epigenomic Approach to Improving Response to Neoadjuvant Cisplatin Chemotherapy in Bladder Cancer. Biomolecules 2016; 6:biom6030037. [PMID: 27598218 PMCID: PMC5039423 DOI: 10.3390/biom6030037] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/16/2022] Open
Abstract
Bladder cancer is among the five most common cancers diagnosed in the Western world and causes significant mortality and morbidity rates in affected patients. Therapeutic options to treat the disease in advanced muscle-invasive bladder cancer (MIBC) include cystectomy and chemotherapy. Neoadjuvant cisplatin-based combination chemotherapy is effective in MIBC; however, it has not been widely adopted by the community. One reason is that many patients do not respond to neoadjuvant chemotherapy, and no biomarker currently exists to identify these patients. It is also not clear whether a strategy to sensitize chemoresistant patients may exist. We sought to identify cisplatin-resistance patterns in preclinical models of bladder cancer, and test whether treatment with the epigenetic modifier decitabine is able to sensitize cisplatin-resistant bladder cancer cell lines. Using a screening approach in cisplatin-resistant bladder cancer cell lines, we identified dysregulated genes by RNA sequencing (RNAseq) and DNA methylation assays. DNA methylation analysis of tumors from 18 patients receiving cisplatin-based chemotherapy was used to confirm in vitro results. Cisplatin-resistant bladder cancer cells were treated with decitabine to investigate epigenetic sensitization of resistant cell lines. Our results show that HOXA9 promoter methylation status is associated with response to cisplatin-based chemotherapy in bladder cancer cell lines and in metastatic bladder cancer. Bladder cancer cells resistant to cisplatin chemotherapy can be sensitized to cisplatin by the DNA methylation inhibitor decitabine. Our data suggest that HOXA9 promoter methylation could serve as potential predictive biomarker and decitabine might sensitize resistant tumors in patients receiving cisplatin-based chemotherapy.
Collapse
|
60
|
Wang R, Kang Y, Löhr CV, Fischer KA, Bradford CS, Johnson G, Dashwood WM, Williams DE, Ho E, Dashwood RH. Reciprocal regulation of BMF and BIRC5 (Survivin) linked to Eomes overexpression in colorectal cancer. Cancer Lett 2016; 381:341-8. [PMID: 27539959 DOI: 10.1016/j.canlet.2016.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023]
Abstract
Eomesodermin (Eomes) is a T-box transcription factor that has been implicated in the etiology of colorectal cancer and other human malignancies. We screened a panel of human primary colon cancers and patient-matched controls (n = 30) and detected Eomes overexpression at the mRNA and protein level. Similar results were obtained in a panel of rat colon tumors and adjacent normal-looking colonic mucosa (n = 24). In human colon cancer cells, forced overexpression of Eomes enhanced cell viability and protected against staurosporine-induced apoptosis. On the other hand, knocking down Eomes resulted in reduced cell viability, G2/M cell cycle arrest, and apoptosis induction. The apoptotic mechanism centered on the reciprocal downregulation of anti-apoptotic BIRC5 (Survivin) and upregulation of proapoptotic Bcl-2 modifying factor (BMF). In patients with colorectal cancer, high EOMES expression (n = 95) was associated with poor overall survival compared with individuals exhibiting low EOMES levels (n = 80). We conclude from the current investigation, and prior literature, that Eomes has a divergent role in cancer development, with evidence for tumor suppressor and oncogenic functions, depending on stage and tissue context. Further studies are warranted on the apoptotic mechanisms linked to the reciprocal regulation of BMF and BIRC5 in human colorectal cancers characterized by Eomes overexpression.
Collapse
Affiliation(s)
- Rong Wang
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Yuki Kang
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Christiane V Löhr
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Kay A Fischer
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - C Samuel Bradford
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Gavin Johnson
- Center for Epigenetics & Disease Prevention, Texas A&M University Health Science Center, Houston, TX, USA
| | - Wan Mohaiza Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M University Health Science Center, Houston, TX, USA
| | - David E Williams
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA; Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA; Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA
| | - Roderick H Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M University Health Science Center, Houston, TX, USA; Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA; Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX, USA; Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
61
|
D’Costa JJ, Goldsmith JC, Wilson JS, Bryan RT, Ward DG. A Systematic Review of the Diagnostic and Prognostic Value of Urinary Protein Biomarkers in Urothelial Bladder Cancer. Bladder Cancer 2016; 2:301-317. [PMID: 27500198 PMCID: PMC4969711 DOI: 10.3233/blc-160054] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
For over 80 years, cystoscopy has remained the gold-standard for detecting tumours of the urinary bladder. Since bladder tumours have a tendency to recur and progress, many patients are subjected to repeated cystoscopies during long-term surveillance, with the procedure being both unpleasant for the patient and expensive for healthcare providers. The identification and validation of bladder tumour specific molecular markers in urine could enable tumour detection and reduce reliance on cystoscopy, and numerous classes of biomarkers have been studied. Proteins represent the most intensively studied class of biomolecule in this setting. As an aid to researchers searching for better urinary biomarkers, we report a comprehensive systematic review of the literature and a searchable database of proteins that have been investigated to date. Our objective was to classify these proteins as: 1) those with robustly characterised sensitivity and specificity for bladder cancer detection; 2) those that show potential but further investigation is required; 3) those unlikely to warrant further investigation; and 4) those investigated as prognostic markers. This work should help to prioritise certain biomarkers for rigorous validation, whilst preventing wasted effort on proteins that have shown no association whatsoever with the disease, or only modest biomarker performance despite large-scale efforts at validation.
Collapse
Affiliation(s)
- Jamie J. D’Costa
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - James C. Goldsmith
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jayne S. Wilson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Cancer Research UK Clinical Trials Unit, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Richard T. Bryan
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Douglas G. Ward
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
62
|
Kim YJ, Kim WJ. Can we use methylation markers as diagnostic and prognostic indicators for bladder cancer? Investig Clin Urol 2016; 57 Suppl 1:S77-88. [PMID: 27326410 PMCID: PMC4910760 DOI: 10.4111/icu.2016.57.s1.s77] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/17/2016] [Indexed: 12/21/2022] Open
Abstract
Urothelial carcinomas of the urinary bladder have diverse biological and functional characteristics, and numerous factors are likely to be involved in recurrence, progression, and patient survival. While several molecular markers used to evaluate the development and prognosis of bladder cancer have been studied, they are of limited value; therefore, new molecular parameters useful for predicting the prognosis of bladder cancer patients (particularly patients at high risk of progression and recurrence) are required. Recent progress in the understanding of epigenetic modification and gene silencing has provided new opportunities for the detection, treatment, and prevention of cancer. Methylation is an important molecular mechanism in bladder cancer and may have utility as a prognostic and/or diagnostic marker. This review discusses the epigenetic issues involved in the detection and prediction of bladder cancer.
