51
|
Yang T, Liu X. Comparative Transcriptome Analysis of Isoetes Sinensis Under Terrestrial and Submerged Conditions. PLANT MOLECULAR BIOLOGY REPORTER 2015; 34:136-145. [PMID: 26843780 PMCID: PMC4722078 DOI: 10.1007/s11105-015-0906-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Isoetes L. is an ancient genus of heterosporous lycopsids with a unique phylogenetic position. Repeated adaptations to environmental changes over time have contributed to occupying a variety of niches in Isoetes. However, we know little about how they adapt to the environmental changes, and the sequence resources are very limited in public databases. Isoetes sinensis is an amphibious plant in this genus, alternating frequently between terrestrial and aquatic environments. In this study, I. sinensis was applied to investigate the adaptations under terrestrial (TC) and submerged (ST) conditions using Illumina RNA-sequencing technology. Approximately 87 million high-quality reads were yielded and assembled into 31,619 unigenes with an average length of 1618 bp. Overall, 28,208 unigenes were annotated against the National Center of Biotechnology Information (NCBI), Non-redundant (Nr), Cluster of Orthologous Groups (COG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Moreover, we identified 1740 differentially expressed genes with 1146 up-regulated and 594 down-regulated genes under TC. GO annotation revealed that stress-relevant categories were remarkably enriched, and KEGG enrichment analysis showed that the phytohormone signalings and carbohydrate metabolism were significantly influenced. Furthermore, a total of 1646 transcription factors (TF) were identified and classified into 54 TF families; among them, 180 TFs were dynamic between terrestrial and submerged conditions. This study is the first report for Isoetes to generate numerous sequences and establish general understandings about the adaptations in the changing environments. The dataset provides a foundation for novel gene discoveries, comparative genomics, functional genomics, and phylogenetics in Isoetes.
Collapse
Affiliation(s)
- Tao Yang
- Laboratory of Plant Systematics and Evolutionary Biology, College of Life Science, Wuhan University, Wuhan, Hubei 430072 China
| | - Xing Liu
- Laboratory of Plant Systematics and Evolutionary Biology, College of Life Science, Wuhan University, Wuhan, Hubei 430072 China
| |
Collapse
|
52
|
Formey D, Iñiguez LP, Peláez P, Li YF, Sunkar R, Sánchez F, Reyes JL, Hernández G. Genome-wide identification of the Phaseolus vulgaris sRNAome using small RNA and degradome sequencing. BMC Genomics 2015; 16:423. [PMID: 26059339 PMCID: PMC4462009 DOI: 10.1186/s12864-015-1639-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/18/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND MiRNAs and phasiRNAs are negative regulators of gene expression. These small RNAs have been extensively studied in plant model species but only 10 mature microRNAs are present in miRBase version 21, the most used miRNA database, and no phasiRNAs have been identified for the model legume Phaseolus vulgaris. Thanks to the recent availability of the first version of the common bean genome, degradome data and small RNA libraries, we are able to present here a catalog of the microRNAs and phasiRNAs for this organism and, particularly, we suggest new protagonists in the symbiotic nodulation events. RESULTS We identified a set of 185 mature miRNAs, including 121 previously unpublished sequences, encoded by 307 precursors and distributed in 98 families. Degradome data allowed us to identify a total of 181 targets for these miRNAs. We reveal two regulatory networks involving conserved miRNAs: those known to play crucial roles in the establishment of nodules, and novel miRNAs present only in common bean, suggesting a specific role for these sequences. In addition, we identified 125 loci that potentially produce phased small RNAs, with 47 of them having all the characteristics of being triggered by a total of 31 miRNAs, including 14 new miRNAs identified in this study. CONCLUSIONS We provide here a set of new small RNAs that contribute to the broader knowledge of the sRNAome of Phaseolus vulgaris. Thanks to the identification of the miRNA targets from degradome analysis and the construction of regulatory networks between the mature microRNAs, we present here the probable functional regulation associated with the sRNAome and, particularly, in N2-fixing symbiotic nodules.
