51
|
Kim DN, Jacobs TM, Kuhlman B. Boosting protein stability with the computational design of β-sheet surfaces. Protein Sci 2016; 25:702-10. [PMID: 26701383 PMCID: PMC4815415 DOI: 10.1002/pro.2869] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 11/09/2022]
Abstract
β-sheets often have one face packed against the core of the protein and the other facing solvent. Mutational studies have indicated that the solvent-facing residues can contribute significantly to protein stability, and that the preferred amino acid at each sequence position is dependent on the precise structure of the protein backbone and the identity of the neighboring amino acids. This suggests that the most advantageous methods for designing β-sheet surfaces will be approaches that take into account the multiple energetic factors at play including side chain rotamer preferences, van der Waals forces, electrostatics, and desolvation effects. Here, we show that the protein design software Rosetta, which models these energetic factors, can be used to dramatically increase protein stability by optimizing interactions on the surfaces of small β-sheet proteins. Two design variants of the β-sandwich protein from tenascin were made with 7 and 14 mutations respectively on its β-sheet surfaces. These changes raised the thermal midpoint for unfolding from 45°C to 64°C and 74°C. Additionally, we tested an empirical approach based on increasing the number of potential salt bridges on the surfaces of the β-sheets. This was not a robust strategy for increasing stability, as three of the four variants tested were unfolded.
Collapse
Affiliation(s)
- Doo Nam Kim
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| | - Timothy M. Jacobs
- Program in Bioinformatics and Computational BiologyUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| | - Brian Kuhlman
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| |
Collapse
|
52
|
Liu JL, Goldman ER, Zabetakis D, Walper SA, Turner KB, Shriver-Lake LC, Anderson GP. Enhanced production of a single domain antibody with an engineered stabilizing extra disulfide bond. Microb Cell Fact 2015; 14:158. [PMID: 26449768 PMCID: PMC4599338 DOI: 10.1186/s12934-015-0340-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Single domain antibodies derived from the variable region of the unique heavy chain antibodies found in camelids yield high affinity and regenerable recognition elements. Adding an additional disulfide bond that bridges framework regions is a proven method to increase their melting temperature, however often at the expense of protein production. To fulfill their full potential it is essential to achieve robust protein production of these stable binding elements. In this work, we tested the hypothesis that decreasing the isoelectric point of single domain antibody extra disulfide bond mutants whose production fell due to the incorporation of the extra disulfide bond would lead to recovery of the protein yield, while maintaining the favorable melting temperature and affinity. RESULTS Introduction of negative charges into a disulfide bond mutant of a single domain antibody specific for the L1 antigen of the vaccinia virus led to approximately 3.5-fold increase of protein production to 14 mg/L, while affinity and melting temperature was maintained. In addition, refolding following heat denaturation improved from 15 to 70 %. It also maintained nearly 100 % of its binding function after heating to 85 °C for an hour at 1 mg/mL. Disappointingly, the replacement of neutral or positively charged amino acids with negatively charged ones to lower the isoelectric point of two anti-toxin single domain antibodies stabilized with a second disulfide bond yielded only slight increases in protein production. Nonetheless, for one of these binders the charge change itself stabilized the structure equivalent to disulfide bond addition, thus providing an alternative route to stabilization which is not accompanied by loss in production. CONCLUSION The ability to produce high affinity, stable single domain antibodies is critical for their utility. While the addition of a second disulfide bond is a proven method for enhancing stability of single domain antibodies, it frequently comes at the cost of reduced yields. While decreasing the isoelectric point of double disulfide mutants of single domain antibodies may improve protein production, charge addition appears to consistently improve refolding and some charge changes can also improve thermal stability, thus providing a number of benefits making the examination of such mutations worth consideration.