Collapse
Affiliation(s)
- Yong-June Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
| |
Collapse
|
63
|
Ward DG, Baxter L, Gordon NS, Ott S, Savage RS, Beggs AD, James JD, Lickiss J, Green S, Wallis Y, Wei W, James ND, Zeegers MP, Cheng KK, Mathews GM, Patel P, Griffiths M, Bryan RT. Multiplex PCR and Next Generation Sequencing for the Non-Invasive Detection of Bladder Cancer. PLoS One 2016; 11:e0149756. [PMID: 26901314 PMCID: PMC4762704 DOI: 10.1371/journal.pone.0149756] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/04/2016] [Indexed: 11/19/2022] Open
Abstract
Background Highly sensitive and specific urine-based tests to detect either primary or recurrent bladder cancer have proved elusive to date. Our ever increasing knowledge of the genomic aberrations in bladder cancer should enable the development of such tests based on urinary DNA. Methods DNA was extracted from urine cell pellets and PCR used to amplify the regions of the TERT promoter and coding regions of FGFR3, PIK3CA, TP53, HRAS, KDM6A and RXRA which are frequently mutated in bladder cancer. The PCR products were barcoded, pooled and paired-end 2 x 250 bp sequencing performed on an Illumina MiSeq. Urinary DNA was analysed from 20 non-cancer controls, 120 primary bladder cancer patients (41 pTa, 40 pT1, 39 pT2+) and 91 bladder cancer patients post-TURBT (89 cancer-free). Results Despite the small quantities of DNA extracted from some urine cell pellets, 96% of the samples yielded mean read depths >500. Analysing only previously reported point mutations, TERT mutations were found in 55% of patients with bladder cancer (independent of stage), FGFR3 mutations in 30% of patients with bladder cancer, PIK3CA in 14% and TP53 mutations in 12% of patients with bladder cancer. Overall, these previously reported bladder cancer mutations were detected in 86 out of 122 bladder cancer patients (70% sensitivity) and in only 3 out of 109 patients with no detectable bladder cancer (97% specificity). Conclusion This simple, cost-effective approach could be used for the non-invasive surveillance of patients with non-muscle-invasive bladder cancers harbouring these mutations. The method has a low DNA input requirement and can detect low levels of mutant DNA in a large excess of normal DNA. These genes represent a minimal biomarker panel to which extra markers could be added to develop a highly sensitive diagnostic test for bladder cancer.
Collapse
Affiliation(s)
- Douglas G. Ward
- Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Laura Baxter
- Warwick Systems Biology Centre, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Naheema S. Gordon
- Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Sascha Ott
- Warwick Systems Biology Centre, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Richard S. Savage
- Warwick Systems Biology Centre, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Andrew D. Beggs
- Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Jonathan D. James
- Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Jennifer Lickiss
- West Midlands Regional Genetics Laboratory, Birmingham Women’s Hospital NHS Foundation Trust, Birmingham, B15 2TG, United Kingdom
| | - Shaun Green
- West Midlands Regional Genetics Laboratory, Birmingham Women’s Hospital NHS Foundation Trust, Birmingham, B15 2TG, United Kingdom
| | - Yvonne Wallis
- West Midlands Regional Genetics Laboratory, Birmingham Women’s Hospital NHS Foundation Trust, Birmingham, B15 2TG, United Kingdom
| | - Wenbin Wei
- Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Nicholas D. James
- Clinical Trials Unit, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Maurice P. Zeegers
- Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- Department of Complex Genetics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - KK Cheng
- School of Health and Population Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Glenn M. Mathews
- Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Prashant Patel
- Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Michael Griffiths
- Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- West Midlands Regional Genetics Laboratory, Birmingham Women’s Hospital NHS Foundation Trust, Birmingham, B15 2TG, United Kingdom
| | - Richard T. Bryan
- Institute of Cancer & Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- * E-mail:
| |
Collapse
|
64
|
YAMADA NOBUHISA, YASUI KOHICHIROH, DOHI OSAMU, GEN YASUYUKI, TOMIE AKIRA, KITAICHI TOMOKO, IWAI NAOTO, MITSUYOSHI HIRONORI, SUMIDA YOSHIO, MORIGUCHI MICHIHISA, YAMAGUCHI KANJI, NISHIKAWA TAICHIRO, UMEMURA ATSUSHI, NAITO YUJI, TANAKA SHINJI, ARII SHIGEKI, ITOH YOSHITO. Genome-wide DNA methylation analysis in hepatocellular carcinoma. Oncol Rep 2016; 35:2228-36. [DOI: 10.3892/or.2016.4619] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/03/2015] [Indexed: 11/05/2022] Open
|
65
|
Current Status of Urinary Biomarkers for Detection and Surveillance of Bladder Cancer. Urol Clin North Am 2016; 43:47-62. [DOI: 10.1016/j.ucl.2015.08.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
66
|
Birkenkamp-Demtröder K, Nordentoft I, Christensen E, Høyer S, Reinert T, Vang S, Borre M, Agerbæk M, Jensen JB, Ørntoft TF, Dyrskjøt L. Genomic Alterations in Liquid Biopsies from Patients with Bladder Cancer. Eur Urol 2016; 70:75-82. [PMID: 26803478 DOI: 10.1016/j.eururo.2016.01.007] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND At least half of the patients diagnosed with non-muscle-invasive bladder cancer (NMIBC) experience recurrence and approximately 15% will develop progression to muscle invasive or metastatic disease. Biomarkers for disease surveillance are urgently needed. OBJECTIVE Development of assays for surveillance using genomic variants in cell-free tumour DNA from plasma and urine. DESIGN, SETTING, AND PARTICIPANTS Retrospective pilot study of 377 samples from 12 patients with recurrent or progressive/metastatic disease. Three next-generation sequencing methods were applied and somatic variants in DNA from tumour, plasma, and urine were subsequently monitored by personalised assays using droplet digital polymerase chain reaction (ddPCR). Samples were collected from 1994 to 2015, with up to 20 yr of follow-up. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Progression to muscle-invasive or metastatic bladder cancer; t test for ddPCR data. RESULTS AND LIMITATIONS We developed from one to six personalised assays per patient. Patients with progressive disease showed significantly higher levels of tumour DNA in plasma and urine before disease progression, compared with patients with recurrent disease (p=0.032 and 1.3×10(-6), respectively). Interestingly, tumour DNA was detected in plasma and urine in patients with noninvasive disease, being no longer detectable in disease-free patients. A significant level of heterogeneity was observed for each patient; this could be due to tumour heterogeneity or assay performance. CONCLUSIONS Cell-free tumour DNA can be detected in plasma and urine, even in patients with noninvasive disease, with high levels of tumour DNA detectable before progression, especially in urine samples. Personalised assays of genomic variants may be useful for disease monitoring. PATIENT SUMMARY Tumour DNA can be detected in blood and urine in early and advanced stages of bladder cancer. Measurement of these highly tumour-specific biomarkers may represent a novel diagnostic tool to indicate the presence of residual disease or to discover aggressive forms of bladder cancer early in the disease course.
Collapse
Affiliation(s)
| | - Iver Nordentoft
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Emil Christensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Søren Høyer
- Department of Pathology, Aarhus University Hospital, Aarhus C, Denmark
| | - Thomas Reinert
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Søren Vang
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Michael Borre
- Department of Urology, Aarhus University Hospital, Aarhus N, Denmark
| | - Mads Agerbæk
- Department of Oncology, Aarhus University Hospital, Aarhus C, Denmark
| | | | - Torben F Ørntoft
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark.
| |
Collapse
|
67
|
Pixberg CF, Schulz WA, Stoecklein NH, Neves RPL. Characterization of DNA Methylation in Circulating Tumor Cells. Genes (Basel) 2015; 6:1053-75. [PMID: 26506390 PMCID: PMC4690028 DOI: 10.3390/genes6041053] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/09/2015] [Accepted: 10/14/2015] [Indexed: 02/07/2023] Open
Abstract
Epigenetics contributes to molecular mechanisms leading to tumor cell transformation and systemic progression of cancer. However, the dynamics of epigenetic remodeling during metastasis remains unexplored. In this context, circulating tumor cells (CTCs) might enable a direct insight into epigenetic mechanisms relevant for metastasis by providing direct access to systemic cancer. CTCs can be used as prognostic markers in cancer patients and are regarded as potential metastatic precursor cells. However, despite substantial technical progress, the detection and molecular characterization of CTCs remain challenging, in particular the analysis of DNA methylation. As recent studies have started to address the epigenetic state of CTCs, we discuss here the potential of such investigations to elucidate mechanisms of metastasis and to develop tumor biomarkers.
