51
|
Palmerini MG, Belli M, Nottola SA, Miglietta S, Bianchi S, Bernardi S, Antonouli S, Cecconi S, Familiari G, Macchiarelli G. Mancozeb impairs the ultrastructure of mouse granulosa cells in a dose-dependent manner. J Reprod Dev 2017; 64:75-82. [PMID: 29225323 PMCID: PMC5830361 DOI: 10.1262/jrd.2017-143] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mancozeb, an ethylene bis-dithiocarbamate, is widely used as a fungicide and exerts reproductive toxicity in vivo and in vitro in mouse oocytes by altering spindle morphology and
impairing the ability to fertilize. Mancozeb also induces a premalignant status in mouse granulosa cells (GCs) cultured in vitro, as indicated by decreased p53 expression and tenuous oxidative stress.
However, the presence and extent of ultrastructural alterations induced by mancozeb on GCs in vitro have not yet been reported. Using an in vitro model of reproductive toxicity,
comprising parietal GCs from mouse antral follicles cultured with increasing concentrations of mancozeb (0.001–1 µg/ml), we sought to ascertain the in vitro ultrastructural cell toxicity by means of
transmission (TEM) and scanning (SEM) electron microscopy. The results showed a dose-dependent toxicity of mancozeb on mouse GCs. Ultrastructural data showed intercellular contact alterations, nuclear membrane
irregularities, and chromatin marginalization at lower concentrations, and showed chromatin condensation, membrane blebbing, and cytoplasmic vacuolization at higher concentrations. Morphometric analysis evidenced a
reduction of mitochondrial length in GCs exposed to mancozeb 0.01−1 µg/ml and a dose-dependent increase of vacuole dimension. In conclusion, mancozeb induced dose-dependent toxicity against GCs in vitro,
including ultrastructural signs of cell degeneration compatible with apoptosis, likely due to the toxic breakdown product ethylenethiourea. These alterations may represent a major cause of reduced/delayed/missed oocyte
maturation in cases of infertility associated with exposure to pesticides.
Collapse
Affiliation(s)
- Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Manuel Belli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Stefania Annarita Nottola
- Deparment of Anatomy, Histology, Forensic Medicine and Orthopaedics, La Sapienza University of Rome, 00161 Rome, Italy
| | - Selenia Miglietta
- Deparment of Anatomy, Histology, Forensic Medicine and Orthopaedics, La Sapienza University of Rome, 00161 Rome, Italy
| | - Serena Bianchi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Sara Bernardi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Sevastiani Antonouli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Sandra Cecconi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Giuseppe Familiari
- Deparment of Anatomy, Histology, Forensic Medicine and Orthopaedics, La Sapienza University of Rome, 00161 Rome, Italy
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
52
|
Palmerini MG, Zhurabekova G, Balmagambetova A, Nottola SA, Miglietta S, Belli M, Bianchi S, Cecconi S, Di Nisio V, Familiari G, Macchiarelli G. The pesticide Lindane induces dose-dependent damage to granulosa cells in an in vitro culture. Reprod Biol 2017; 17:349-356. [DOI: 10.1016/j.repbio.2017.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 10/18/2022]
|
53
|
iTRAQ-based proteomic profiling of granulosa cells from lamb and ewe after superstimulation. Theriogenology 2017; 101:99-108. [DOI: 10.1016/j.theriogenology.2017.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 12/24/2022]
|
54
|
Khalili MA, Shahedi A, Ashourzadeh S, Nottola SA, Macchiarelli G, Palmerini MG. Vitrification of human immature oocytes before and after in vitro maturation: a review. J Assist Reprod Genet 2017; 34:1413-1426. [PMID: 28822010 DOI: 10.1007/s10815-017-1005-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 07/21/2017] [Indexed: 12/27/2022] Open
Abstract
The use of immature oocytes subjected to in vitro maturation (IVM) opens interesting perspectives for fertility preservation where ovarian reserves are damaged by pathologies or therapies, as in PCO/PCOS and cancer patients. Human oocyte cryopreservation may offer some advantages compared to embryo freezing, such as fertility preservation in women at risk of losing fertility due to oncological treatment or chronic disease, egg donation and postponing childbirth. It also eliminates religious and/or other ethical, legal, and moral concerns of embryo freezing. In addition, a successful oocyte cryopreservation program could eliminate the need for donor and recipient menstrual cycle synchronization. Recent advances in vitrification technology have markedly improved the oocyte survival rate after warming, with fertilization and implantation rates comparable with those of fresh oocytes. Healthy live births can be achieved from the combination of IVM and vitrification, even if vitrification of in vivo matured oocytes is still more effective. Recently, attention is given to highlight whether vitrification procedures are more successful when performed before or after IVM, on immature GV-stage oocytes, or on in vitro matured MII-stage oocytes. In this review, we emphasize that, even if there are no differences in survival rates between oocytes vitrified prior to or post-IVM, reduced maturation rates of immature oocytes vitrified prior to IVM can be, at least in part, explained by underlying ultrastructural and biomolecular alterations.
