51
|
Cid FP, Maruyama F, Murase K, Graether SP, Larama G, Bravo LA, Jorquera MA. Draft genome sequences of bacteria isolated from the Deschampsia antarctica phyllosphere. Extremophiles 2018; 22:537-552. [PMID: 29492666 DOI: 10.1007/s00792-018-1015-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/18/2018] [Indexed: 11/28/2022]
Abstract
Genome analyses are being used to characterize plant growth-promoting (PGP) bacteria living in different plant compartiments. In this context, we have recently isolated bacteria from the phyllosphere of an Antarctic plant (Deschampsia antarctica) showing ice recrystallization inhibition (IRI), an activity related to the presence of antifreeze proteins (AFPs). In this study, the draft genomes of six phyllospheric bacteria showing IRI activity were sequenced and annotated according to their functional gene categories. Genome sizes ranged from 5.6 to 6.3 Mbp, and based on sequence analysis of the 16S rRNA genes, five strains were identified as Pseudomonas and one as Janthinobacterium. Interestingly, most strains showed genes associated with PGP traits, such as nutrient uptake (ammonia assimilation, nitrogen fixing, phosphatases, and organic acid production), bioactive metabolites (indole acetic acid and 1-aminocyclopropane-1-carboxylate deaminase), and antimicrobial compounds (hydrogen cyanide and pyoverdine). In relation with IRI activity, a search of putative AFPs using current bioinformatic tools was also carried out. Despite that genes associated with reported AFPs were not found in these genomes, genes connected to ice-nucleation proteins (InaA) were found in all Pseudomonas strains, but not in the Janthinobacterium strain.
Collapse
Affiliation(s)
- Fernanda P Cid
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
- Applied Microbial Ecology Laboratory, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile
| | - Fumito Maruyama
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- The Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo, Japan
| | - Kazunori Murase
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Giovanni Larama
- Department of Mathematical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Leon A Bravo
- Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de la Frontera, Temuco, Chile
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Milko A Jorquera
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile.
- Applied Microbial Ecology Laboratory, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile.
| |
Collapse
|
52
|
Hanada S. Anoxygenic Photosynthesis -A Photochemical Reaction That Does Not Contribute to Oxygen Reproduction. Microbes Environ 2016; 31:1-3. [PMID: 27021204 PMCID: PMC4791109 DOI: 10.1264/jsme2.me3101rh] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Satoshi Hanada
- Graduate School of Science and Engineering, Tokyo Metropolitan University
| |
Collapse
|
53
|
Minami T, Anda M, Mitsui H, Sugawara M, Kaneko T, Sato S, Ikeda S, Okubo T, Tsurumaru H, Minamisawa K. Metagenomic Analysis Revealed Methylamine and Ureide Utilization of Soybean-Associated Methylobacterium. Microbes Environ 2016; 31:268-78. [PMID: 27431374 PMCID: PMC5017803 DOI: 10.1264/jsme2.me16035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/16/2016] [Indexed: 01/29/2023] Open
Abstract
Methylobacterium inhabits the phyllosphere of a large number of plants. We herein report the results of comparative metagenome analyses on methylobacterial communities of soybean plants grown in an experimental field in Tohoku University (Kashimadai, Miyagi, Japan). Methylobacterium was identified as the most dominant genus (33%) among bacteria inhabiting soybean stems. We classified plant-derived Methylobacterium species into Groups I, II, and III based on 16S rRNA gene sequences, and found that Group I members (phylogenetically close to M. extorquens) were dominant in soybean-associated Methylobacterium. By comparing 29 genomes, we found that all Group I members possessed a complete set of genes for the N-methylglutamate pathway for methylamine utilization, and genes for urea degradation (urea carboxylase, urea amidolyase, and conventional urease). Only Group I members and soybean methylobacterial isolates grew in a culture supplemented with methylamine as the sole carbon source. They utilized urea or allantoin (a urea-related compound in legumes) as the sole nitrogen source; however, group III also utilized these compounds. The utilization of allantoin may be crucial in soybean-bacterial interactions because allantoin is a transported form of fixed nitrogen in legume plants. Soybean-derived Group I strain AMS5 colonized the model legume Lotus japonicus well. A comparison among the 29 genomes of plant-derived and other strains suggested that several candidate genes are involved in plant colonization such as csgG (curli fimbriae). Genes for the N-methylglutamate pathway and curli fimbriae were more abundant in soybean microbiomes than in rice microbiomes in the field. Based on these results, we discuss the lifestyle of Methylobacterium in the legume phyllosphere.