Collapse
Affiliation(s)
- Damien Formey
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 1001, Cuernavaca, 62210, Morelos, Mexico.
| | - Luis Pedro Iñiguez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 1001, Cuernavaca, 62210, Morelos, Mexico.
| | - Pablo Peláez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología (UNAM), Av. Universidad 2001, Cuernavaca, 62210, Morelos, Mexico.
| | - Yong-Fang Li
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Federico Sánchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología (UNAM), Av. Universidad 2001, Cuernavaca, 62210, Morelos, Mexico.
| | - José Luis Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología (UNAM), Av. Universidad 2001, Cuernavaca, 62210, Morelos, Mexico.
| | - Georgina Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 1001, Cuernavaca, 62210, Morelos, Mexico.
| |
Collapse
|
53
|
Kim JH, Lee C, Hyung D, Jo YJ, Park JS, Cook DR, Choi HK. CSGM Designer: a platform for designing cross-species intron-spanning genic markers linked with genome information of legumes. PLANT METHODS 2015; 11:30. [PMID: 25908937 PMCID: PMC4407554 DOI: 10.1186/s13007-015-0074-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 04/09/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Genetic markers are tools that can facilitate molecular breeding, even in species lacking genomic resources. An important class of genetic markers is those based on orthologous genes, because they can guide hypotheses about conserved gene function, a situation that is well documented for a number of agronomic traits. For under-studied species a key bottleneck in gene-based marker development is the need to develop molecular tools (e.g., oligonucleotide primers) that reliably access genes with orthology to the genomes of well-characterized reference species. RESULTS Here we report an efficient platform for the design of cross-species gene-derived markers in legumes. The automated platform, named CSGM Designer (URL: http://tgil.donga.ac.kr/CSGMdesigner), facilitates rapid and systematic design of cross-species genic markers. The underlying database is composed of genome data from five legume species whose genomes are substantially characterized. Use of CSGM is enhanced by graphical displays of query results, which we describe as "circular viewer" and "search-within-results" functions. CSGM provides a virtual PCR representation (eHT-PCR) that predicts the specificity of each primer pair simultaneously in multiple genomes. CSGM Designer output was experimentally validated for the amplification of orthologous genes using 16 genotypes representing 12 crop and model legume species, distributed among the galegoid and phaseoloid clades. Successful cross-species amplification was obtained for 85.3% of PCR primer combinations. CONCLUSION CSGM Designer spans the divide between well-characterized crop and model legume species and their less well-characterized relatives. The outcome is PCR primers that target highly conserved genes for polymorphism discovery, enabling functional inferences and ultimately facilitating trait-associated molecular breeding.
Collapse
Affiliation(s)
- Jin-Hyun Kim
- />Department of Medical Bioscience, Dong-A University, Saha-Gu Nakdong-Daero 550 beongil 37, Busan, 604-714 Republic of Korea
| | - Chaeyoung Lee
- />Department of Medical Bioscience, Dong-A University, Saha-Gu Nakdong-Daero 550 beongil 37, Busan, 604-714 Republic of Korea
| | - Daejin Hyung
- />Department of Computer Science, Dong-A University, Saha-Gu Nakdong-Daero 550 beongil 37, Busan, 604-714 Republic of Korea
| | - Ye-Jin Jo
- />Department of Genetic Engineering, Dong-A University, Saha-Gu Nakdong-Daero 550 beongil 37, Busan, 604-714 Republic of Korea
| | - Joo-Seok Park
- />Department of Applied Bioscience, Dong-A University, Saha-Gu Nakdong-Daero 550 beongil 37, Busan, 604-714 Republic of Korea
| | - Douglas R Cook
- />Department of Plant Pathology, University of California, One Shields Ave, Davis, CA 95616 USA
| | - Hong-Kyu Choi
- />Department of Genetic Engineering, Dong-A University, Saha-Gu Nakdong-Daero 550 beongil 37, Busan, 604-714 Republic of Korea
| |
Collapse
|
54
|
Unamba CIN, Nag A, Sharma RK. Next Generation Sequencing Technologies: The Doorway to the Unexplored Genomics of Non-Model Plants. FRONTIERS IN PLANT SCIENCE 2015; 6:1074. [PMID: 26734016 PMCID: PMC4679907 DOI: 10.3389/fpls.2015.01074] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/16/2015] [Indexed: 05/04/2023]
Abstract
Non-model plants i.e., the species which have one or all of the characters such as long life cycle, difficulty to grow in the laboratory or poor fecundity, have been schemed out of sequencing projects earlier, due to high running cost of Sanger sequencing. Consequently, the information about their genomics and key biological processes are inadequate. However, the advent of fast and cost effective next generation sequencing (NGS) platforms in the recent past has enabled the unearthing of certain characteristic gene structures unique to these species. It has also aided in gaining insight about mechanisms underlying processes of gene expression and secondary metabolism as well as facilitated development of genomic resources for diversity characterization, evolutionary analysis and marker assisted breeding even without prior availability of genomic sequence information. In this review we explore how different Next Gen Sequencing platforms, as well as recent advances in NGS based high throughput genotyping technologies are rewarding efforts on de-novo whole genome/transcriptome sequencing, development of genome wide sequence based markers resources for improvement of non-model crops that are less costly than phenotyping.