Collapse
Affiliation(s)
- Constantin F Pixberg
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Wolfgang A Schulz
- Department of Urology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Nikolas H Stoecklein
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Rui P L Neves
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
68
|
Abdulmajed MI, Sancak EB, Reşorlu B, Al-Chalaby GZ. What are the currently available and in development molecular markers for bladder cancer? Will they prove to be useful in the future? Turk J Urol 2015; 40:228-32. [PMID: 26328183 DOI: 10.5152/tud.2014.60973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 05/05/2014] [Indexed: 11/22/2022]
Abstract
Urothelial carcinoma is the 9(th) most common cancer worldwide. Most urothelial tumors are non-muscle invasive on presentation. However, two-thirds of non-invasive bladder cancers will eventually recur with a 25% risk of progression to muscle-invasive bladder cancer. Tumor stage, histological grade and pathological invasion of blood vessels and lymphatic tissue are the main indicators for urothelial cancer prognosis. The gold standard for diagnosing bladder cancer is conventional white-light cystoscopy and biopsy. Urine cytology is a highly specific, sensitive test for high-grade tumors or carcinoma in situ (CIS). Urinary NMP22 has an overall sensitivity and specificity for detecting bladder cancer of 49% and 87%, respectively. However, there are false-positive results in the presence of urinary tract infection or hematuria. The detection of specific gene mutations related to urothelial cancers has been studied and employed to reproduce markers helpful for diagnosis. According to current studies, molecular markers can be used to predict tumor recurrence. From a prognostic point of view, new molecular markers have yet to be established as reliable indicators of tumor aggressiveness. We aimed to review the molecular markers with possible prognostic significance that have been discussed in the literature. This review examined the literature for various molecular markers under development for bladder cancer in an attempt to optimize patient care and reduce the costs of treating these patients.
Collapse
Affiliation(s)
- Mohamed Ismat Abdulmajed
- Department of Urology, Wrexham Maelor Hospital, Betsi Cadwaladr University Health Board, Wrexham, Wales, United Kingdom
| | - Eyüp Burak Sancak
- Department of Urology, Çanakkale Onsekiz Mart University Faculty of Medicine, Çanakkale, Turkey
| | - Berkan Reşorlu
- Department of Urology, Çanakkale Onsekiz Mart University Faculty of Medicine, Çanakkale, Turkey
| | | |
Collapse
|
69
|
Kitchen MO, Bryan RT, Haworth KE, Emes RD, Luscombe C, Gommersall L, Cheng KK, Zeegers MP, James ND, Devall AJ, Fryer AA, Farrell WE. Methylation of HOXA9 and ISL1 Predicts Patient Outcome in High-Grade Non-Invasive Bladder Cancer. PLoS One 2015; 10:e0137003. [PMID: 26332997 PMCID: PMC4558003 DOI: 10.1371/journal.pone.0137003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/11/2015] [Indexed: 12/28/2022] Open
Abstract
Introduction Inappropriate DNA methylation is frequently associated with human tumour development, and in specific cases, is associated with clinical outcomes. Previous reports of DNA methylation in low/intermediate grade non-muscle invasive bladder cancer (NMIBC) have suggested that specific patterns of DNA methylation may have a role as diagnostic or prognostic biomarkers. In view of the aggressive and clinically unpredictable nature of high-grade (HG) NMIBC, and the current shortage of the preferred treatment option (Bacillus:Calmette-Guerin), novel methylation analyses may similarly reveal biomarkers of disease outcome that could risk-stratify patients and guide clinical management at initial diagnosis. Methods Promoter-associated CpG island methylation was determined in primary tumour tissue of 36 initial presentation high-grade NMIBCs, 12 low/intermediate-grade NMIBCs and 3 normal bladder controls. The genes HOXA9, ISL1, NKX6-2, SPAG6, ZIC1 and ZNF154 were selected for investigation on the basis of previous reports and/or prognostic utility in low/intermediate-grade NMIBC. Methylation was determined by Pyrosequencing of sodium-bisulphite converted DNA, and then correlated with gene expression using RT-qPCR. Methylation was additionally correlated with tumour behaviour, including tumour recurrence and progression to muscle invasive bladder cancer or metastases. Results The ISL1 genes’ promoter-associated island was more frequently methylated in recurrent and progressive high-grade tumours than their non-recurrent counterparts (60.0% vs. 18.2%, p = 0.008). ISL1 and HOXA9 showed significantly higher mean methylation in recurrent and progressive tumours compared to non-recurrent tumours (43.3% vs. 20.9%, p = 0.016 and 34.5% vs 17.6%, p = 0.017, respectively). Concurrent ISL1/HOXA9 methylation in HG-NMIBC reliably predicted tumour recurrence and progression within one year (Positive Predictive Value 91.7%), and was associated with disease-specific mortality (DSM). Conclusions In this study we report methylation differences and similarities between clinical sub-types of high-grade NMIBC. We report the potential ability of methylation biomarkers, at initial diagnosis, to predict tumour recurrence and progression within one year of diagnosis. We found that specific biomarkers reliably predict disease outcome and therefore may help guide patient treatment despite the unpredictable clinical course and heterogeneity of high-grade NMIBC. Further investigation is required, including validation in a larger patient cohort, to confirm the clinical utility of methylation biomarkers in high-grade NMIBC.
Collapse
Affiliation(s)
- Mark O Kitchen
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, United Kingdom; Urology Department, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, United Kingdom
| | - Richard T Bryan
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Kim E Haworth
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, United Kingdom
| | - Richard D Emes
- Advanced Data Analysis Centre, University of Nottingham, Nottingham, United Kingdom
| | - Christopher Luscombe
- Urology Department, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, United Kingdom
| | - Lyndon Gommersall
- Urology Department, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, United Kingdom
| | - K K Cheng
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maurice P Zeegers
- Department of Complex Genetics, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Nicholas D James
- Cancer Research Unit, University of Warwick, Coventry, United Kingdom
| | - Adam J Devall
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Anthony A Fryer
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, United Kingdom
| | - William E Farrell
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, United Kingdom
| |
Collapse
|
70
|
van Kessel KEM, Van Neste L, Lurkin I, Zwarthoff EC, Van Criekinge W. Evaluation of an Epigenetic Profile for the Detection of Bladder Cancer in Patients with Hematuria. J Urol 2015; 195:601-7. [PMID: 26327355 DOI: 10.1016/j.juro.2015.08.085] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE Many patients enter the care cycle with gross or microscopic hematuria and undergo cystoscopy to rule out bladder cancer. Sensitivity of this invasive examination is limited, leaving many patients at risk for undetected cancer. To improve current clinical practice more sensitive and noninvasive screening methods should be applied. MATERIALS AND METHODS A total of 154 urine samples were collected from patients with hematuria, including 80 without and 74 with bladder cancer. DNA from cells in the urine was epigenetically profiled using 2 independent assays. Methylation specific polymerase chain reaction was performed on TWIST1. SNaPshot™ methylation analysis was done for different loci of OTX1 and ONECUT2. Additionally all samples were analyzed for mutation status of TERT (telomerase reverse transcriptase), PIK3CA, FGFR3 (fibroblast growth factor receptor 3), HRAS, KRAS and NRAS. RESULTS The combination of TWIST1, ONECUT2 (2 loci) and OTX1 resulted in the best overall performing panel. Logistic regression analysis on these methylation markers, mutation status of FGFR3, TERT and HRAS, and patient age resulted in an accurate model with 97% sensitivity, 83% specificity and an AUC of 0.93 (95% CI 0.88-0.98). Internal validation led to an optimism corrected AUC of 0.92. With an estimated bladder cancer prevalence of 5% to 10% in a hematuria cohort the assay resulted in a 99.6% to 99.9% negative predictive value. CONCLUSIONS Epigenetic profiling using TWIST1, ONECUT2 and OTX1 results in a high sensitivity and specificity. Accurate risk prediction might result in less extensive and invasive examination of patients at low risk, thereby reducing unnecessary patient burden and health care costs.