Collapse
Affiliation(s)
- Tomoyuki Minami
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai 980–85577Japan
| | - Misue Anda
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai 980–85577Japan
| | - Hisayuki Mitsui
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai 980–85577Japan
| | - Masayuki Sugawara
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai 980–85577Japan
| | - Takakazu Kaneko
- Kazusa DNA Research Institute2–6–7 Kazusa-kamatari, Kisarazu, Chiba 292–0818Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai 980–85577Japan
- Kazusa DNA Research Institute2–6–7 Kazusa-kamatari, Kisarazu, Chiba 292–0818Japan
| | - Seishi Ikeda
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai 980–85577Japan
| | - Takashi Okubo
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai 980–85577Japan
| | - Hirohito Tsurumaru
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai 980–85577Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University2–1–1 Katahira, Aoba-ku, Sendai 980–85577Japan
| |
Collapse
|
54
|
Kumar M, Tomar RS, Lade H, Paul D. Methylotrophic bacteria in sustainable agriculture. World J Microbiol Biotechnol 2016; 32:120. [PMID: 27263015 DOI: 10.1007/s11274-016-2074-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/23/2016] [Indexed: 11/28/2022]
Abstract
Excessive use of chemical fertilizers to increase production from available land has resulted in deterioration of soil quality. To prevent further soil deterioration, the use of methylotrophic bacteria that have the ability to colonize different habitats, including soil, sediment, water, and both epiphytes and endophytes as host plants, has been suggested for sustainable agriculture. Methylotrophic bacteria are known to play a significant role in the biogeochemical cycle in soil ecosystems, ultimately fortifying plants and sustaining agriculture. Methylotrophs also improve air quality by using volatile organic compounds such as dichloromethane, formaldehyde, methanol, and formic acid. Additionally, methylotrophs are involved in phosphorous, nitrogen, and carbon cycling and can help reduce global warming. In this review, different aspects of the interaction between methylotrophs and host plants are discussed, including the role of methylotrophs in phosphorus acquisition, nitrogen fixation, phytohormone production, iron chelation, and plant growth promotion, and co-inoculation of these bacteria as biofertilizers for viable agriculture practices.
Collapse
Affiliation(s)
- Manish Kumar
- Amity Institute of Biotechnology, Amity University, Gwalior, MP, 474-005, India
| | - Rajesh Singh Tomar
- Amity Institute of Biotechnology, Amity University, Gwalior, MP, 474-005, India
| | - Harshad Lade
- Department of Environmental Engineering, Konkuk University, Seoul, 143-701, Republic of Korea.
| | - Diby Paul
- Department of Environmental Engineering, Konkuk University, Seoul, 143-701, Republic of Korea.
