51
|
Editorial overview: Virus replication in animals and plants. Curr Opin Virol 2014; 9:iv-v. [PMID: 25544731 DOI: 10.1016/j.coviro.2014.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
52
|
Perturbation in the conserved methyltransferase-polymerase interface of flavivirus NS5 differentially affects polymerase initiation and elongation. J Virol 2014; 89:249-61. [PMID: 25320292 DOI: 10.1128/jvi.02085-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED The flavivirus NS5 is a natural fusion of a methyltransferase (MTase) and an RNA-dependent RNA polymerase (RdRP). Analogous to DNA-dependent RNA polymerases, the NS5 polymerase initiates RNA synthesis through a de novo mechanism and then makes a transition to a processive elongation phase. However, whether and how the MTase affects polymerase activities through intramolecular interactions remain elusive. By solving the crystal structure of the Japanese encephalitis virus (JEV) NS5, we recently identified an MTase-RdRP interface containing a set of six hydrophobic residues highly conserved among flaviviruses. To dissect the functional relevance of this interface, we made a series of JEV NS5 constructs with mutations of these hydrophobic residues and/or with the N-terminal first 261 residues and other residues up to the first 303 residues deleted. Compared to the wild-type (WT) NS5, full-length NS5 variants exhibited consistent up- or downregulation of the initiation activities in two types of polymerase assays. Five representative full-length NS5 constructs were then tested in an elongation assay, from which the apparent single-nucleotide incorporation rate constant was estimated. Interestingly, two constructs exhibited different elongation kinetics from the WT NS5, with an effect rather opposite to what was observed at initiation. Moreover, constructs with MTase and/or the linker region (residues 266 to 275) removed still retained polymerase activities, albeit at overall lower levels. However, further removal of the N-terminal extension (residues 276 to 303) abolished regular template-directed synthesis. Together, our data showed that the MTase-RdRP interface is relevant in both polymerase initiation and elongation, likely with different regulation mechanisms in these two major phases of RNA synthesis. IMPORTANCE The flavivirus NS5 is very unique in having a methyltransferase (MTase) placed on the immediate N terminus of its RNA-dependent RNA polymerase (RdRP). We recently solved the crystal structure of the full-length NS5, which revealed a conserved interface between MTase and RdRP. Building on this discovery, here we carried out in vitro polymerase assays to address the functional relevance of the interface interactions. By explicitly probing polymerase initiation and elongation activities, we found that perturbation in the MTase-RdRP interface had different impacts on different phases of synthesis, suggesting that the roles and contribution of the interface interactions may change upon phase transitions. By comparing the N-terminal-truncated enzymes with the full-length NS5, we collected data to indicate the indispensability to regular polymerase activities of a region that was functionally unclarified previously. Taken together, we provide biochemical evidence and mechanistic insights for the cross talk between the two enzyme modules of flavivirus NS5.
Collapse
|
53
|
Holien JK, Gazina EV, Elliott RW, Jarrott B, Cameron CE, Williams SJ, Parker MW, Petrou S. Computational Analysis of Amiloride Analogue Inhibitors of Coxsackievirus B3 RNA Polymerase. ACTA ACUST UNITED AC 2014; Suppl 9:004. [PMID: 26491236 DOI: 10.4172/jpb.s9-004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Coxsackievirus B3 (CVB3) is a picornavirus that is responsible for a significant proportion of human myocarditis. However, no antiviral treatment is currently available to treat this disease or indeed any picornaviral infections. Previously it was shown that amiloride and its derivative 5-(N-ethyl-N-isopropyl)amiloride inhibit the in vitro enzymatic activity of CVB3 RNA polymerase (3Dpol). Here we measure and compare the inhibitory activity of ten amiloride analogues against CVB3 3Dpol. We show that replacement of the 3,5-diaminopyrazinyl moiety of amiloride causes loss of the inhibitory activity, whereas modifications at the 5-amino and guanidino groups increase or decrease potency. Importantly, a combination of substitutions at both the 5-amino and guanidino groups produced a compound that was more potent than its singly modified precursors. The compounds were computationally-docked into available crystal structures of CVB3 3Dpol in order to obtain a structural explanation for the activities of the analogues. To create a robust model which explained the biological activity, optimization of one of the CVB3 3Dpol crystal structures to take into account active site flexibility was necessary, together with the use of consensus docking from two different docking algorithms. This robust predictive 3D atomic model provides insights into the interactions required for inhibitor binding and provides a promising basis for the development of more potent inhibitors against this important therapeutic target.
