51
|
Mertens F, Antonescu CR, Mitelman F. Gene fusions in soft tissue tumors: Recurrent and overlapping pathogenetic themes. Genes Chromosomes Cancer 2015; 55:291-310. [PMID: 26684580 DOI: 10.1002/gcc.22335] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/01/2015] [Accepted: 11/01/2015] [Indexed: 12/21/2022] Open
Abstract
Gene fusions have been described in approximately one-third of soft tissue tumors (STT); of the 142 different fusions that have been reported, more than half are recurrent in the same histologic subtype. These gene fusions constitute pivotal driver mutations, and detailed studies of their cellular effects have provided important knowledge about pathogenetic mechanisms in STT. Furthermore, most fusions are strongly associated with a particular histotype, serving as ideal molecular diagnostic markers. In recent years, it has also become apparent that some chimeric proteins, directly or indirectly, constitute excellent treatment targets, making the detection of gene fusions in STT ever more important. Indeed, pharmacological treatment of STT displaying fusions that activate protein kinases, such as ALK and ROS1, or growth factors, such as PDGFB, is already in clinical use. However, the vast majority (52/78) of recurrent gene fusions create structurally altered and/or deregulated transcription factors, and a small but growing subset develops through rearranged chromatin regulators. The present review provides an overview of the spectrum of currently recognized gene fusions in STT, and, on the basis of the protein class involved, the mechanisms by which they exert their oncogenic effect are discussed.
Collapse
Affiliation(s)
- Fredrik Mertens
- Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden
| | | | - Felix Mitelman
- Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden
| |
Collapse
|
52
|
Brenca M, Maestro R. Massive parallel sequencing in sarcoma pathobiology: state of the art and perspectives. Expert Rev Anticancer Ther 2015; 15:1473-88. [PMID: 26536249 DOI: 10.1586/14737140.2015.1108192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sarcomas are an aggressive and highly heterogeneous group of mesenchymal malignancies with different morphologies and clinical behavior. Current therapeutic strategies remain unsatisfactory. Cytogenetic and molecular characterization of these tumors is resulting in the breakdown of the classical histopathological categories into molecular subgroups that better define sarcoma pathobiology and pave the way to more precise diagnostic criteria and novel therapeutic opportunities. The purpose of this short review is to summarize the state-of-the-art on the exploitation of massive parallel sequencing technologies, also known as next generation sequencing, in the elucidation of sarcoma pathobiology and to discuss how these applications may impact on diagnosis, prognosis and therapy of these tumors.
Collapse
Affiliation(s)
- Monica Brenca
- a Experimental Oncology 1 , CRO Aviano National Cancer Institute , Aviano , PN 33081 , Italy
| | - Roberta Maestro
- a Experimental Oncology 1 , CRO Aviano National Cancer Institute , Aviano , PN 33081 , Italy
| |
Collapse
|
53
|
Yin CC, Jain N, Mehrotra M, Zhagn J, Protopopov A, Zuo Z, Pemmaraju N, DiNardo C, Hirsch-Ginsberg C, Wang SA, Medeiros LJ, Chin L, Patel KP, Ravandi F, Futreal A, Bueso-Ramos CE. Identification of a novel fusion gene, IRF2BP2-RARA, in acute promyelocytic leukemia. J Natl Compr Canc Netw 2015; 13:19-22. [PMID: 25583766 DOI: 10.6004/jnccn.2015.0005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acute promyelocytic leukemia (APL) is characterized by the fusion of retinoic acid receptor alpha (RARA) with promyelocytic leukemia (PML) or, rarely, other gene partners. This report presents a patient with APL with a novel fusion between RARA and the interferon regulatory factor 2 binding protein 2 (IRF2BP2) genes. A bone marrow examination in a 19-year-old woman who presented with ecchymoses and epistaxis showed morphologic and immunophenotypic features consistent with APL. PML oncogenic domain antibody was positive. Results of fluorescence in situ hybridization, conventional cytogenetics, reverse transcription-polymerase chain reaction (RT-PCR), and oligonucleotide microarray for PML-RARA and common APL variant translocations were negative. Next-generation RNA-sequencing analysis followed by RT-PCR and direct sequencing revealed distinct breakpoints within IRF2BP2 exon 2 and RARA intron 2. The patient received all-trans retinoic acid, arsenic, and gemtuzumab ozogamicin, and achieved complete remission. However, the disease relapsed 10 months later, 2 months after consolidation therapy. This is the first report showing involvement of IRF2BP2 in APL, and it expands the list of novel RARA partners identified in APL.