| |
Collapse
|
55
|
Madhaiyan M, Alex THH, Ngoh ST, Prithiviraj B, Ji L. Leaf-residing Methylobacterium species fix nitrogen and promote biomass and seed production in Jatropha curcas. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:222. [PMID: 26697111 PMCID: PMC4687150 DOI: 10.1186/s13068-015-0404-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/30/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND Jatropha curcas L. (Jatropha) is a potential biodiesel crop that can be cultivated on marginal land because of its strong tolerance to drought and low soil nutrient content. However, seed yield remains low. To enhance the commercial viability and green index of Jatropha biofuel, a systemic and coordinated approach must be adopted to improve seed oil and biomass productivity. Here, we present our investigations on the Jatropha-associated nitrogen-fixing bacteria with an aim to understand and exploit the unique biology of this plant from the perspective of plant-microbe interactions. RESULTS An analysis of 1017 endophytic bacterial isolates derived from different parts of Jatropha revealed that diazotrophs were abundant and diversely distributed into five classes belonging to α, β, γ-Proteobacteria, Actinobacteria and Firmicutes. Methylobacterium species accounted for 69.1 % of endophytic bacterial isolates in leaves and surprisingly, 30.2 % which were able to fix nitrogen that inhabit in leaves. Among the Methylobacterium isolates, strain L2-4 was characterized in detail. Phylogenetically, strain L2-4 is closely related to M. radiotolerans and showed strong molybdenum-iron dependent acetylene reduction (AR) activity in vitro and in planta. Foliar spray of L2-4 led to successful colonization on both leaf surface and in internal tissues of systemic leaves and significantly improved plant height, leaf number, chlorophyll content and stem volume. Importantly, seed production was improved by 222.2 and 96.3 % in plants potted in sterilized and non-sterilized soil, respectively. Seed yield increase was associated with an increase in female-male flower ratio. CONCLUSION The ability of Methylobacterium to fix nitrogen and colonize leaf tissues serves as an important trait for Jatropha. This bacteria-plant interaction may significantly contribute to Jatropha's tolerance to low soil nutrient content. Strain L2-4 opens a new possibility to improve plant's nitrogen supply from the leaves and may be exploited to significantly improve the productivity and Green Index of Jatropha biofuel.
Collapse
Affiliation(s)
- Munusamy Madhaiyan
- />Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604 Singapore
| | - Tan Hian Hwee Alex
- />Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604 Singapore
| | - Si Te Ngoh
- />Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604 Singapore
| | - Bharath Prithiviraj
- />Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401 USA
| | - Lianghui Ji
- />Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604 Singapore
| |
Collapse
|
56
|
Alamgir KM, Masuda S, Fujitani Y, Fukuda F, Tani A. Production of ergothioneine by Methylobacterium species. Front Microbiol 2015; 6:1185. [PMID: 26579093 PMCID: PMC4621440 DOI: 10.3389/fmicb.2015.01185] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 10/12/2015] [Indexed: 01/09/2023] Open
Abstract
Metabolomic analysis revealed that Methylobacterium cells accumulate a large amount of ergothioneine (EGT), which is a sulfur-containing, non-proteinogenic, antioxidative amino acid derived from histidine. EGT biosynthesis and its role in methylotrophy and physiology for plant surface-symbiotic Methylobacterium species were investigated in this study. Almost all Methylobacterium type strains can synthesize EGT. We selected one of the most productive strains (M. aquaticum strain 22A isolated from a moss), and investigated the feasibility of fermentative EGT production through optimization of the culture condition. Methanol as a carbon source served as the best substrate for production. The productivity reached up to 1000 μg/100 ml culture (1200 μg/g wet weight cells, 6.3 mg/g dry weight) in 38 days. Next, we identified the genes (egtBD) responsible for EGT synthesis, and generated a deletion mutant defective in EGT production. Compared to the wild type, the mutant showed better growth on methanol and on the plant surface as well as severe susceptibility to heat treatment and irradiation of ultraviolet (UV) and sunlight. These results suggested that EGT is not involved in methylotrophy, but is involved in their phyllospheric lifestyle fitness of the genus in natural conditions.
Collapse
Affiliation(s)
- Kabir M Alamgir
- Group of Plant-Microbe Interactions, Institute of Plant Science and Resources, Okayama University Okayama, Japan
| | - Sachiko Masuda
- Group of Plant-Microbe Interactions, Institute of Plant Science and Resources, Okayama University Okayama, Japan ; Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency Tokyo, Japan
| | - Yoshiko Fujitani
- Group of Plant-Microbe Interactions, Institute of Plant Science and Resources, Okayama University Okayama, Japan
| | - Fumio Fukuda
- Laboratory of Pomology, Graduate School of Environmental and Life Science, Okayama University Okayama, Japan
| | - Akio Tani
- Group of Plant-Microbe Interactions, Institute of Plant Science and Resources, Okayama University Okayama, Japan
| |
Collapse
|
57
|
Complete Genome Sequence of Methylobacterium aquaticum Strain 22A, Isolated from Racomitrium japonicum Moss. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00266-15. [PMID: 25858842 PMCID: PMC4392154 DOI: 10.1128/genomea.00266-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Methylobacterium species colonize plant surfaces and utilize methanol emitted from plants. Methylobacterium aquaticum strain 22A was isolated from a hydroponic culture of a moss, Racomitrium japonicum, and is a potent plant growth promoter. The complete genome sequencing of the strain confirmed the presence of genes related to plant growth promotion and methylotrophy.