Collapse
Affiliation(s)
- Jessica K Holien
- Structural Biology Laboratory and ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, Victoria 3065, Australia
| | - Elena V Gazina
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Robert W Elliott
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bevyn Jarrott
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael W Parker
- Structural Biology Laboratory and ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, Victoria 3065, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia.,Department of Electrical and Electronic Engineering, The University of Melbourne.,Centre for Neural Engineering, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
54
|
Abstract
Enterovirus 71 (EV71) is a major viral pathogen in China and Southeast Asia. There is no clinically approved vaccine or antiviral therapy for EV71 infection. NITD008, an adenosine analog, is an inhibitor of flavivirus that blocks viral RNA synthesis. Here we report that NITD008 has potent antiviral activity against EV71. In cell culture, the compound inhibits EV71 at a 50% effective concentration of 0.67 μM and a 50% cytotoxic concentration of 119.97 μM. When administered at 5 mg/kg in an EV71 mouse model, the compound reduced viral loads in various organs and completely prevented clinical symptoms and death. To study the antiviral mechanism and drug resistance, we selected escape mutant viruses by culturing EV71 with increasing concentrations of NITD008. Resistance mutations were reproducibly mapped to the viral 3A and 3D polymerase regions. Resistance analysis with recombinant viruses demonstrated that either a 3A or a 3D mutation alone could lead to resistance to NITD008. A combination of both 3A and 3D mutations conferred higher resistance, suggesting a collaborative interplay between the 3A and 3D proteins during viral replication. The resistance results underline the importance of combination therapy required for EV71 treatment. Importance: Human enterovirus 71 (EV71) has emerged as a major cause of viral encephalitis in children worldwide, especially in the Asia-Pacific region. Vaccines and antivirals are urgently needed to prevent and treat EV71 infections. In this study, we report the in vitro and in vivo efficacy of NITD008 (an adenosine analog) as an inhibitor of EV71. The efficacy results validated the potential of nucleoside analogs as antiviral drugs for EV71 infections. Mechanistically, we showed that mutations in the viral 3A and 3D polymerases alone or in combination could confer resistance to NITD008. The resistance results suggest an intrinsic interaction between viral proteins 3A and 3D during replication, as well as the importance of combination therapy for the treatment of EV71 infections.
Collapse
|
55
|
te Velthuis AJW. Common and unique features of viral RNA-dependent polymerases. Cell Mol Life Sci 2014; 71:4403-20. [PMID: 25080879 PMCID: PMC4207942 DOI: 10.1007/s00018-014-1695-z] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/29/2014] [Accepted: 07/28/2014] [Indexed: 12/12/2022]
Abstract
Eukaryotes and bacteria can be infected with a wide variety of RNA viruses. On average, these pathogens share little sequence similarity and use different replication and transcription strategies. Nevertheless, the members of nearly all RNA virus families depend on the activity of a virally encoded RNA-dependent polymerase for the condensation of nucleotide triphosphates. This review provides an overview of our current understanding of the viral RNA-dependent polymerase structure and the biochemistry and biophysics that is involved in replicating and transcribing the genetic material of RNA viruses.
Collapse
Affiliation(s)
- Aartjan J W te Velthuis
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands,
| |
Collapse
|
56
|
Sholders AJ, Peersen OB. Distinct conformations of a putative translocation element in poliovirus polymerase. J Mol Biol 2014; 426:1407-19. [PMID: 24424421 PMCID: PMC3963463 DOI: 10.1016/j.jmb.2013.12.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 01/01/2023]
Abstract
The mechanism whereby RNA is translocated by the single subunit viral RNA-dependent RNA polymerases is not yet understood. These enzymes lack homologs of the "O-helix" structures and associated fingers domain movements thought to be responsible for translocation in many DNA-templated polymerases. The structures of multiple picornavirus polymerase elongation complexes suggest that these enzymes use a different molecular mechanism where translocation is not strongly coupled to the opening of the active site following catalysis. Here we present the 2.0- to 2.6-Å-resolution crystal structures and biochemical data for 12 poliovirus polymerase mutants that together show how proper enzyme functions and translocation activity requires conformational flexibility of a loop sequence in the palm domain B-motif. Within the loop, the Ser288-Gly289-Cys290 sequence is shown to play a major role in the catalytic cycle based on RNA binding, processive elongation activity, and single nucleotide incorporation assays. The structures show that Ser288 forms a key hydrogen bond with Asp238, the backbone flexibility of Gly289 is required for translocation competency, and Cys290 modulates the overall elongation activity of the enzyme. Some conformations of the loop represent likely intermediates on the way to forming the catalytically competent closed active site, while others are consistent with a role in promoting translocation of the nascent base pair out of the active site. The loop structure and key residues surrounding it are highly conserved, suggesting that the structural dynamics we observe in poliovirus 3D(pol) are a common feature of viral RNA-dependent RNA polymerases.