Collapse
Affiliation(s)
- C Cameron Yin
- From the Departments of Hematopathology, Leukemia, Genomic Medicine, and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nitin Jain
- From the Departments of Hematopathology, Leukemia, Genomic Medicine, and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Meenakshi Mehrotra
- From the Departments of Hematopathology, Leukemia, Genomic Medicine, and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianhua Zhagn
- From the Departments of Hematopathology, Leukemia, Genomic Medicine, and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexei Protopopov
- From the Departments of Hematopathology, Leukemia, Genomic Medicine, and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhuang Zuo
- From the Departments of Hematopathology, Leukemia, Genomic Medicine, and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naveen Pemmaraju
- From the Departments of Hematopathology, Leukemia, Genomic Medicine, and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Courtney DiNardo
- From the Departments of Hematopathology, Leukemia, Genomic Medicine, and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cheryl Hirsch-Ginsberg
- From the Departments of Hematopathology, Leukemia, Genomic Medicine, and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sa A Wang
- From the Departments of Hematopathology, Leukemia, Genomic Medicine, and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - L Jeffrey Medeiros
- From the Departments of Hematopathology, Leukemia, Genomic Medicine, and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lynda Chin
- From the Departments of Hematopathology, Leukemia, Genomic Medicine, and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keyur P Patel
- From the Departments of Hematopathology, Leukemia, Genomic Medicine, and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Farhad Ravandi
- From the Departments of Hematopathology, Leukemia, Genomic Medicine, and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrew Futreal
- From the Departments of Hematopathology, Leukemia, Genomic Medicine, and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carlos E Bueso-Ramos
- From the Departments of Hematopathology, Leukemia, Genomic Medicine, and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
54
|
Zhou Z, Hua Y, Liu J, Zuo D, Wang H, Chen Q, Zheng L, Cai Z. Association of ABCB1/MDR1 polymorphisms in patients with glucocorticoid-induced osteonecrosis of the femoral head: Evidence for a meta-analysis. Gene 2015; 569:34-40. [DOI: 10.1016/j.gene.2015.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/03/2015] [Accepted: 03/12/2015] [Indexed: 02/09/2023]
|
55
|
Bruno A, Boisselier B, Labreche K, Marie Y, Polivka M, Jouvet A, Adam C, Figarella-Branger D, Miquel C, Eimer S, Houillier C, Soussain C, Mokhtari K, Daveau R, Hoang-Xuan K. Mutational analysis of primary central nervous system lymphoma. Oncotarget 2015; 5:5065-75. [PMID: 24970810 PMCID: PMC4148122 DOI: 10.18632/oncotarget.2080] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Little is known about the genomic basis of primary central nervous system lymphoma (PCNSL) tumorigenesis. To investigate the mutational profile of PCNSL, we analyzed nine paired tumor and germline DNA samples from PCNSL patients by high throughput exome sequencing. Eight genes of interest have been further investigated by focused resequencing in 28 additional PCNSL tumors to better estimate their incidence. Our study identified recurrent somatic mutations in 37 genes, some involved in key signaling pathways such as NFKB, B cell differentiation and cell cycle control. Focused resequencing in the larger cohort revealed high mutation rates for genes already described as mutated in PCNSL such as MYD88 (38%), CD79B (30%), PIM1 (22%) and TBL1XR1 (19%) and for genes not previously reported to be involved in PCNSL tumorigenesis such as ETV6 (16%), IRF4 (14%), IRF2BP2 (11%) and EBF1 (11%). Of note, only 3 somatically acquired SNVs were annotated in the COSMIC database. Our results demonstrate a high genetic heterogeneity of PCNSL and mutational pattern similarities with extracerebral diffuse large B cell lymphomas, particularly of the activated B-cell (ABC) subtype, suggesting shared underlying biological mechanisms. The present study provides new insights into the mutational profile of PCNSL and potential targets for therapeutic strategies.