Collapse
Affiliation(s)
- Kim E M van Kessel
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Leander Van Neste
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands; MDxHealth, Inc., Irvine, California
| | - Irene Lurkin
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ellen C Zwarthoff
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wim Van Criekinge
- MDxHealth, Inc., Irvine, California; Laboratory of Bioinformatics and Computational Genomics, Ghent University, Ghent, Belgium.
| |
Collapse
|
71
|
Noehammer C, Pulverer W, Hassler MR, Hofner M, Wielscher M, Vierlinger K, Liloglou T, McCarthy D, Jensen TJ, Nygren A, Gohlke H, Trooskens G, Braspenning M, Van Criekinge W, Egger G, Weinhaeusel A. Strategies for validation and testing of DNA methylation biomarkers. Epigenomics 2015; 6:603-22. [PMID: 25531255 DOI: 10.2217/epi.14.43] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
DNA methylation is a stable covalent epigenetic modification of primarily CpG dinucleotides that has recently gained considerable attention for its use as a biomarker in different clinical settings, including disease diagnosis, prognosis and therapeutic response prediction. Although the advent of genome-wide DNA methylation profiling in primary disease tissue has provided a manifold resource for biomarker development, only a tiny fraction of DNA methylation-based assays have reached clinical testing. Here, we provide a critical overview of different analytical methods that are suitable for biomarker validation, including general study design considerations, which might help to streamline epigenetic marker development. Furthermore, we highlight some of the recent marker validation studies and established markers that are currently commercially available for assisting in clinical management of different cancers.
Collapse
Affiliation(s)
- Christa Noehammer
- Health & Environment Department, Molecular Diagnostics, AIT Austrian Institute of Technology, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Pineda S, Gomez-Rubio P, Picornell A, Bessonov K, Márquez M, Kogevinas M, Real FX, Van Steen K, Malats N. Framework for the Integration of Genomics, Epigenomics and Transcriptomics in Complex Diseases. Hum Hered 2015. [DOI: 10.1159/000381184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
73
|
Andersson E, Dahmcke CM, Steven K, Larsen LK, Guldberg P. Filtration Device for On-Site Collection, Storage and Shipment of Cells from Urine and Its Application to DNA-Based Detection of Bladder Cancer. PLoS One 2015; 10:e0131889. [PMID: 26151138 PMCID: PMC4495058 DOI: 10.1371/journal.pone.0131889] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 06/08/2015] [Indexed: 02/04/2023] Open
Abstract
Molecular analysis of cells from urine provides a convenient approach to non-invasive detection of bladder cancer. The practical use of urinary cell-based tests is often hampered by difficulties in handling and analyzing large sample volumes, the need for rapid sample processing to avoid degradation of cellular content, and low sensitivity due to a high background of normal cells. We present a filtration device, designed for home or point-of-care use, which enables collection, storage and shipment of urinary cells. A special feature of this device is a removable cartridge housing a membrane filter, which after filtration of urine can be transferred to a storage unit containing an appropriate preserving solution. In spiking experiments, the use of this device provided efficient recovery of bladder cancer cells with elimination of >99% of excess smaller-sized cells. The performance of the device was further evaluated by DNA-based analysis of urinary cells collected from 57 patients subjected to transurethral resection following flexible cystoscopy indicating the presence of a tumor. All samples were tested for FGFR3 mutations and seven DNA methylation markers (BCL2, CCNA1, EOMES, HOXA9, POU4F2, SALL3 and VIM). In the group of patients where a transitional cell tumor was confirmed at histopathological evaluation, urine DNA was positive for one or more markers in 29 out of 31 cases (94%), including 19 with FGFR3 mutation (61%). In the group of patients with benign histopathology, urine DNA was positive for methylation markers in 13 out of 26 cases (50%). Only one patient in this group was positive for a FGFR3 mutation. This patient had a stage Ta tumor resected 6 months later. The ability to easily collect, store and ship diagnostic cells from urine using the presented device may facilitate non-invasive testing for bladder cancer.
Collapse
Affiliation(s)
- Elin Andersson
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Christina M. Dahmcke
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Pathology, Copenhagen University Hospital, Herlev, Denmark
| | - Kenneth Steven
- Department of Urology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Per Guldberg
- Danish Cancer Society Research Center, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
74
|
Effects of omics data combinations on in silico tumor-normal tissue classification. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
75
|
Hayashi M, Wu G, Roh JL, Chang X, Li X, Ahn J, Goldsmith M, Khan Z, Bishop J, Zhang Z, Zhou XC, Richmon J, Agrawal N, Koch WM. Correlation of gene methylation in surgical margin imprints with locoregional recurrence in head and neck squamous cell carcinoma. Cancer 2015; 121:1957-65. [PMID: 25773145 DOI: 10.1002/cncr.29303] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/26/2014] [Accepted: 10/17/2014] [Indexed: 01/05/2023]
Abstract
BACKGROUND Securing negative surgical margins is a critical goal for head and neck surgery. Local recurrence develops even in some patients who have histologically negative surgical margins. Minimal residual tumor cells may lead to locoregional recurrence despite clear histologic margins reported at the time of resection of head and neck squamous cell carcinoma (HNSCC). To identify subclinical residual disease, the authors analyzed deep margin imprint samples collected on 1-layer nitrocellulose sheets. METHODS Bisulfite-treated DNA samples from 73 eligible patients were amplified by quantitative methylation-specific polymerase chain reaction (QMSP) targeting 6 genes (deleted in colorectal cancer [DCC], endothelin receptor type B [EDNRB], homeobox protein A9 [HOXA9], kinesin family member 1A [KIF1A], nidogen-2 [NID2], and N-methyl D-aspartate receptor subtype 2B [NR2B]). QMSP values were dichotomized as positive or negative. Associations between the QMSP status of deep margin samples and clinical outcomes were evaluated. RESULTS Two-gene methylation combinations among the genes DCC, EDNRB, and HOXA9 were associated with decreased locoregional recurrence-free survival, recurrence-free survival, and overall survival. The methylated gene combination of EDNRB and HOXA9 in margin imprints was the most powerful predictor of poor locoregional recurrence-free survival (hazard ratio [HR], 3.31; 95% confidence interval [CI], 1.30-8.46; P = .012) independent of standard histologic factors. In addition, methylation of both EDNRB and HOXA9 indicated a trend toward reduced recurrence-free survival (HR, 2.74; 95% CI, 0.90-8.33; P = .075) and reduced OS (HR, 5.78; 95% CI, 0.75-44.7; P = .093) in multivariable analysis. CONCLUSIONS A panel of gene methylation targets in deep surgical margin imprints provides a potential predictive marker of postoperative locoregional recurrence. Intraoperative use of molecular margin imprint analysis may assist surgeons in obtaining rigorously negative surgical margins and improve the outcome of head and neck surgery.
Collapse
Affiliation(s)
- Masamichi Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gaosong Wu
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jong-Lyel Roh
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xiaofei Chang
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xiufeng Li
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Julie Ahn
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marla Goldsmith
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zubair Khan
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Justin Bishop
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zhe Zhang
- Department of Oncology, Biostatistics, and Bioinformatics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xian Chong Zhou
- Department of Oncology, Biostatistics, and Bioinformatics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeremy Richmon
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nishant Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wayne M Koch
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
76
|
Long-range epigenetic regulation is conferred by genetic variation located at thousands of independent loci. Nat Commun 2015; 6:6326. [PMID: 25716334 PMCID: PMC4351585 DOI: 10.1038/ncomms7326] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/19/2015] [Indexed: 01/06/2023] Open
Abstract
The interplay between genetic and epigenetic variation is only partially understood. One form of epigenetic variation is methylation at CpG sites, which can be measured as methylation quantitative trait loci (meQTL). Here we report that in a panel of lymphocytes from 1,748 individuals, methylation levels at 1,919 CpG sites are correlated with at least one distal (trans) single-nucleotide polymorphism (SNP) (P<3.2 × 10(-13); FDR<5%). These trans-meQTLs include 1,657 SNP-CpG pairs from different chromosomes and 262 pairs from the same chromosome that are >1 Mb apart. Over 90% of these pairs are replicated (FDR<5%) in at least one of two independent data sets. Genomic loci harbouring trans-meQTLs are significantly enriched (P<0.001) for long non-coding transcripts (2.2-fold), known epigenetic regulators (2.3-fold), piwi-interacting RNA clusters (3.6-fold) and curated transcription factors (4.1-fold), including zinc-finger proteins (8.75-fold). Long-range epigenetic networks uncovered by this approach may be relevant to normal and disease states.