Collapse
Affiliation(s)
- Aaron J Sholders
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Olve B Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA.
| |
Collapse
|
57
|
The crystal structure of a cardiovirus RNA-dependent RNA polymerase reveals an unusual conformation of the polymerase active site. J Virol 2014; 88:5595-607. [PMID: 24600002 DOI: 10.1128/jvi.03502-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Encephalomyocarditis virus (EMCV) is a member of the Cardiovirus genus within the large Picornaviridae family, which includes a number of important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for viral genome replication. In this study, we report the X-ray structures of two different crystal forms of the EMCV RdRp determined at 2.8- and 2.15-Å resolution. The in vitro elongation and VPg uridylylation activities of the purified enzyme have also been demonstrated. Although the overall structure of EMCV 3Dpol is shown to be similar to that of the known RdRps of other members of the Picornaviridae family, structural comparisons show a large reorganization of the active-site cavity in one of the crystal forms. The rearrangement affects mainly motif A, where the conserved residue Asp240, involved in ribonucleoside triphosphate (rNTP) selection, and its neighbor residue, Phe239, move about 10 Å from their expected positions within the ribose binding pocket toward the entrance of the rNTP tunnel. This altered conformation of motif A is stabilized by a cation-π interaction established between the aromatic ring of Phe239 and the side chain of Lys56 within the finger domain. Other contacts, involving Phe239 and different residues of motif F, are also observed. The movement of motif A is connected with important conformational changes in the finger region flanked by residues 54 to 63, harboring Lys56, and in the polymerase N terminus. The structures determined in this work provide essential information for studies on the cardiovirus RNA replication process and may have important implications for the development of new antivirals targeting the altered conformation of motif A. IMPORTANCE The Picornaviridae family is one of the largest virus families known, including many important human and animal pathogens. The RNA-dependent RNA polymerase (RdRp) 3Dpol is a key enzyme for picornavirus genome replication and a validated target for the development of antiviral therapies. Solving the X-ray structure of the first cardiovirus RdRp, EMCV 3Dpol, we captured an altered conformation of a conserved motif in the polymerase active site (motif A) containing the aspartic acid residue involved in rNTP selection and binding. This altered conformation of motif A, which interferes with the correct positioning of the rNTP substrate in the active site, is stabilized by a number of residues strictly conserved among picornaviruses. The rearrangements observed suggest that this motif A segment is a dynamic element that can be modulated by external effectors, either activating or inhibiting enzyme activity, and this type of modulation appears to be general to all picornaviruses.
Collapse
|
58
|
Affiliation(s)
- David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
59
|
Lu G, Gong P. Crystal Structure of the full-length Japanese encephalitis virus NS5 reveals a conserved methyltransferase-polymerase interface. PLoS Pathog 2013; 9:e1003549. [PMID: 23950717 PMCID: PMC3738499 DOI: 10.1371/journal.ppat.1003549] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/27/2013] [Indexed: 12/17/2022] Open
Abstract
The flavivirus NS5 harbors a methyltransferase (MTase) in its N-terminal ≈265 residues and an RNA-dependent RNA polymerase (RdRP) within the C-terminal part. One of the major interests and challenges in NS5 is to understand the interplay between RdRP and MTase as a unique natural fusion protein in viral genome replication and cap formation. Here, we report the first crystal structure of the full-length flavivirus NS5 from Japanese encephalitis virus. The structure completes the vision for polymerase motifs F and G, and depicts defined intra-molecular interactions between RdRP and MTase. Key hydrophobic residues in the RdRP-MTase interface are highly conserved in flaviviruses, indicating the biological relevance of the observed conformation. Our work paves the way for further dissection of the inter-regulations of the essential enzymatic activities of NS5 and exploration of possible other conformations of NS5 under different circumstances. Due to limited coding capacity, RNA viruses often generate proteins that contain more than one enzyme module to fulfill their rather complicated life cycle. Among those, the flavivirus nonstructural protein NS5 comprises an N-terminal methyltransferase (MTase) and a C-terminal RNA-dependent RNA polymerase (RdRP), playing key roles in processes including viral genome replication and capping. Although high-resolution crystal structures are available for MTase or RdRP alone, the intra-molecular interactions between the two modules remain elusive. By solving the crystal-structure of the full-length Japanese encephalitis virus NS5, we provide the first high-resolution readout of NS5 in its integrity, featuring an MTase-RdRP interface that is highly conserved in flaviviruses. Flaviviruses also include other important human pathogens such as dengue, West Nile, yellow fever, and tick-borne encephalitis viruses, currently lacking effective anti-viral drug. The conserved interface revealed by our structure thus may provide possibilities for the pharmaceutical community in the development of anti-flavivirus drug in a broad-spectrum manner.
Collapse
Affiliation(s)
- Guoliang Lu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuchang District, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Gong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuchang District, Wuhan, Hubei, China
- * E-mail: ,
| |
Collapse
|