Collapse
Affiliation(s)
- Aurélie Bruno
- Sorbonne Universités, UPMC Univ Paris 06, UM 75, ICM, F-75013, Paris, France. Institut National de la Santé et de la Recherche Médicale, U 1127, ICM, F-75013, Paris, France. Centre National de la Recherche Scientifique, UMR 7225, ICM, F-75013, Paris, France. ICM, F-75013, Paris, France
| | - Blandine Boisselier
- Sorbonne Universités, UPMC Univ Paris 06, UM 75, ICM, F-75013, Paris, France. Institut National de la Santé et de la Recherche Médicale, U 1127, ICM, F-75013, Paris, France. Centre National de la Recherche Scientifique, UMR 7225, ICM, F-75013, Paris, France. ICM, F-75013, Paris, France. Plateforme de Génotypage Séquençage, ICM, F-75013, Paris, France
| | - Karim Labreche
- Sorbonne Universités, UPMC Univ Paris 06, UM 75, ICM, F-75013, Paris, France. Institut National de la Santé et de la Recherche Médicale, U 1127, ICM, F-75013, Paris, France. Centre National de la Recherche Scientifique, UMR 7225, ICM, F-75013, Paris, France. ICM, F-75013, Paris, France
| | - Yannick Marie
- Plateforme de Génotypage Séquençage, ICM, F-75013, Paris, France. Onconeurothèque, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marc Polivka
- Centre Hospitalier Universitaire Lariboisière, Assistance Publique-Hôpitaux de Paris, Service d'Anatomopathologie, Paris, France
| | - Anne Jouvet
- Hospices Civils de Lyon, Hôpital Neurologique, Bron, France and Université Lyon 1, Institut National de la Santé et de la Recherche Médicale Unité 842, Lyon, France
| | - Clovis Adam
- Centre Hospitalier Universitaire Bicêtre, Assistance Publique-Hôpitaux de Paris, Service d'anatomopathologie, Bicêtre, France
| | - Dominique Figarella-Branger
- Centre Hospitalier Universitaire La Timone, Assistance Publique-Hôpitaux de Marseille, Institut National de la Santé et de la Recherche Médicale Unité 911, Centre de Recherches en Oncologie biologique et Onco-pharmacologie, Université de la Méditerranée and Tumorothèque de l'Assistance Publique-Hôpitaux de Marseille (AC 2013-1786), Marseille, France
| | - Catherine Miquel
- Centre hospitalier Sainte Anne, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sandrine Eimer
- Service de Pathologie, CRB Tumorothèque, Centre Hospitalier Universitaire Bordeaux, Bordeaux, France
| | - Caroline Houillier
- Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Service de Neurologie 2-Mazarin, Paris, France
| | - Carole Soussain
- Hôpital René Huguenin, Institut Curie, Service d'Hématologie, Saint Cloud, France
| | - Karima Mokhtari
- Sorbonne Universités, UPMC Univ Paris 06, UM 75, ICM, F-75013, Paris, France. Institut National de la Santé et de la Recherche Médicale, U 1127, ICM, F-75013, Paris, France. Centre National de la Recherche Scientifique, UMR 7225, ICM, F-75013, Paris, France. ICM, F-75013, Paris, France. Onconeurothèque, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Romain Daveau
- Institut National de la Santé et de la Recherche Médicale Unité 830, Génétique et Biologie des Cancers, Institut Curie, Paris, France
| | - Khê Hoang-Xuan
- Sorbonne Universités, UPMC Univ Paris 06, UM 75, ICM, F-75013, Paris, France. Institut National de la Santé et de la Recherche Médicale, U 1127, ICM, F-75013, Paris, France. Centre National de la Recherche Scientifique, UMR 7225, ICM, F-75013, Paris, France. ICM, F-75013, Paris, France. Assistance Publique-Hôpitaux de Paris, Hôpital de la Pitié-Salpêtrière, Service de Neurologie 2-Mazarin, Paris, France
| |
Collapse
|
56
|
Bone- and cartilage-forming tumors and ewing sarcoma: an update with a gnathic emphasis. Head Neck Pathol 2014; 8:454-62. [PMID: 25409851 PMCID: PMC4245414 DOI: 10.1007/s12105-014-0587-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/03/2014] [Indexed: 12/16/2022]
Abstract
Over the past decade, there have been remarkable advances in bone tumor pathology. Insights into the genetic basis and pathobiology of many tumor types have impacted diagnosis, classification, and treatment. However, because gnathic lesions may comprise only a small proportion of cases overall for many tumors, clinicopathologic features and management considerations specific to this subset may be overlooked. Here we provide a summary of recent developments in the following tumor types: osteosarcoma (OS), chondrosarcoma (CS), osteoid osteoma (OO), osteoblastoma (OB), and Ewing sarcoma (ES). In particular, we will give special consideration to cases arising in the jaws.