Collapse
Affiliation(s)
- Jinny L Liu
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, 20375, USA.
| | - Ellen R Goldman
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, 20375, USA.
| | - Dan Zabetakis
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, 20375, USA.
| | - Scott A Walper
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, 20375, USA.
| | - Kendrick B Turner
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, 20375, USA.
| | - Lisa C Shriver-Lake
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, 20375, USA.
| | - George P Anderson
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, 20375, USA.
| |
Collapse
|
53
|
Bale JB, Park RU, Liu Y, Gonen S, Gonen T, Cascio D, King NP, Yeates TO, Baker D. Structure of a designed tetrahedral protein assembly variant engineered to have improved soluble expression. Protein Sci 2015; 24:1695-701. [PMID: 26174163 PMCID: PMC4594668 DOI: 10.1002/pro.2748] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/06/2015] [Indexed: 12/18/2022]
Abstract
We recently reported the development of a computational method for the design of coassembling multicomponent protein nanomaterials. While four such materials were validated at high-resolution by X-ray crystallography, low yield of soluble protein prevented X-ray structure determination of a fifth designed material, T33-09. Here we report the design and crystal structure of T33-31, a variant of T33-09 with improved soluble yield resulting from redesign efforts focused on mutating solvent-exposed side chains to charged amino acids. The structure is found to match the computational design model with atomic-level accuracy, providing further validation of the design approach and demonstrating a simple and potentially general means of improving the yield of designed protein nanomaterials.
Collapse
Affiliation(s)
- Jacob B Bale
- Department of Biochemistry, University of WashingtonSeattle, Washington, 98195
- Graduate Program in Molecular and Cellular Biology, University of WashingtonSeattle, Washington, 98195
| | - Rachel U Park
- Department of Biochemistry, University of WashingtonSeattle, Washington, 98195
| | - Yuxi Liu
- Department of Chemistry and Biochemistry, UCLALos Angeles, California, 90095
| | - Shane Gonen
- Department of Biochemistry, University of WashingtonSeattle, Washington, 98195
- Janelia Research Campus, Howard Hughes Medical InstituteAshburn, Virginia, 20147
| | - Tamir Gonen
- Janelia Research Campus, Howard Hughes Medical InstituteAshburn, Virginia, 20147
| | - Duilio Cascio
- Institute for Genomics and Proteomics, UCLA-DOELos Angeles, California, 90095
| | - Neil P King
- Department of Biochemistry, University of WashingtonSeattle, Washington, 98195
- Institute for Protein Design, University of WashingtonSeattle, Washington, 98195
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, UCLALos Angeles, California, 90095
- Institute for Genomics and Proteomics, UCLA-DOELos Angeles, California, 90095
| | - David Baker
- Department of Biochemistry, University of WashingtonSeattle, Washington, 98195
- Institute for Protein Design, University of WashingtonSeattle, Washington, 98195
- Howard Hughes Medical Institute, University of WashingtonSeattle, Washington, 98195
| |
Collapse
|
54
|
Close DW, Don Paul C, Langan PS, Wilce MC, Traore DA, Halfmann R, Rocha RC, Waldo GS, Payne RJ, Rucker JB, Prescott M, Bradbury AR. Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering. Proteins 2015; 83:1225-37. [PMID: 25287913 PMCID: PMC4592778 DOI: 10.1002/prot.24699] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/16/2014] [Accepted: 09/27/2014] [Indexed: 01/27/2023]
Abstract
In this article, we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization.
Collapse
Affiliation(s)
- Devin W. Close
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Craig Don Paul
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Patricia S. Langan
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Matthew C.J. Wilce
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Daouda A.K. Traore
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - Randal Halfmann
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Reginaldo C. Rocha
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Geoffery S. Waldo
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | | | - Mark Prescott
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | | |
Collapse
|
55
|
Crystal structure of Bacillus fastidious uricase reveals an unexpected folding of the C-terminus residues crucial for thermostability under physiological conditions. Appl Microbiol Biotechnol 2015; 99:7973-86. [DOI: 10.1007/s00253-015-6520-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/22/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
|
56
|
Turner KB, Liu JL, Zabetakis D, Lee AB, Anderson GP, Goldman ER. Improving the biophysical properties of anti-ricin single-domain antibodies. ACTA ACUST UNITED AC 2015. [PMID: 28626694 PMCID: PMC5466252 DOI: 10.1016/j.btre.2015.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-domain antibodies (sdAbs) derived from heavy-chain only antibodies produced in camelids are attractive immunoreagents due to their small size, high affinity, and ability to refold and retain binding activity after denaturation. It has been observed that some sdAbs, however, exhibit undesirable properties including reduced solubility when subjected to heating or upon long-term storage at production-relevant concentrations, which can limit their usefulness. Using a multi-step, rational design approach that included consensus-sequence driven sequence repairs, the alteration of net protein charge, and the introduction of non-native disulfide bonds, augmented solubility and increased melting temperatures were achieved. The improved sdAbs tolerated storage in solution at high concentration (10 mg/mL) and were able to withstand multiple cycles of heating to high temperature (70 °C). This work demonstrates a pathway for improving the biophysical characteristics of sdAbs which is essential for expanding their utility for both diagnostic as well as therapeutic applications.