Collapse
Affiliation(s)
- Mohammad Ali Khalili
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Abbas Shahedi
- Department of Biology and Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sareh Ashourzadeh
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Afzalipour Clinical Center for Infertility, Kerman University of Medical Sciences, Kerman, Iran
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, University of Rome La Sapienza, Rome, Italy
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
55
|
Fasano G, Dechène J, Antonacci R, Biramane J, Vannin AS, Van Langendonckt A, Devreker F, Demeestere I. Outcomes of immature oocytes collected from ovarian tissue for cryopreservation in adult and prepubertal patients. Reprod Biomed Online 2017; 34:575-582. [PMID: 28365199 DOI: 10.1016/j.rbmo.2017.03.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 01/27/2023]
Abstract
The efficiency of oocyte in-vitro maturation (IVM) and vitrification procedures after ex-vivo collection from ovarian tissue were assessed according to patient age, number of retrieved oocytes and tissue transport conditions. The combined procedure was performed in 136 patients: 130 adults (mean 27.6 ± 5.6 years) and six prepubertal girls (mean 8.7 ± 2.3 years). A higher mean number of oocytes were collected in girls compared with adults (11.5 ± 8.0 versus 3.8 ± 4.2, respectively, P < 0.001) but the percentage of degenerated oocytes was significantly higher in girls (35.5% versus 17.1%, respectively, P < 0.001). IVM rates were significantly lower in prepubertal than postpubertal population (10.3% versus 28.1%, P = 0.002). In adults, a negative correlation was observed between number of retrieved oocytes and age (P = 0.002; r = -0.271); the correlation was positive between anti-Müllerian hormone (AMH) and number of collected oocytes (P = 0.002; r = 0.264). IVM rates were not correlated with AMH levels (r = 0.06) or age (r = -0.033). At present, nine oocytes and one embryo have been warmed in four patients and one biochemical pregnancy obtained. This suggests the combined procedure could be an additional option for fertility preservation.
Collapse
Affiliation(s)
- Giovanna Fasano
- Research Laboratory on Human Reproduction, Campus Erasme, Université Libre de Bruxelles (ULB), Belgium; Fertility Clinic, Department of Obstetrics and Gynecology, CUB-Erasme Hospital, Université Libre de Bruxelles (ULB), Belgium.
| | - Julie Dechène
- Research Laboratory on Human Reproduction, Campus Erasme, Université Libre de Bruxelles (ULB), Belgium
| | - Raffaella Antonacci
- Fertility Clinic, Department of Obstetrics and Gynecology, CUB-Erasme Hospital, Université Libre de Bruxelles (ULB), Belgium
| | - Jamila Biramane
- Fertility Clinic, Department of Obstetrics and Gynecology, CUB-Erasme Hospital, Université Libre de Bruxelles (ULB), Belgium
| | - Anne-Sophie Vannin
- Fertility Clinic, Department of Obstetrics and Gynecology, CUB-Erasme Hospital, Université Libre de Bruxelles (ULB), Belgium
| | - Anne Van Langendonckt
- Fertility Clinic, Department of Obstetrics and Gynecology, CUB-Erasme Hospital, Université Libre de Bruxelles (ULB), Belgium
| | - Fabienne Devreker
- Fertility Clinic, Department of Obstetrics and Gynecology, CUB-Erasme Hospital, Université Libre de Bruxelles (ULB), Belgium
| | - Isabelle Demeestere
- Research Laboratory on Human Reproduction, Campus Erasme, Université Libre de Bruxelles (ULB), Belgium; Fertility Clinic, Department of Obstetrics and Gynecology, CUB-Erasme Hospital, Université Libre de Bruxelles (ULB), Belgium
| |
Collapse
|
56
|
Cao X, Li J, Xue H, Wang S, Zhao W, Du Z, Yang Y, Yue Z. Effect of vitrification on meiotic maturation, mitochondrial distribution and glutathione synthesis in immature silver fox cumulus oocyte complexes. Theriogenology 2017; 91:104-111. [DOI: 10.1016/j.theriogenology.2016.12.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/22/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
|
57
|
Masala L, Burrai GP, Bellu E, Ariu F, Bogliolo L, Ledda S, Bebbere D. Methylation dynamics during folliculogenesis and early embryo development in sheep. Reproduction 2017; 153:605-619. [PMID: 28250235 DOI: 10.1530/rep-16-0644] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/10/2017] [Accepted: 02/28/2017] [Indexed: 12/27/2022]
Abstract