Collapse
|
57
|
Abstract
Round cell tumors of bone are a divergent group of neoplasms that largely constitute Ewing sarcoma/primitive neuroectodermal tumor, small cell osteosarcoma, Langerhans cell histiocytosis, mensenchymal chondrosarcoma, and hematopoietic malignancies including lymphoma and plasmacytoma/myeloma, along with metastatic round cell tumors including neuroblastoma, rhabdomyosarcoma, and small cell carcinoma. These lesions share many histomorphologic similarities and often demonstrate overlapping clinical and radiologic characteristics, but typically have a diverse clinical outcome, thus warranting differing therapeutic modalities/regimens. Recent advances in molecular and cytogenetic techniques have identified a number of additional novel entities, including round cell sarcomas harboring CIC-DUX4 and BCOR-CCNB3 fusions, respectively. These novel findings have not only enhanced our understanding of the pathogenesis of round cell tumors, but also allowed us to reclassify some entities with potential therapeutic and prognostic significance. This article provides an overview focusing on recent molecular genetic advances in primary, nonhematologic round cell tumors of bone.
Collapse
|
58
|
Panagopoulos I, Gorunova L, Bjerkehagen B, Heim S. The "grep" command but not FusionMap, FusionFinder or ChimeraScan captures the CIC-DUX4 fusion gene from whole transcriptome sequencing data on a small round cell tumor with t(4;19)(q35;q13). PLoS One 2014; 9:e99439. [PMID: 24950227 PMCID: PMC4064965 DOI: 10.1371/journal.pone.0099439] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 05/14/2014] [Indexed: 01/07/2023] Open
Abstract
Whole transcriptome sequencing was used to study a small round cell tumor in which a t(4;19)(q35;q13) was part of the complex karyotype but where the initial reverse transcriptase PCR (RT-PCR) examination did not detect a CIC-DUX4 fusion transcript previously described as the crucial gene-level outcome of this specific translocation. The RNA sequencing data were analysed using the FusionMap, FusionFinder, and ChimeraScan programs which are specifically designed to identify fusion genes. FusionMap, FusionFinder, and ChimeraScan identified 1017, 102, and 101 fusion transcripts, respectively, but CIC-DUX4 was not among them. Since the RNA sequencing data are in the fastq text-based format, we searched the files using the "grep" command-line utility. The "grep" command searches the text for specific expressions and displays, by default, the lines where matches occur. The "specific expression" was a sequence of 20 nucleotides from the coding part of the last exon 20 of CIC (Reference Sequence: NM_015125.3) chosen since all the so far reported CIC breakpoints have occurred here. Fifteen chimeric CIC-DUX4 cDNA sequences were captured and the fusion between the CIC and DUX4 genes was mapped precisely. New primer combinations were constructed based on these findings and were used together with a polymerase suitable for amplification of GC-rich DNA templates to amplify CIC-DUX4 cDNA fragments which had the same fusion point found with "grep". In conclusion, FusionMap, FusionFinder, and ChimeraScan generated a plethora of fusion transcripts but did not detect the biologically important CIC-DUX4 chimeric transcript; they are generally useful but evidently suffer from imperfect both sensitivity and specificity. The "grep" command is an excellent tool to capture chimeric transcripts from RNA sequencing data when the pathological and/or cytogenetic information strongly indicates the presence of a specific fusion gene.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- * E-mail:
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bodil Bjerkehagen