Collapse
Affiliation(s)
- Kendrick B. Turner
- American Society for Engineering Education, Postdoctoral Fellow at the Naval Research Laboratory, Washington, DC 20375, USA
| | - Jinny L. Liu
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA
| | - Dan Zabetakis
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA
| | | | - George P. Anderson
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA
| | - Ellen R. Goldman
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA
- Corresponding author. Tel.: +1 202 404 6052
| |
Collapse
|
57
|
Cannon JR, Kluwe C, Ellington A, Brodbelt JS. Characterization of green fluorescent proteins by 193 nm ultraviolet photodissociation mass spectrometry. Proteomics 2014; 14:1165-73. [PMID: 24596159 PMCID: PMC4071602 DOI: 10.1002/pmic.201300364] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/07/2013] [Accepted: 01/13/2014] [Indexed: 11/05/2022]
Abstract
We investigate the utility of 193 nm ultraviolet photodissociation (UVPD) in comparison to CID, higher energy CID (HCD), and electron transfer dissociation (ETD) for top down fragmentation of highly homologous green fluorescent proteins (GFP) in the gas phase. Several GFP variants were constructed via mutation of surface residues to charged moieties, demonstrating different pIs and presenting a challenge for identification by mass spectrometry. Presented is a comparison of fragmentation techniques utilized for top down characterization of four variants with varying levels of surface charge. UVPD consistently resulted in identification of more fragment ions relative to other MS/MS methods, allowing higher confidence identification. In addition to the high number of fragment ions, the sites of fragmentation were more evenly spread throughout the protein backbone, which proved key for localizing the point mutations.
Collapse
Affiliation(s)
- Joe R. Cannon
- Department of Chemistry, University of Texas at Austin, Austin, Texas
| | - Christien Kluwe
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas
| | - Andrew Ellington
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas
| | | |
Collapse
|
58
|
Goldman ER, Brozozog-Lee PA, Zabetakis D, Turner KB, Walper SA, Liu JL, Anderson GP. Negative tail fusions can improve ruggedness of single domain antibodies. Protein Expr Purif 2014; 95:226-32. [PMID: 24440507 DOI: 10.1016/j.pep.2014.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 12/31/2022]
Abstract
Single-domain antibodies (sdAbs), the recombinantly expressed binding domains derived from the heavy-chain-only antibodies found in camelids and sharks, are valued for their ability to refold after heat denaturation. However, some sdAbs are prone to aggregation on extended heating at high concentration. Additionally, sdAbs prepared cytoplasmically often lack the conserved disulfide bond found in variable heavy domains, which both decreases their melting point and can decrease their ability to refold. Genetic fusions of sdAbs with the acid tail of α-synuclein (ATS) resulted in constructs that had enhanced ability to resist aggregation. In addition, almost complete refolding was observed even in the absence of the disulfide bond. These sdAb-ATS fusions expand the utility of sdAbs. They provide sdAbs that are resistant to aggregation, and enable the production of re-foldable sdAbs in the reducing environment of the cytoplasm.