Collapse
|
77
|
Methylome sequencing in triple-negative breast cancer reveals distinct methylation clusters with prognostic value. Nat Commun 2015; 6:5899. [PMID: 25641231 DOI: 10.1038/ncomms6899] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/17/2014] [Indexed: 01/09/2023] Open
Abstract
Epigenetic alterations in the cancer methylome are common in breast cancer and provide novel options for tumour stratification. Here, we perform whole-genome methylation capture sequencing on small amounts of DNA isolated from formalin-fixed, paraffin-embedded tissue from triple-negative breast cancer (TNBC) and matched normal samples. We identify differentially methylated regions (DMRs) enriched with promoters associated with transcription factor binding sites and DNA hypersensitive sites. Importantly, we stratify TNBCs into three distinct methylation clusters associated with better or worse prognosis and identify 17 DMRs that show a strong association with overall survival, including DMRs located in the Wilms tumour 1 (WT1) gene, bi-directional-promoter and antisense WT1-AS. Our data reveal that coordinated hypermethylation can occur in oestrogen receptor-negative disease, and that characterizing the epigenetic framework provides a potential signature to stratify TNBCs. Together, our findings demonstrate the feasibility of profiling the cancer methylome with limited archival tissue to identify regulatory regions associated with cancer.
Collapse
|
78
|
Su SF, de Castro Abreu AL, Chihara Y, Tsai Y, Andreu-Vieyra C, Daneshmand S, Skinner EC, Jones PA, Siegmund KD, Liang G. A panel of three markers hyper- and hypomethylated in urine sediments accurately predicts bladder cancer recurrence. Clin Cancer Res 2014; 20:1978-89. [PMID: 24691641 DOI: 10.1158/1078-0432.ccr-13-2637] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The high risk of recurrence after transurethral resection of bladder tumor of nonmuscle invasive disease requires lifelong treatment and surveillance. Changes in DNA methylation are chemically stable, occur early during tumorigenesis, and can be quantified in bladder tumors and in cells shed into the urine. Some urine markers have been used to help detect bladder tumors; however, their use in longitudinal tumor recurrence surveillance has yet to be established. EXPERIMENTAL DESIGN We analyzed the DNA methylation levels of six markers in 368 urine sediment samples serially collected from 90 patients with noninvasive urothelial carcinoma (Tis, Ta, T1; grade low-high). The optimum marker combination was identified using logistic regression with 5-fold cross-validation, and validated in separate samples. RESULTS A panel of three markers discriminated between patients with and without recurrence with the area under the curve of 0.90 [95% confidence interval (CI), 0.86-0.92] and 0.95 (95% CI, 0.90-1.00), sensitivity and specificity of 86%/89% (95% CI, 74%-99% and 81%-97%) and 80%/97% (95% CI, 60%-96% and 91%-100%) in the testing and validation sets, respectively. The three-marker DNA methylation test reliably predicted tumor recurrence in 80% of patients superior to cytology (35%) and cystoscopy (15%) while accurately forecasting no recurrence in 74% of patients that scored negative in the test. CONCLUSIONS Given their superior sensitivity and specificity in urine sediments, a combination of hyper- and hypomethylated markers may help avoid unnecessary invasive exams and reveal the importance of DNA methylation in bladder tumorigenesis.
Collapse
Affiliation(s)
- Sheng-Fang Su
- Authors' Affiliations: Departments of Urology and Preventive Medicine; Program in Genetic, Molecular, and Cellular Biology, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles; and Department of Urology, School of Medicine, University of Stanford, Stanford, California
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Zhang G, Gomes-Giacoia E, Dai Y, Lawton A, Miyake M, Furuya H, Goodison S, Rosser CJ. Validation and clinicopathologic associations of a urine-based bladder cancer biomarker signature. Diagn Pathol 2014; 9:200. [PMID: 25387487 PMCID: PMC4245773 DOI: 10.1186/s13000-014-0200-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/08/2014] [Indexed: 01/21/2023] Open
Abstract
Background To validate the expression of a urine-based bladder cancer associated diagnostic signature comprised of 10 targets; ANG, CA9, MMP9, MMP10, SERPINA1, APOE, SDC1, VEGFA, SERPINE1 and IL8 in bladder tumor tissues. Methods Immunohistochemical analyses were performed on tumor specimens from 213 bladder cancer patients (transitional cell carcinoma only) and 74 controls. Staining patterns were digitally captured and quantitated (Aperio, Vista, CA), and expression was correlated with tumor stage, tumor grade and outcome measures. Results We revealed a positive association of 9 of the 10 proteins (excluding VEGF) in bladder cancer. Relative to control cases, a reduction in SDC1 and overexpression of MMP9, MMP10, SERPINE1, IL8, APOE, SERPINA1, ANG were associated with high stage bladder cancer. Reduced VEGF and increased SERPINA1 were associated with high-grade bladder cancer. Disease-specific survival was significantly reduced in tumors with high expression of SERPINE1 and/or IL8. Conclusions These findings confirm that the proteins in a urine-based diagnostic signature are aberrantly expressed in bladder tumor tissues, and support the potential additional utility of selected biomarkers for the clinicopathological evaluation of excised tissue or biopsy material. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_200
Collapse
Affiliation(s)
- Ge Zhang
- MD Anderson Cancer Center Orlando, Cancer Research Institute, Orlando, Florida, USA.
| | - Evan Gomes-Giacoia
- MD Anderson Cancer Center Orlando, Cancer Research Institute, Orlando, Florida, USA.
| | - Yunfeng Dai
- Department of Biostatistics, The University of Florida, Gainesville, Florida, USA.
| | | | - Makito Miyake
- MD Anderson Cancer Center Orlando, Cancer Research Institute, Orlando, Florida, USA.
| | - Hideki Furuya
- University of Hawaii Cancer Center, 701 Ilalo St, Rm 327, Honolulu, HI, 96813, USA.
| | - Steve Goodison
- MD Anderson Cancer Center Orlando, Cancer Research Institute, Orlando, Florida, USA. .,Nonagen Bioscience Corp, Orlando, Florida, USA. .,Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida, USA.
| | - Charles J Rosser
- MD Anderson Cancer Center Orlando, Cancer Research Institute, Orlando, Florida, USA. .,Nonagen Bioscience Corp, Orlando, Florida, USA. .,University of Hawaii Cancer Center, 701 Ilalo St, Rm 327, Honolulu, HI, 96813, USA.