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
59
|
Sequential combination of karyotyping and RNA-sequencing in the search for cancer-specific fusion genes. Int J Biochem Cell Biol 2014; 53:462-5. [PMID: 24863361 DOI: 10.1016/j.biocel.2014.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/30/2014] [Accepted: 05/09/2014] [Indexed: 12/18/2022]
Abstract
Cancer-specific fusion genes are often caused by cytogenetically visible chromosomal rearrangements such as translocations, inversions, deletions or insertions, they can be the targets of molecular therapy, they play a key role in the accurate diagnosis and classification of neoplasms, and they are of prognostic impact. The identification of novel fusion genes in various neoplasms therefore not only has obvious research importance, but is also potentially of major clinical significance. The "traditional" methodology to detect them began with cytogenetic analysis to find the chromosomal rearrangement, followed by utilization of fluorescence in situ hybridization techniques to find the probe which spans the chromosomal breakpoint, and finally molecular cloning to localize the breakpoint more precisely and identify the genes fused by the chromosomal rearrangement. Although laborious, the above-mentioned sequential approach is robust and reliable and a number of fusion genes have been cloned by such means. Next generation sequencing (NGS), mainly RNA sequencing (RNA-Seq), has opened up new possibilities to detect fusion genes even when cytogenetic aberrations are cryptic or information about them is unknown. However, NGS suffers from the shortcoming of identifying as "fusion genes" also many technical, biological and, perhaps in particular, clinical "false positives," thus making the assessment of which fusions are important and which are noise extremely difficult. The best way to overcome this risk of information overflow is, whenever reliable cytogenetic information is at hand, to compare karyotyping and sequencing data and concentrate exclusively on those suggested fusion genes that are found in chromosomal breakpoints. This article is part of a Directed Issue entitled: Rare Cancers.
Collapse
|
60
|
Panagopoulos I, Gorunova L, Bjerkehagen B, Boye K, Heim S. Chromosome aberrations and HEY1-NCOA2 fusion gene in a mesenchymal chondrosarcoma. Oncol Rep 2014; 32:40-4. [PMID: 24839999 PMCID: PMC4067431 DOI: 10.3892/or.2014.3180] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 03/29/2014] [Indexed: 11/06/2022] Open
Abstract
Mesenchymal chondrosarcomas are fast-growing tumors that account for 2-10% of primary chondrosarcomas. Cytogenetic information is restricted to 12 cases that did not show a specific aberration pattern. Recently, two fusion genes were described in mesenchymal chondrosarcomas: a recurrent HEY1-NCOA2 found in tumors that had not been cytogenetically characterized and an IRF2BP2-CDX1 found in a tumor carrying a t(1;5)(q42;q32) translocation as the sole chromosomal abnormality. Here, we present the cytogenetic and molecular genetic analysis of a mesenchymal chondrosarcoma in which the patient had two histologically indistinguishable tumor lesions, one in the neck and one in the thigh. An abnormal clone with the G-banding karyotype 46,XX,add(6)(q23),add(8)(p23),del(10)(p11),+12,-15[6] was found in the neck tumor whereas a normal karyotype, 46,XX, was found in the tumor of the thigh. RT-PCR and Sanger sequencing showed that exon 4 of HEY1 was fused to exon 13 of NCOA2 in the sample from the thigh lesion; we did not have spare material to perform a similar analysis of the neck tumor. Examining the published karyotypes we observed numerical or structural aberrations of chromosome 8 in the majority of the karyotyped mesenchymal chondrosarcomas. Chromosome 8 was also structurally affected in the present study. The pathogenetic mechanisms behind this nonrandom involvement are unknown, but the presence on 8q of two genes, HEY1 and NCOA2, now known to be involved in mesenchymal chondrosarcoma tumorigenesis is, of course, suggestive.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Bodil Bjerkehagen