Genome-wide DNA methylation reprogramming occurs during mammalian gametogenesis and early embryogenesis. Post-fertilization demethylation of paternal and maternal genomes is considered to occur by an active and passive mechanism respectively, in most mammals but sheep; in this species no loss of methylation was observed in either pronucleus. Post-fertilization reprogramming relies on methylating and demethylating enzymes and co-factors that are stored during oocyte growth, concurrently with the re-methylation of the oocyte itself. The crucial remodelling of the oocyte epigenetic baggage often overlaps with potential interfering events such as exposure to assisted reproduction technologies or environmental changes. Here, we report a temporal analysis of methylation dynamics during folliculogenesis and early embryo development in sheep. We characterized global DNA methylation and hydroxymethylation by immunofluorescence and relatively quantified the expression of the enzymes and co-factors mainly responsible for their remodelling (DNA methyltransferases (DNMTs), ten-eleven translocation (TET) proteins and methyl-CpG-binding domain (MBD) proteins). Our results illustrate for the first time the patterns of hydroxymethylation during oocyte growth. We observed different patterns of methylation and hydroxymethylation between the two parental pronuclei, suggesting that male pronucleus undergoes active demethylation also in sheep. Finally, we describe gene-specific accumulation dynamics for methylating and demethylating enzymes during oocyte growth and observe patterns of expression associated with developmental competence in a differential model of oocyte potential. Our work contributes to the understanding of the methylation dynamics during folliculogenesis and early embryo development and improves the overall picture of early rearrangements that will originate the embryo epigenome.
Collapse
Affiliation(s)
- Laura Masala
- Department of Veterinary MedicineUniversity of Sassari, Sassari, Italy
| | | | - Emanuela Bellu
- Department of Veterinary MedicineUniversity of Sassari, Sassari, Italy
| | - Federica Ariu
- Department of Veterinary MedicineUniversity of Sassari, Sassari, Italy
| | - Luisa Bogliolo
- Department of Veterinary MedicineUniversity of Sassari, Sassari, Italy
| | - Sergio Ledda
- Department of Veterinary MedicineUniversity of Sassari, Sassari, Italy
| | - Daniela Bebbere
- Department of Veterinary MedicineUniversity of Sassari, Sassari, Italy
| |
Collapse
|
58
|
Martino NA, Marzano G, Mangiacotti M, Miedico O, Sardanelli AM, Gnoni A, Lacalandra GM, Chiaravalle AE, Ciani E, Bogliolo L, Minervini F, Pizzi F, Dell'Aquila ME. Exposure to cadmium during in vitro maturation at environmental nanomolar levels impairs oocyte fertilization through oxidative damage: A large animal model study. Reprod Toxicol 2017; 69:132-145. [PMID: 28188904 DOI: 10.1016/j.reprotox.2017.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 01/19/2017] [Accepted: 02/06/2017] [Indexed: 12/12/2022]
Abstract
Cadmium is a highly toxic heavy metal with negative effects on oocyte fertilization. The aim of this study was to analyse whether cadmium-induced impairment of fertilization is caused by mitochondria dysfunction and oxidative stress in the cumulus-oocyte complex (COC). Preliminarily, 19 trace element levels were measured in ovaries from juvenile and adult ewes and age-related cadmium ovarian bioaccumulation at nanomolar concentrations was found. COCs from juvenile and adult ewes, exposed during in vitro maturation to 1nM or 100nM CdCl2, and subjected to in vitro fertilization showed significantly lower fertilization rates in exposed COCs compared with controls. In vitro matured exposed and control COCs underwent confocal microscopy analysis of mitochondria activity and reactive oxygen species (ROS) levels and lipid peroxidation (LPO) assay at cumulus cell and oocyte level. In both age groups, cadmium at nanomolar concentrations induced cumulus-oocyte mitochondria over-activity and oxidative damage which were related to impaired oocyte fertilization.
Collapse
Affiliation(s)
- N A Martino
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Via Manfredonia 20, 71121 Foggia, Italy; Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Str. Prov. Casamassima Km 3, 70010, Valenzano, Bari, Italy.
| | - G Marzano
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Str. Prov. Casamassima Km 3, 70010, Valenzano, Bari, Italy.
| | - M Mangiacotti
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Via Manfredonia 20, 71121 Foggia, Italy.
| | - O Miedico
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Via Manfredonia 20, 71121 Foggia, Italy.
| | - A M Sardanelli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, P.zza G. Cesare, 11 70124 Bari, Italy; Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), via del Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - A Gnoni
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, P.zza G. Cesare, 11 70124 Bari, Italy.
| | - G M Lacalandra
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Str. Prov. Casamassima Km 3, 70010, Valenzano, Bari, Italy.