Collapse
Affiliation(s)
- Chibuikem I. N. Unamba
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource TechnologyPalampur, India
- Department of Plant Science and Biotechnology, Imo State UniversityOwerri, Nigeria
| | - Akshay Nag
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource TechnologyPalampur, India
| | - Ram K. Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource TechnologyPalampur, India
- *Correspondence: Ram K. Sharma ;
| |
Collapse
|
55
|
Belamkar V, Weeks NT, Bharti AK, Farmer AD, Graham MA, Cannon SB. Comprehensive characterization and RNA-Seq profiling of the HD-Zip transcription factor family in soybean (Glycine max) during dehydration and salt stress. BMC Genomics 2014; 15:950. [PMID: 25362847 PMCID: PMC4226900 DOI: 10.1186/1471-2164-15-950] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/16/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The homeodomain leucine zipper (HD-Zip) transcription factor family is one of the largest plant specific superfamilies, and includes genes with roles in modulation of plant growth and response to environmental stresses. Many HD-Zip genes are characterized in Arabidopsis (Arabidopsis thaliana), and members of the family are being investigated for abiotic stress responses in rice (Oryza sativa), maize (Zea mays), poplar (Populus trichocarpa) and cucumber (Cucmis sativus). Findings in these species suggest HD-Zip genes as high priority candidates for crop improvement. RESULTS In this study we have identified members of the HD-Zip gene family in soybean cv. 'Williams 82', and characterized their expression under dehydration and salt stress. Homology searches with BLASTP and Hidden Markov Model guided sequence alignments identified 101 HD-Zip genes in the soybean genome. Phylogeny reconstruction coupled with domain and gene structure analyses using soybean, Arabidopsis, rice, grape (Vitis vinifera), and Medicago truncatula homologues enabled placement of these sequences into four previously described subfamilies. Of the 101 HD-Zip genes identified in soybean, 88 exist as whole-genome duplication-derived gene pairs, indicating high retention of these genes following polyploidy in Glycine ~13 Mya. The HD-Zip genes exhibit ubiquitous expression patterns across 24 conditions that include 17 tissues of soybean. An RNA-Seq experiment performed to study differential gene expression at 0, 1, 6 and 12 hr soybean roots under dehydration and salt stress identified 20 differentially expressed (DE) genes. Several of these DE genes are orthologs of genes previously reported to play a role under abiotic stress, implying conservation of HD-Zip gene functions across species. Screening of HD-Zip promoters identified transcription factor binding sites that are overrepresented in the DE genes under both dehydration and salt stress, providing further support for the role of HD-Zip genes in abiotic stress responses. CONCLUSIONS We provide a thorough description of soybean HD-Zip genes, and identify potential candidates with probable roles in dehydration and salt stress. Expression profiles generated for all soybean genes, under dehydration and salt stress, at four time points, will serve as an important resource for the soybean research community, and will aid in understanding plant responses to abiotic stress.
Collapse
Affiliation(s)
- Vikas Belamkar
- />Interdepartmental Genetics, Iowa State University, Ames, IA 50011 USA
- />Department of Agronomy, Iowa State University, Ames, IA 50011 USA
| | - Nathan T Weeks
- />United States Department of Agriculture - Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011 USA
| | - Arvind K Bharti
- />National Center for Genome Resources, Santa Fe, NM 87505 USA
| | - Andrew D Farmer
- />National Center for Genome Resources, Santa Fe, NM 87505 USA
| | - Michelle A Graham
- />Department of Agronomy, Iowa State University, Ames, IA 50011 USA
- />United States Department of Agriculture - Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011 USA
| | - Steven B Cannon
- />Department of Agronomy, Iowa State University, Ames, IA 50011 USA
- />United States Department of Agriculture - Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011 USA
| |
Collapse
|