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kjetil Boye
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
61
|
Comparison between karyotyping-FISH-reverse transcription PCR and RNA-sequencing-fusion gene identification programs in the detection of KAT6A-CREBBP in acute myeloid leukemia. PLoS One 2014; 9:e96570. [PMID: 24798186 PMCID: PMC4010518 DOI: 10.1371/journal.pone.0096570] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/09/2014] [Indexed: 11/28/2022] Open
Abstract
An acute myeloid leukemia was suspected of having a t(8;16)(p11;p13) resulting in a KAT6A-CREBBP fusion because the bone marrow was packed with monoblasts showing marked erythrophagocytosis. The diagnostic karyotype was 46,XY,add(1)(p13),t(8;21)(p11;q22),der(16)t(1;16)(p13;p13)[9]/46,XY[1]; thus, no direct confirmation of the suspicion could be given although both 8p11 and 16p13 seemed to be rearranged. The leukemic cells were examined in two ways to find out whether a cryptic KAT6A-CREBBP was present. The first was the “conventional” approach: G-banding was followed by fluorescence in situ hybridization (FISH) and reverse transcription PCR (RT-PCR). The second was RNA-Seq followed by data analysis using FusionMap and FusionFinder programs with special emphasis on candidates located in the 1p13, 8p11, 16p13, and 21q22 breakpoints. FISH analysis indicated the presence of a KAT6A/CREBBP chimera. RT-PCR followed by Sanger sequencing of the amplified product showed that a chimeric KAT6A-CREBBP transcript was present in the patients bone marrow. Surprisingly, however, KATA6A-CREBBP was not among the 874 and 35 fusion transcripts identified by the FusionMap and FusionFinder programs, respectively, although 11 sequences of the raw RNA-sequencing data were KATA6A-CREBBP fragments. This illustrates that although many fusion transcripts can be found by RNA-Seq combined with FusionMap and FusionFinder, the pathogenetically essential fusion is not always picked up by the bioinformatic algorithms behind these programs. The present study not only illustrates potential pitfalls of current data analysis programs of whole transcriptome sequences which make them less useful as stand-alone techniques, but also that leukemia diagnosis still relies on integration of clinical, hematologic, and genetic disease features of which the former two by no means have become superfluous.
Collapse
|
62
|
MEAF6/PHF1 is a recurrent gene fusion in endometrial stromal sarcoma. Cancer Lett 2014; 347:75-8. [PMID: 24530230 DOI: 10.1016/j.canlet.2014.01.030] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 12/31/2022]
Abstract
The chimeric transcripts described in endometrial stromal sarcomas (ESS) are JAZF1/SUZ12, YWHAE/FAM22, ZC3H7/BCOR, MBTD1/CXorf67, and recombinations of PHF1 with JAZF1, EPC1, and MEAF6. The MEAF6/PHF1 fusion had hitherto been identified in only one tumor. We present two more ESS with MEAF6/PHF1 detected by transcriptome sequencing (case 1) and RT-PCR (case 2), proving that this fusion is recurrent in ESS. The transcript of both cases was an in-frame fusion between exon 5 of MEAF6 and exon 2 of PHF1. Both genes are involved in epigenetic modification, and this may well be their main pathogenetic theme also in ESS tumorigenesis.