| |
Collapse
|
80
|
Expression profile of epithelial-mesenchymal transition markers in non-muscle-invasive urothelial carcinoma of the bladder: correlation with intravesical recurrence following transurethral resection. Urol Oncol 2014; 33:110.e11-8. [PMID: 25262382 DOI: 10.1016/j.urolonc.2014.08.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/25/2014] [Accepted: 08/25/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To evaluate the expression of molecular markers involved in epithelial-mesenchymal transition (EMT), a key process mediating the progression of malignant tumors, in non-muscle-invasive urothelial carcinoma of the bladder (NMIUCB) to clarify the significance of these markers as predictors of intravesical recurrence in patients treated with transurethral resection (TUR). MATERIALS AND METHODS Expression levels of 13 EMT markers, including E-cadherin, N-cadherin, β-catenin, γ-catenin, fibronectin, matrix metalloproteinase (MMP)-2, MMP-9, Slug, Snail, TWIST, vimentin, ZEB1, and ZEB2, in TUR specimens obtained from 161 consecutive patients with NMIUCB were measured by immunohistochemical staining. RESULTS Of these 13 markers, significant differences in the incidence of intravesical recurrence were noted according to expression levels of E-cadherin, N-cadherin, MMP-2, MMP-9, and TWIST. Univariate analysis also identified expression levels of E-cadherin, N-cadherin, MMP-2, MMP-9 and TWIST, in addition to the tumor size, pathological T category, and concomitant carcinoma in situ, as significant predictors of intravesical recurrence-free survival. Of these significant factors, expression levels of E-cadherin, MMP-9, and TWIST; tumor size; and concomitant carcinoma in situ appeared to be independently associated with intravesical recurrence-free survival on multivariate analysis. Furthermore, there were significant differences in recurrence-free survival according to positive numbers of these 5 independent risk factors (i.e., positive for 0 or 1 factor vs. positive for 2 factors vs. positive for 3 or more factors). CONCLUSIONS Consideration of expression levels of EMT-associated markers in TUR specimens, in addition to conventional prognostic parameters, would contribute to the accurate prediction of intravesical recurrence following TUR for NMIUCB.
Collapse
|
81
|
Ralla B, Stephan C, Meller S, Dietrich D, Kristiansen G, Jung K. Nucleic acid-based biomarkers in body fluids of patients with urologic malignancies. Crit Rev Clin Lab Sci 2014; 51:200-31. [PMID: 24878357 DOI: 10.3109/10408363.2014.914888] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review focuses on the promising potential of nucleic acids in body fluids such as blood and urine as diagnostic, prognostic, predictive and monitoring biomarkers in urologic malignancies. The tremendous progress in the basic knowledge of molecular processes in cancer, as shown in the companion review on nucleic acid-based biomarkers in tissue of urologic tumors, provides a strong rationale for using these molecular changes as non-invasive markers in body fluids. The changes observed in body fluids are an integrative result, reflecting both tissue changes and processes occurring in the body fluids. The availability of sensitive methods has only recently made possible detailed studies of DNA- and RNA-based markers in body fluids. In addition to these biological aspects, methodological aspects of the determination of nucleic acids in body fluids, i.e. pre-analytical, analytical and post-analytical issues, are particularly emphasized. The characteristic changes of RNA (differential mRNA and miRNA expression) and DNA (concentrations, integrity index, mutations, microsatellite and methylation alterations) in serum/plasma and urine samples of patients suffering from the essential urologic cancers of the prostate, bladder, kidney and testis are summarized and critically discussed below. To translate the promising results into clinical practice, laboratory scientists and clinicians have to collaborate to resolve the challenges of harmonized and feasible pre-analytical and analytical conditions for the selected markers and to validate these markers in well-designed and sufficiently powered multi-center studies.
Collapse
Affiliation(s)
- Bernhard Ralla
- Department of Urology, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | | | | | | | | | | |
Collapse
|
82
|
Uchida K, Veeramachaneni R, Huey B, Bhattacharya A, Schmidt BL, Albertson DG. Investigation of HOXA9 promoter methylation as a biomarker to distinguish oral cancer patients at low risk of neck metastasis. BMC Cancer 2014; 14:353. [PMID: 24886209 PMCID: PMC4045880 DOI: 10.1186/1471-2407-14-353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/13/2014] [Indexed: 12/25/2022] Open
Abstract
Background Metastasis to the cervical (neck) lymph nodes is one of the most significant clinical factors responsible for death from oral squamous cell carcinoma (SCC). Therefore, the lymph nodes are frequently removed when the tumor is excised (neck dissection), even though the majority of patients will not benefit from the extra surgery. Two subtypes of oral SCC distinguished by the presence of tumor genomic aberrations +3q, -8p, +8q and/or +20 differ in risk for metastasis – high for the 3q8pq20 subtype, harboring one or more of the aberrations and low for the non-3q8pq20 subtype, lacking these alterations. A prior analysis of the literature suggested genes differentially methylated in the two subtypes. Therefore, the goal of this study was to further investigate the methylation status of candidate biomarkers of the non-3q8pq20 subtype, and evaluate their utility for identifying patients at low risk for metastasis. Methods Methylation status of genes in a cohort of 52 oral SCC patients with at least five year follow up was determined by pyrosequencing. Gene expression levels were determined by quantitative RT-PCR. Growth following re-expression of HOXA9 in cultured oral SCC cells was assessed by proliferation and colony formation assays. Results A pilot study evaluating methylation levels of HOXA9, MT1A and HOXA11 promoters in DNA from 12 tumors (six each of the 3q8pq20 and non-3q8pq20 subtypes) revealed that only HOXA9 was differentially methylated. Significant differences in methylation levels of HOXA9 were observed amongst the 52 oral SCCs with respect to genomic subtype and nodal status (p = 0.014, and p = 0.024, respectively, Wilcoxon rank sum test). High levels of HOXA9 methylation and low levels of expression in oral SCC cell lines were observed compared to HaCaT, a non-tumorigenic keratinocyte cell line. Re-expression of HOXA9 in the SCC4 oral cancer cell line resulted in diminished proliferation and colony formation. Conclusions HOXA9 methylation is frequent in oral cancers and levels are higher in tumors with greater risk of metastasis. Expression of HOXA9 is low in cells with high levels of methylation and reduced expression appears to confer a growth advantage.
Collapse
Affiliation(s)
| | | | | | | | | | - Donna G Albertson
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 Third Street, San Francisco CA 94158-9001, USA.
| |
Collapse
|
83
|
Hwang JA, Lee BB, Kim Y, Hong SH, Kim YH, Han J, Shim YM, Yoon CY, Lee YS, Kim DH. HOXA9 inhibits migration of lung cancer cells and its hypermethylation is associated with recurrence in non-small cell lung cancer. Mol Carcinog 2014; 54 Suppl 1:E72-80. [PMID: 24817037 DOI: 10.1002/mc.22180] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 04/07/2014] [Accepted: 04/16/2014] [Indexed: 01/09/2023]
Abstract
This study was aimed at understanding the clinicopathological significance of HOXA9 hypermethylation in non-small cell lung cancer (NSCLC). HOXA9 hypermethylation was characterized in six lung cancer cell lines, and its clinicopathological significance was analyzed using methylation-specific PCR in 271 formalin-fixed paraffin-embedded tissues and 27 fresh-frozen tumor and matched normal tissues from 298 NSCLC patients, and Ki-67 expression was analyzed using immunohistochemistry. The promoter region of HOXA9 was highly methylated in six lung cancer cell lines, but not in normal bronchial epithelial cells. The loss of expression was restored by treatment of the cells with a demethylating agent, 5-aza-2'-deoxycytidine (5-Aza-dC). Transient transfection of HOXA9 into H23 lung cancer cells resulted in the inhibition of cell migration but not proliferation. Conversely, sequence-specific siRNA-mediated knockdown of HOXA9 enhanced cell migration. The mRNA levels of HOXA9 in 27 fresh-frozen tumor tissues were significantly lower than in matched normal tissues (P<0.0001; Wilcoxon signed-rank test). HOXA9 hypermethylation was found in 191 (70%) of 271 primary NSCLCs. HOXA9 hypermethylation was not associated with tumor size (P=0.12) and Ki-67 proliferation index (P=0.15). However, patients with HOXA9 hypermethylation had poor recurrence-free survival (hazard ratio=3.98, 95% confidence interval = 1.07-17.09, P=0.01) in never-smokers, after adjusting for age, sex, tumor size, adjuvant therapy, pathologic stage, and histology. In conclusion, the present study suggests that HOXA9 inhibits migration of lung cancer cells and its hypermethylation is an independent prognostic factor for recurrence-free survival in never-smokers with NSCLC.