Collapse
Affiliation(s)
- Ellen R Goldman
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, USA
| | | | - Dan Zabetakis
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, USA
| | - Kendrick B Turner
- Science and Engineering Apprenticeship Program, American Society for Engineering Education, 4555 Overlook Ave. SW, Washington, DC 20375, USA
| | - Scott A Walper
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, USA
| | - Jinny L Liu
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, USA
| | - George P Anderson
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, USA.
| |
Collapse
|
59
|
Perchiacca JM, Lee CC, Tessier PM. Optimal charged mutations in the complementarity-determining regions that prevent domain antibody aggregation are dependent on the antibody scaffold. Protein Eng Des Sel 2014; 27:29-39. [PMID: 24398633 DOI: 10.1093/protein/gzt058] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Therapeutic antibodies need to be highly resistant to aggregation due to the high concentrations required for subcutaneous delivery and the potential immunogenicity of antibody aggregates. Human antibody fragments-such as single-domain antibodies (VH or VL)-are typically much less soluble than full-length antibodies. Nevertheless, some aggregation-resistant VH domains have been discovered that are negatively charged at neutral pH and/or enriched in negatively charged residues within the complementarity-determining regions (CDRs). To better understand how to engineer diverse domain antibodies to resist aggregation, we have investigated the solubilizing activity of positively and negatively charged mutations within hydrophobic CDRs of multiple VH scaffolds that differ in their net charge. We find that negatively charged mutations inserted near the edges of hydrophobic CDRs are more effective than positively charged ones at inhibiting aggregation for VH scaffolds that are negatively or near-neutrally charged. In contrast, positively charged CDR mutations prevent aggregation better than negatively charged ones for a VH scaffold that is highly positively charged. Our findings suggest that the net charge of the antibody scaffold is a key determinant of the optimal CDR mutations for preventing aggregation. We expect that our findings will improve the design of aggregation-resistant antibodies with single- and multidomain scaffolds.
Collapse
Affiliation(s)
- Joseph M Perchiacca
- Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | |
Collapse
|
60
|
Abstract
The genomic revolution promises great advances in the search for useful biocatalysts. Function-based metagenomic approaches have identified several enzymes with properties that make them useful candidates for a variety of bioprocesses. As DNA sequencing costs continue to decline, the volume of genomic data, along with their corresponding predicted protein sequences, will continue to increase dramatically, necessitating new approaches to leverage this information for gene-based bioprospecting efforts. Additionally, as new functions are discovered and correlated with this sequence information, the knowledge of the often complex relationship between a protein's sequence and function will improve. This in turn will lead to better gene-based bioprospecting approaches and facilitate the tailoring of desired properties through protein engineering projects. In this chapter, we discuss a number of recent advances in bioprospecting within the context of the genomic age.
Collapse
Affiliation(s)
- Michael A Hicks
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Synthetic Biology Engineering Research Center (SynBERC), Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
61
|
Warwicker J, Charonis S, Curtis RA. Lysine and arginine content of proteins: computational analysis suggests a new tool for solubility design. Mol Pharm 2013; 11:294-303. [PMID: 24283752 PMCID: PMC3885198 DOI: 10.1021/mp4004749] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prediction and engineering of protein solubility is an important but imprecise area. While some features are routinely used, such as the avoidance of extensive non-polar surface area, scope remains for benchmarking of sequence and structural features with experimental data. We study properties in the context of experimental solubilities, protein gene expression levels, and families of abundant proteins (serum albumin and myoglobin) and their less abundant paralogues. A common feature that emerges for proteins with elevated solubility and at higher expression and abundance levels is an increased ratio of lysine content to arginine content. We suggest that the same properties of arginine that give rise to its recorded propensity for specific interaction surfaces also lead to favorable interactions at nonspecific contacts, and thus lysine is favored for proteins at relatively high concentration. A survey of protein therapeutics shows that a significant subset possesses a relatively low lysine to arginine ratio, and therefore may not be favored for high protein concentration. We conclude that modulation of lysine and arginine content could prove a useful and relatively simple addition to the toolkit available for engineering protein solubility in biotechnological applications.