Collapse
|
63
|
Mertens F, Tayebwa J. Evolving techniques for gene fusion detection in soft tissue tumours. Histopathology 2013; 64:151-62. [PMID: 24320890 DOI: 10.1111/his.12272] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chromosomal rearrangements resulting in the fusion of coding parts from two genes or in the exchange of regulatory sequences are present in approximately 20% of all human neoplasms. More than 1000 such gene fusions have now been described, with close to 100 of them in soft tissue tumours. Although little is still known about the functional outcome of many of these gene fusions, it is well established that most of them have a major impact on tumorigenesis. Furthermore, the strong association between type of gene fusion and morphological subtype makes them highly useful diagnostic markers. Until recently, the vast majority of gene fusions were identified through molecular cytogenetic characterization of rearrangements detected at chromosome banding analysis, followed by use of the reverse transcriptase-polymerase chain reaction (RT-PCR) and Sanger sequencing. With the advent of next-generation sequencing (NGS) technologies, notably of whole transcriptomes or all poly-A(+) mRNA molecules, the possibility of detecting new gene fusions has increased dramatically. Already, a large number of novel gene fusions have been identified through NGS approaches and it can be predicted that these technologies soon will become standard diagnostic clinical tools.
Collapse
Affiliation(s)
- Fredrik Mertens
- Department of Clinical Genetics, University and Regional Laboratories, Lund University, Lund, Sweden
| | | |
Collapse
|
64
|
Puls F, Niblett AJ, Mangham DC. Molecular pathology of bone tumours: diagnostic implications. Histopathology 2013; 64:461-76. [DOI: 10.1111/his.12275] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/04/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Florian Puls
- Department of Musculoskeletal Pathology; Royal Orthopaedic Hospital NHS Trust; Robert Aitken Institute of Clinical Research; Birmingham UK
| | - Angela J Niblett
- Department of Musculoskeletal Pathology; Royal Orthopaedic Hospital NHS Trust; Robert Aitken Institute of Clinical Research; Birmingham UK
| | - D Chas Mangham
- Department of Musculoskeletal Pathology; Royal Orthopaedic Hospital NHS Trust; Robert Aitken Institute of Clinical Research; Birmingham UK
- Department of Musculoskeletal Pathology; Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Trust; Oswestry Shropshire UK
| |
Collapse
|
65
|
Panagopoulos I, Gorunova L, Zeller B, Tierens A, Heim S. Cryptic FUS-ERG fusion identified by RNA-sequencing in childhood acute myeloid leukemia. Oncol Rep 2013; 30:2587-92. [PMID: 24068373 PMCID: PMC3839954 DOI: 10.3892/or.2013.2751] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/09/2013] [Indexed: 02/05/2023] Open
Abstract
Sequential combination of cytogenetics and RNA-sequencing (RNA-Seq) has been shown to be an efficient approach to detect pathogenetically important fusion genes in neoplasms carrying only one or a few chromosomal rearrangements. We performed RNA-Seq on an acute myeloid leukemia in a 2-year-old girl with the karyotype 46,XX,add(1)(p36), der(2)t(2;3)(q21;q21),del(3)(q21),der(10)t(1;10)(q32;q24),der(16)(2qter-->2q21::16p11-->16q24::16p11-->16pter)[13]/46,XX[2] and identified a cryptic FUS/ERG fusion gene. PCR and direct sequencing verified the presence of the FUS-ERG chimeric transcript in which exon 7 of FUS from 16p11 (nt 904 in sequence with accession number NM_004960 version 3) was fused in frame to exon 8 of ERG from sub-band 21q22.2 (nt 967 in NM_004449 version 4). The FUS-ERG transcript found here has been reported in only two other cases of childhood leukemia, in a 1-year-old boy and an 8-month-old boy, both diagnosed with precursor B cell ALL. The fusion transcript codes for a 497 amino acid residues FUS-ERG protein and, similar to other AML-related FUS-ERG fusion proteins, contains both functional domains (TR1 and TR2) of the transactivation domain of FUS and the ETS domain of ERG. The clinical significance, if any, of the amino acid residues which are coded by the exons 8, 9 and 10 of ERG in the fusion FUS-ERG proteins, remains unclear.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Medical Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | | | | | | |
Collapse
|
66
|
Panagopoulos I, Thorsen J, Gorunova L, Micci F, Haugom L, Davidson B, Heim S. RNA sequencing identifies fusion of theEWSR1andYY1genes in mesothelioma with t(14;22)(q32;q12). Genes Chromosomes Cancer 2013; 52:733-40. [DOI: 10.1002/gcc.22068] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 11/11/2022] Open
|