Collapse
Affiliation(s)
- Jung-Ah Hwang
- Cancer Genomics Branch, Research Institute, National Cancer Center, Goyang-si, Korea
| | - Bo Bin Lee
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Yujin Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Seung-Hyun Hong
- Cancer Genomics Branch, Research Institute, National Cancer Center, Goyang-si, Korea
| | - Young-Ho Kim
- Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joungho Han
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Mog Shim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chae-Yeong Yoon
- Cancer Genomics Branch, Research Institute, National Cancer Center, Goyang-si, Korea
| | - Yeon-Su Lee
- Cancer Genomics Branch, Research Institute, National Cancer Center, Goyang-si, Korea
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
84
|
Size-based enrichment of exfoliated tumor cells in urine increases the sensitivity for DNA-based detection of bladder cancer. PLoS One 2014; 9:e94023. [PMID: 24732047 PMCID: PMC3986060 DOI: 10.1371/journal.pone.0094023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 03/12/2014] [Indexed: 01/23/2023] Open
Abstract
Bladder cancer is diagnosed by cystoscopy, a costly and invasive procedure that is associated with patient discomfort. Analysis of tumor-specific markers in DNA from sediments of voided urine has the potential for non-invasive detection of bladder cancer; however, the sensitivity is limited by low fractions and small numbers of tumor cells exfoliated into the urine from low-grade tumors. The purpose of this study was to improve the sensitivity for non-invasive detection of bladder cancer by size-based capture and enrichment of tumor cells in urine. In a split-sample set-up, urine from a consecutive series of patients with primary or recurrent bladder tumors (N = 189) was processed by microfiltration using a membrane filter with a defined pore-size, and sedimentation by centrifugation, respectively. DNA from the samples was analyzed for seven bladder tumor-associated methylation markers using MethyLight and pyrosequencing assays. The fraction of tumor-derived DNA was higher in the filter samples than in the corresponding sediments for all markers (p<0.000001). Across all tumor stages, the number of cases positive for one or more markers was 87% in filter samples compared to 80% in the corresponding sediments. The largest increase in sensitivity was achieved in low-grade Ta tumors, with 82 out of 98 cases positive in the filter samples (84%) versus 74 out of 98 in the sediments (75%). Our results show that pre-analytic processing of voided urine by size-based filtration can increase the sensitivity for DNA-based detection of bladder cancer.
Collapse
|
85
|
Chen H, Yu Y, Rong S, Wang H. Evaluation of diagnostic accuracy of DNA methylation biomarkers for bladder cancer: a systematic review and meta-analysis. Biomarkers 2014; 19:189-97. [PMID: 24693860 DOI: 10.3109/1354750x.2014.889211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hong Chen
- Oncology Department, Harbin Medical University Cancer HospitalHarbin China
| | - Yang Yu
- Department of general surgery, Shengjing Hospital of China Medical University
Shenyang, China
| | - Shuang Rong
- Harbin Maternal and Child Health Care HospitalHarbin China
| | - Hongyan Wang
- Department of general surgery, Shengjing Hospital of China Medical University
Shenyang, China
| |
Collapse
|
86
|
Hayashi M, Guerrero-Preston R, Okamura J, Michailidi C, Kahn Z, Li X, Ahn J, Goldsmith M, Koch W. Innovative rapid gene methylation analysis of surgical margin tissues in head and neck cancer. Ann Surg Oncol 2014; 21:3124-31. [PMID: 24671639 DOI: 10.1245/s10434-014-3661-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Securing the negative surgical margin is the first step in surgical cancer treatment. However, tumor recurrence sometimes occurs even with histologically negative surgical margins. To detect minimal residual cancer cells in the deep margin intraoperatively, a time-efficient molecular approach is required. METHODS We established an innovative rapid quantitative methylation PCR (QMSP) assay, which consists of substantially time-minimized DNA extraction, bisulfite treatment, and QMSP assays. To demonstrate the feasibility of this procedure, 10 serial surgical specimens of primary head and neck squamous cell carcinoma (HNSCC) were evaluated by both rapid and conventional QMSP. Two frequently methylated genes in head and neck cancer, homeobox A9 (HOXA9) and endothelin receptor type B (EDNRB) were analyzed in 10 HNSCCs and surgical margin tissues, as well as normal muscle and oral mucosa samples. RESULTS The product quality of DNA extraction and bisulfite treatment using the time-saving procedure was comparable to the conventional procedure. In the QMSP assay, target gene methylation and reference gene methylation were equally detected by both the rapid and conventional method. Finally, relative results of rapid and conventional QMSP were quite similar to each other in tumors, margins, and normal tissues. The average total time required for the rapid QMSP procedure was less than 3 h and could be accomplished by a single person. CONCLUSION From the viewpoint of accuracy, cost, and time consumption, the innovative rapid QMSP maintains highly sensitive methylation detection accomplished within the time frame of a major ablative and reconstructive procedure.
Collapse
Affiliation(s)
- Masamichi Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Zehnder P, Thalmann GN. Timing and outcomes for radical cystectomy in nonmuscle invasive bladder cancer. Curr Opin Urol 2014; 23:423-8. [PMID: 23880740 DOI: 10.1097/mou.0b013e328363e46f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW To provide an overview on the available clinical and pathological factors in high-risk nonmuscle invasive bladder cancer (NMIBC) patients that help to approximate the risk of progression to muscle invasion and identify 'the' patients requiring timely cystectomy. The value of a high-quality transurethral tumor resection is pointed out. Outcomes following radical cystectomy are compared with a primarily bladder preserving strategy. RECENT FINDINGS Carcinoma in situ within the prostatic urethra of NMIBC patients impacts on patient's outcome. Therefore, biopsies taken from the prostatic urethra improve the initial tumor staging accuracy. Lamina propria substaging may provide more detailed prognostic information. Lympho-vascular invasion within the transurethral resection specimen may help to detect patients who benefit from timely cystectomy. Recent findings from patients undergoing radical cystectomy including super-extended lymphadenectomy for clinically NMIBC confirm the substantial rate (25%) of tumor understaging. The fact that almost 10% were found to harbor lymph node metastases underlines the necessity to perform a meticulous lymphadenectomy in NMIBC patients undergoing radical cystectomy. SUMMARY High-quality transurethral bladder tumor resection including underlying muscle fibers is of utmost importance. Nevertheless, tumor understaging remains an issue of concern and warrants the value of a second transurethral resection in high-risk NMIBC patients. There is a persisting lack of rigid therapeutic recommendations in patients with high-risk NMIBC. Instead, treatment strategy is based on individual risk factors. However, irrespective of initial treatment strategy, there is a subgroup of high-risk NMIBC patients with progressive disease, leading almost inevitably to death.