| | - A E Chiaravalle
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Via Manfredonia 20, 71121 Foggia, Italy.
| | - E Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Str. Prov. Casamassima Km 3, 70010, Valenzano, Bari, Italy.
| | - L Bogliolo
- Obstetrics and Gynaecology Section, Department of Veterinary Medicine, Via Vienna, n°2 07100 Sassari, Italy.
| | - F Minervini
- Istituto di Scienze delle Produzioni Alimentari (ISPA), National Research Council of Italy (CNR), Via G. Amendola 122/O, 70125 Bari (BA), Italy.
| | - F Pizzi
- Istituto di Biologia e Biotecnologia Agraria (IBBA), National Research Council of Italy (CNR), Sede di Lodi-Via A. Einstein, 26500 Lodi, Italy.
| | - M E Dell'Aquila
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Str. Prov. Casamassima Km 3, 70010, Valenzano, Bari, Italy.
| |
Collapse
|
59
|
Supplementation with nanomolar concentrations of verbascoside during in vitro maturation improves embryo development by protecting the oocyte against oxidative stress: a large animal model study. Reprod Toxicol 2016; 65:204-211. [PMID: 27522010 DOI: 10.1016/j.reprotox.2016.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/27/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023]
Abstract
The effects of verbascoside (VB), added at nanomolar concentrations during in vitro maturation (IVM) of juvenile sheep oocytes, on in vitro embryo development and its mechanisms of action at the oocyte level were analyzed. Developmental rates, after IVM in the presence/absence of VB (1nM for 24h; 1nM for 2h; 10nM for 2h), were evaluated. The bioenergetic/oxidative status of oocytes matured after IVM in the presence/absence of 1nM VB for 24h was assessed by confocal analysis of mitochondria and reactive oxygen species (ROS), lipid peroxidation (LPO) assay, and quantitative PCR of bioenergy/redox-related genes. The addition of 1nM VB during 24h IVM significantly increased blastocyst formation and quality. Verbascoside reduced oocyte ROS and LPO and increased mitochondria/ROS colocalization while keeping mitochondria activity and gene expression unchanged. In conclusion, supplementation with nanomolar concentrations of VB during IVM, in the juvenile sheep model, promotes embryo development by protecting the oocyte against oxidative stress.
Collapse
|
60
|
Wu Y, Lin J, Li X, Han B, Wang L, Liu M, Huang J. Transcriptome profile of one-month-old lambs' granulosa cells after superstimulation. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:20-33. [PMID: 27189640 PMCID: PMC5205588 DOI: 10.5713/ajas.15.0999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/23/2016] [Accepted: 05/02/2016] [Indexed: 12/25/2022]
Abstract
Objective Superstimulatory treatment of one-month-old lambs can achieve synchronous development of numerous growing follicles. However, these growing follicles cannot complete maturation and ovulation. Oocyte maturation and competence are acquired during follicular development, in which granulosa cells play an essential role. Methods In this study, we applied RNA sequencing to analyze and compare gene expression between prepubertal and adult superstimulated follicle granulosa cells in sheep. Results There were more than 300 genes that significantly differed in expression. Among these differently expressed genes, many extracellular matrix genes (EGF containing Fibulin Like Extracellular Matrix Protein 1, pentraxin 3, adrenomedullin, and osteopontin) were significantly down-regulated in the superstimulated follicles. Ingenuity pathway and gene ontology analyses revealed that processes of axonal guidance, cell proliferation and DNA replication were expressed at higher levels in the prepubertal follicles. Epidermal growth factor, T-Box protein 2 and beta-estradiol upstream regulator were predicted to be active in prepubertal follicles. By comparison, tumor protein P53 and let-7 were most active in adult follicles. Conclusion These results may contribute to a better understanding of the mechanisms governing the development of granulosa cells in the growing follicle in prepubertal sheep.
Collapse
Affiliation(s)
- Yangsheng Wu
- Biotechnology Research Institute, Xinjiang Academy of Animal Science, Urumqi 830-000, China
| | - Jiapeng Lin
- Biotechnology Research Institute, Xinjiang Academy of Animal Science, Urumqi 830-000, China
| | - Xiaolin Li
- Biotechnology Research Institute, Xinjiang Academy of Animal Science, Urumqi 830-000, China
| | - Bing Han
- Biotechnology Research Institute, Xinjiang Academy of Animal Science, Urumqi 830-000, China
| | - Liqin Wang
- Biotechnology Research Institute, Xinjiang Academy of Animal Science, Urumqi 830-000, China
| | - Mingjun Liu
- Biotechnology Research Institute, Xinjiang Academy of Animal Science, Urumqi 830-000, China
| | - Juncheng Huang
- Biotechnology Research Institute, Xinjiang Academy of Animal Science, Urumqi 830-000, China
| |
Collapse
|