Collapse
|
58
|
Iguchi H, Yurimoto H, Sakai Y. Interactions of Methylotrophs with Plants and Other Heterotrophic Bacteria. Microorganisms 2015; 3:137-51. [PMID: 27682083 PMCID: PMC5023238 DOI: 10.3390/microorganisms3020137] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/18/2015] [Accepted: 03/27/2015] [Indexed: 01/19/2023] Open
Abstract
Methylotrophs, which can utilize methane and/or methanol as sole carbon and energy sources, are key players in the carbon cycle between methane and CO2, the two most important greenhouse gases. This review describes the relationships between methylotrophs and plants, and between methanotrophs (methane-utilizers, a subset of methylotrophs) and heterotrophic bacteria. Some plants emit methane and methanol from their leaves, and provide methylotrophs with habitats. Methanol-utilizing methylotrophs in the genus Methylobacterium are abundant in the phyllosphere and have the ability to promote the growth of some plants. Methanotrophs also inhabit the phyllosphere, and methanotrophs with high methane oxidation activities have been found on aquatic plants. Both plant and environmental factors are involved in shaping the methylotroph community on plants. Methanotrophic activity can be enhanced by heterotrophic bacteria that provide growth factors (e.g., cobalamin). Information regarding the biological interaction of methylotrophs with other organisms will facilitate a better understanding of the carbon cycle that is driven by methylotrophs.
Collapse
Affiliation(s)
- Hiroyuki Iguchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Hiroya Yurimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
59
|
Dourado MN, Aparecida Camargo Neves A, Santos DS, Araújo WL. Biotechnological and agronomic potential of endophytic pink-pigmented methylotrophic Methylobacterium spp. BIOMED RESEARCH INTERNATIONAL 2015; 2015:909016. [PMID: 25861650 PMCID: PMC4377440 DOI: 10.1155/2015/909016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/31/2014] [Accepted: 01/29/2015] [Indexed: 11/17/2022]
Abstract
The genus Methylobacterium is composed of pink-pigmented facultative methylotrophic (PPFM) bacteria, which are able to synthesize carotenoids and grow on reduced organic compounds containing one carbon (C1), such as methanol and methylamine. Due to their high phenotypic plasticity, these bacteria are able to colonize different habitats, such as soil, water, and sediment, and different host plants as both endophytes and epiphytes. In plant colonization, the frequency and distribution may be influenced by plant genotype or by interactions with other associated microorganisms, which may result in increasing plant fitness. In this review, different aspects of interactions with the host plant are discussed, including their capacity to fix nitrogen, nodule the host plant, produce cytokinins, auxin and enzymes involved in the induction of systemic resistance, such as pectinase and cellulase, and therefore plant growth promotion. In addition, bacteria belonging to this group can be used to reduce environmental contamination because they are able to degrade toxic compounds, tolerate high heavy metal concentrations, and increase plant tolerance to these compounds. Moreover, genome sequencing and omics approaches have revealed genes related to plant-bacteria interactions that may be important for developing strains able to promote plant growth and protection against phytopathogens.
Collapse
Affiliation(s)
| | | | - Daiene Souza Santos
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Welington Luiz Araújo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| |
Collapse
|
60
|
|
61
|
Draft Genome Sequence of Methylobacterium sp. Strain L2-4, a Leaf-Associated Endophytic N-Fixing Bacterium Isolated from Jatropha curcas L. GENOME ANNOUNCEMENTS 2014; 2:2/6/e01306-14. [PMID: 25502683 PMCID: PMC4263845 DOI: 10.1128/genomea.01306-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Methylobacterium sp. strain L2-4 is an efficient nitrogen-fixing leaf colonizer of biofuel crop Jatropha curcas. This strain is able to greatly improve the growth and seed yield of Jatropha curcas and is the second reported genome sequence of plant growth-promoting bacteria isolated from Jatropha curcas.
Collapse
|