Collapse
Affiliation(s)
- Jim Warwicker
- Faculty of Life Sciences, Manchester Institute of Biotechnology , 131 Princess Street, Manchester M1 7DN, U.K
| | | | | |
Collapse
|
62
|
Affiliation(s)
- Ingemar André
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Jacob Corn
- Department of Early Discovery Biochemistry, Genentech Inc., South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
63
|
Robotham SA, Kluwe C, Cannon JR, Ellington A, Brodbelt JS. De novo sequencing of peptides using selective 351 nm ultraviolet photodissociation mass spectrometry. Anal Chem 2013; 85:9832-8. [PMID: 24050806 DOI: 10.1021/ac402309h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although in silico database search methods remain more popular for shotgun proteomics methods, de novo sequencing offers the ability to identify peptides derived from proteins lacking sequenced genomes and ones with subtle splice variants or truncations. Ultraviolet photodissociation (UVPD) of peptides derivatized by selective attachment of a chromophore at the N-terminus generates a characteristic series of y ions. The UVPD spectra of the chromophore-labeled peptides are simplified and thus amenable to de novo sequencing. This method resulted in an observed sequence coverage of 79% for cytochrome C (eight peptides), 47% for β-lactoglobulin (five peptides), 25% for carbonic anhydrase (six peptides), and 51% for bovine serum albumin (33 peptides). This strategy also allowed differentiation of proteins with high sequence homology as evidenced by de novo sequencing of two variants of green fluorescent protein.
Collapse
Affiliation(s)
- Scott A Robotham
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| | | | | | | | | |
Collapse
|
64
|
Lyskov S, Chou FC, Conchúir SÓ, Der BS, Drew K, Kuroda D, Xu J, Weitzner BD, Renfrew PD, Sripakdeevong P, Borgo B, Havranek JJ, Kuhlman B, Kortemme T, Bonneau R, Gray JJ, Das R. Serverification of molecular modeling applications: the Rosetta Online Server that Includes Everyone (ROSIE). PLoS One 2013; 8:e63906. [PMID: 23717507 PMCID: PMC3661552 DOI: 10.1371/journal.pone.0063906] [Citation(s) in RCA: 283] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/04/2013] [Indexed: 11/21/2022] Open
Abstract
The Rosetta molecular modeling software package provides experimentally tested and rapidly evolving tools for the 3D structure prediction and high-resolution design of proteins, nucleic acids, and a growing number of non-natural polymers. Despite its free availability to academic users and improving documentation, use of Rosetta has largely remained confined to developers and their immediate collaborators due to the code's difficulty of use, the requirement for large computational resources, and the unavailability of servers for most of the Rosetta applications. Here, we present a unified web framework for Rosetta applications called ROSIE (Rosetta Online Server that Includes Everyone). ROSIE provides (a) a common user interface for Rosetta protocols, (b) a stable application programming interface for developers to add additional protocols, (c) a flexible back-end to allow leveraging of computer cluster resources shared by RosettaCommons member institutions, and (d) centralized administration by the RosettaCommons to ensure continuous maintenance. This paper describes the ROSIE server infrastructure, a step-by-step 'serverification' protocol for use by Rosetta developers, and the deployment of the first nine ROSIE applications by six separate developer teams: Docking, RNA de novo, ERRASER, Antibody, Sequence Tolerance, Supercharge, Beta peptide design, NCBB design, and VIP redesign. As illustrated by the number and diversity of these applications, ROSIE offers a general and speedy paradigm for serverification of Rosetta applications that incurs negligible cost to developers and lowers barriers to Rosetta use for the broader biological community. ROSIE is available at http://rosie.rosettacommons.org.
Collapse
Affiliation(s)
- Sergey Lyskov
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Fang-Chieh Chou
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Shane Ó. Conchúir
- California Institute for Quantitative Biomedical Research, University of California San Francisco, San Francisco, California, United States of America
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Bryan S. Der
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kevin Drew
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Daisuke Kuroda
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jianqing Xu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Brian D. Weitzner
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - P. Douglas Renfrew
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Parin Sripakdeevong
- Biophysics Program, Stanford University, Stanford, California, United States of America
| | - Benjamin Borgo
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - James J. Havranek
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Tanja Kortemme
- California Institute for Quantitative Biomedical Research, University of California San Francisco, San Francisco, California, United States of America
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Richard Bonneau
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- Computer Science Department, Courant Institute of Mathematical Sciences, New York University, New York, New York, United States of America
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Physics, Stanford University, Stanford, California, United States of America
| |
Collapse
|