Collapse
Affiliation(s)
- Pascal Zehnder
- Department of Urology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
88
|
Sapre N, Anderson PD, Costello AJ, Hovens CM, Corcoran NM. Gene-based urinary biomarkers for bladder cancer: An unfulfilled promise? Urol Oncol 2014; 32:48.e9-17. [DOI: 10.1016/j.urolonc.2013.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/01/2013] [Accepted: 07/01/2013] [Indexed: 01/05/2023]
|
89
|
Sánchez-Vega F, Gotea V, Petrykowska HM, Margolin G, Krivak TC, DeLoia JA, Bell DW, Elnitski L. Recurrent patterns of DNA methylation in the ZNF154, CASP8, and VHL promoters across a wide spectrum of human solid epithelial tumors and cancer cell lines. Epigenetics 2013; 8:1355-72. [PMID: 24149212 DOI: 10.4161/epi.26701] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The study of aberrant DNA methylation in cancer holds the key to the discovery of novel biological markers for diagnostics and can help to delineate important mechanisms of disease. We have identified 12 loci that are differentially methylated in serous ovarian cancers and endometrioid ovarian and endometrial cancers with respect to normal control samples. The strongest signal showed hypermethylation in tumors at a CpG island within the ZNF154 promoter. We show that hypermethylation of this locus is recurrent across solid human epithelial tumor samples for 15 of 16 distinct cancer types from TCGA. Furthermore, ZNF154 hypermethylation is strikingly present across a diverse panel of ENCODE cell lines, but only in those derived from tumor cells. By extending our analysis from the Illumina 27K Infinium platform to the 450K platform, to sequencing of PCR amplicons from bisulfite treated DNA, we demonstrate that hypermethylation extends across the breadth of the ZNF154 CpG island. We have also identified recurrent hypomethylation in two genomic regions associated with CASP8 and VHL. These three genes exhibit significant negative correlation between methylation and gene expression across many cancer types, as well as patterns of DNaseI hypersensitivity and histone marks that reflect different chromatin accessibility in cancer vs. normal cell lines. Our findings emphasize hypermethylation of ZNF154 as a biological marker of relevance for tumor identification. Epigenetic modifications affecting the promoters of ZNF154, CASP8, and VHL are shared across a vast array of tumor types and may therefore be important for understanding the genomic landscape of cancer.
Collapse
Affiliation(s)
- Francisco Sánchez-Vega
- Genome Technology Branch; National Human Genome Research Institute; National Institutes of Health; Bethesda, MD USA
| | - Valer Gotea
- Genome Technology Branch; National Human Genome Research Institute; National Institutes of Health; Bethesda, MD USA
| | - Hanna M Petrykowska
- Genome Technology Branch; National Human Genome Research Institute; National Institutes of Health; Bethesda, MD USA
| | - Gennady Margolin
- Genome Technology Branch; National Human Genome Research Institute; National Institutes of Health; Bethesda, MD USA
| | - Thomas C Krivak
- Department of Obstetrics, Gynecology and Reproductive Sciences; University of Pittsburgh Medical School; Pittsburgh, PA USA
| | - Julie A DeLoia
- School of Public Health and Health Services; The George Washington University; Washington DC, USA
| | - Daphne W Bell
- Cancer Genetics Branch; National Human Genome Research Institute; National Institutes of Health; Bethesda, MD USA
| | - Laura Elnitski
- Genome Technology Branch; National Human Genome Research Institute; National Institutes of Health; Bethesda, MD USA
| |
Collapse
|
90
|
Xylinas E, Kluth LA, Rieken M, Karakiewicz PI, Lotan Y, Shariat SF. Urine markers for detection and surveillance of bladder cancer. Urol Oncol 2013; 32:222-9. [PMID: 24054865 DOI: 10.1016/j.urolonc.2013.06.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Bladder cancer detection and surveillance includes cystoscopy and cytology. Urinary cytology is limited by its low sensitivity for low-grade tumors. Urine markers have been extensively studied to help improve the diagnosis of bladder cancer with the goal of complementing or even replacing cystoscopy. However, to date, no marker has reached widespread use owing to insufficient evidence for clinical benefit. MATERIAL AND METHODS Pubmed/Medline search was conducted to identify original articles, review articles, and editorials regarding urine-based biomarkers for screening, early detection, and surveillance of urothelial carcinoma of the bladder. Searches were limited to the English language, with a time frame of 2000 to 2013. Keywords included urothelial carcinoma, bladder cancer, transitional cell carcinoma, biomarker, marker, urine, diagnosis, recurrence, and progression. RESULTS Although several urinary markers have shown higher sensitivity compared with cytology, it remains insufficient to replace cystoscopy. Moreover, most markers suffer from lower specificity than cytology. In this review, we aimed to summarize the current knowledge on commercially available and promising investigational urine markers for the detection and surveillance of bladder cancer. CONCLUSIONS Well-designed protocols and prospective, controlled trials are needed to provide the basis to determine whether integration of biomarkers into clinical decision making will be of value for bladder cancer detection and screening in the future.
Collapse
Affiliation(s)
- Evanguelos Xylinas
- Department of Urology, Weill Medical College of Cornell University, New York-Presbyterian Hospital, New York, NY
| | - Luis A Kluth
- Department of Urology, Weill Medical College of Cornell University, New York-Presbyterian Hospital, New York, NY
| | - Malte Rieken
- Department of Urology, Weill Medical College of Cornell University, New York-Presbyterian Hospital, New York, NY
| | | | - Yair Lotan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Shahrokh F Shariat
- Department of Urology, Weill Medical College of Cornell University, New York-Presbyterian Hospital, New York, NY; Division of Medical Oncology, Weill Medical College of Cornell University, New York-Presbyterian Hospital, New York, NY; Department of Urology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
91
|
Yegin Z, Gunes S, Buyukalpelli R. Hypermethylation of TWIST1 and NID2 in tumor tissues and voided urine in urinary bladder cancer patients. DNA Cell Biol 2013; 32:386-92. [PMID: 23682613 DOI: 10.1089/dna.2013.2030] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bladder cancer like other cancers arises from the accumulation of many genetic and epigenetic changes that lead to the activation of proto-oncogenes or inactivation of tumor suppressor genes. We aimed to investigate the methylation patterns of Twist homolog 1 (TWIST1) and nidogen-2 (NID2) genes in bladder cancer. Fifty six histologically confirmed bladder tumor samples and paired 24 urine samples constituted the study group and was compared with 15 age- and gender-matched noncancerous individuals. DNA was purified from both tumor and urine samples. The methylation status of the two genes was analyzed by methylation-specific polymerase chain reaction (MSP) in both urinary bladder cell carcinoma samples and urine samples. Sensitivity and specificity values of the method were assessed and compared with the results of the cytology test. Methylation of TWIST1 and NID2 was detected in 98.2% and 96.4% of the tumor samples, and in 87.5% and 95.8% of the urine samples, respectively. The sensitivity of TWIST1 and NID2 genes (87.5% and 95.8% in urine samples, respectively), was higher compared with urine cytology (62.5%) for cancer detection. The sensitivity of any of the two genes was 88.8% (8/9) for low-grade cases. The sensitivity of urine cytology was 33.3% for the same low-grade cases. To be used in the early noninvasive diagnosis of bladder cancer, the combined methylation analysis of TWIST1 and NID2 genes may be a simple, noninvasive, sensitive, and specific method for detecting cancer cells in urine.
Collapse
Affiliation(s)
- Zeynep Yegin
- Department of Medical Biology, Ondokuz Mayis University, Samsun, Turkey
| | | | | |
Collapse
|
92
|
Methylation markers for urine-based detection of bladder cancer: the next generation of urinary markers for diagnosis and surveillance of bladder cancer. Adv Urol 2012; 2012:503271. [PMID: 22761614 PMCID: PMC3385670 DOI: 10.1155/2012/503271] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 04/16/2012] [Indexed: 12/31/2022] Open
Abstract
Cancer of the urinary bladder is the fifth most common neoplasm in the industrialized countries. Diagnosis and surveillance are dependent on invasive evaluation with cystoscopy and to some degree cytology as an adjunct analysis. Nomuscle invasive bladder cancer is characterized by frequent recurrences after resection, and up to 30% will develop an aggressive phenotype. The journey towards a noninvasive test for diagnosing bladder cancer, in order to replace or extend time between cystoscopy, has been ongoing for more than a decade. However, only a handful of tests that aid in clinical decision making are commercially available. Recent reports of DNA methylation in urine specimens highlight a possible clinical use of this marker type, as high sensitivities and specificities have been shown. This paper will focus on the currently available markers NMP22, ImmunoCyt, and UroVysion as well as novel DNA methylation markers for diagnosis and surveillance of bladder cancer.
Collapse
|