51
|
Lv C, Yang S, Chen X, Zhu X, Lin W, Wang L, Huang Z, Wang M, Tu G. MicroRNA-21 promotes bone mesenchymal stem cells migration in vitro by activating PI3K/Akt/MMPs pathway. J Clin Neurosci 2017; 46:156-162. [PMID: 28844616 DOI: 10.1016/j.jocn.2017.07.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/31/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022]
Abstract
MicroRNA-21 (miR-21) contributes to anti-apoptosis in bone marrow mesenchymal stem cells (BMSC), but its role in the migration of BMSCs remains vague. The aim of this study was to determine the possible effect of miR-21 on regulating BMSCs directional migration and the expression of MMP-2/MMP-9 in BMSCs in vitro. BMSCs were successfully infected with miR-21-up lentivirus. Cell migration using Transwell assay indicated that upregulated expression of miR-21 could significantly promote BMSCs migration. Western blot analysis indicated that miR-21 significantly upregulated the expression of MMP-2 and MMP-9, which were related to metastasis-associated genes. GM6001, the specific MMPs inhibitor, abrogated the upregulated expression of MMP-2/MMP-9 and abolished the positive effect of miR-21 on promoting BMSCs migration. Meanwhile, miR-21 significantly enhanced Akt phosphorylation, as measured by Western blot analysis. LY294002, an inhibitor of Akt activation, abrogated the phosphorylation of Akt and abolished the positive effect of miR-21 on promoting BMSCs migration and upregulating MMP-2/MMP-9 expression. These results suggest that miR-21 contributes to BMSCs migration by upregulating MMP-2/MMP-9, potentially via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Chen Lv
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Shengwu Yang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xin Chen
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiongbai Zhu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wenjun Lin
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lu Wang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhengxiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Mingyue Wang
- Department of Orthopedics, Liaoning Armed Force Hospital, Shenyang, Liaoning 110001, China
| | - Guanjun Tu
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
52
|
Tsai C, Yang D, Lin C, Chen T, Tang C, Huang Y. Sphingosine-1-phosphate suppresses chondrosarcoma metastasis by upregulation of tissue inhibitor of metalloproteinase 3 through suppressing miR-101 expression. Mol Oncol 2017; 11:1380-1398. [PMID: 28672103 PMCID: PMC5623823 DOI: 10.1002/1878-0261.12106] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/01/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023] Open
Abstract
Chondrosarcoma is the second most common primary malignancy form of bone cancer, exhibiting resistance to chemotherapy and radiation therapy as well as developing high metastasis ability in late‐stage tumors. Thus, understanding the metastatic processes of chondrosarcoma is considered a strategy for the treatment of this disease. Sphingosine 1‐phosphate (S1P), a bioactive sphingolipid, is produced intracellularly by sphingosine kinase (SphK) and is regarded as a second signaling molecule that regulates inflammation, proliferation, angiogenesis, and metastasis. However, the effect of S1P on chondrosarcoma remains uncertain. As demonstrated by the transwell, immunoblotting, and real‐time PCR analyses, we found that S1P inhibited cell migration and MMP‐2 expression through the upregulation of the tissue inhibitor of metalloproteinase‐3 (TIMP‐3) expression in human chondrosarcoma cells. Additionally, we also showed that microRNA (miRNA)‐101, which targets the 3′ untranslated region (3′UTR) of TIMP‐3, decreased significantly following S1P treatment. After transfection with miR‐101 mimics, the S1P‐regulated cell migration and TIMP‐3 expression were both reversed. Furthermore, we also showed that the S1P‐inhibited cell migration is mediated through the c‐Src/MEK/ERK signaling axis. Meanwhile, the in vivo study indicated that overexpression of SphK1 decreases chondrosarcoma metastasis to the lungs. Our results illustrate the clinical significance between SphK1, TIMP‐3, and miR‐101 in human chondrosarcoma patients. Taken together, our results suggest that S1P and miR‐101 may prove to be potential therapeutic targets for future chondrosarcoma treatment.
Collapse
Affiliation(s)
- Chun‐Hao Tsai
- School of MedicineChina Medical UniversityTaichungTaiwan
- Department of Orthopedic SurgeryChina Medical University HospitalTaichungTaiwan
| | - Dong‐Ying Yang
- Graduate Institute of Basic Medical ScienceChina Medical UniversityTaichungTaiwan
| | - Chih‐Yang Lin
- Graduate Institute of Basic Medical ScienceChina Medical UniversityTaichungTaiwan
| | - Tsung‐Ming Chen
- Department of PharmacologyChina Medical UniversityTaichungTaiwan
- Department and Graduate Institute of AquacultureNational Kaohsiung Marine UniversityKaohsiungTaiwan
| | - Chih‐Hsin Tang
- Department of Orthopedic SurgeryChina Medical University HospitalTaichungTaiwan
- Graduate Institute of Basic Medical ScienceChina Medical UniversityTaichungTaiwan
- Department of BiotechnologyCollege of Medical and Health ScienceAsia UniversityTaichungTaiwan
| | - Yuan‐Li Huang
- Department of BiotechnologyCollege of Medical and Health ScienceAsia UniversityTaichungTaiwan
- Department of Medical ResearchChina Medical University HospitalTaichungTaiwan
| |
Collapse
|
53
|
魏 国, 杨 菁. MicroRNAs在结直肠癌中的研究进展. Shijie Huaren Xiaohua Zazhi 2017; 25:1928-1933. [DOI: 10.11569/wcjd.v25.i21.1928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
结直肠癌在我国恶性肿瘤中的发病率较高, 且其死亡率居高不下. 目前, 越来越多的学者十分关注微小RNAs(microRNAs, miRNAs)与结直肠癌的关系. miRNAs是普遍存在于生物体内的一类小分子非编码RNA, miRNAs的异常表达与结直肠癌的发生和进展密切相关. miRNAs可以通过转录后基因调控的方式, 来影响肿瘤细胞的增殖、调亡以及对化疗的敏感性等. 在这里, 我们回顾了近年来关于miRNAs与结直肠癌的相关文献, 了解miRNAs在结直肠癌中的表达、结直肠癌化疗耐药以及其与预后的关系, 从而更好的了解结直肠癌进展的生物学过程, 有助于结直肠癌的诊断与治疗, 提高结直肠癌患者的预后.
Collapse
|
54
|
Jin R, Xu S, Lin X, Shen M. MiR-136 controls neurocytes apoptosis by regulating Tissue Inhibitor of Metalloproteinases-3 in spinal cord ischemic injury. Biomed Pharmacother 2017; 94:47-54. [PMID: 28753453 DOI: 10.1016/j.biopha.2017.07.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/04/2017] [Accepted: 07/11/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Spinal cord ischemia is a serious injury that threatens human health and life. Furthermore, it was widely accepted that miR-136 was mediated in the spinal injury, while whether it regulated neurocytes apoptosis in I/R-induced spinal cord injury remains unclear. METHODS Spinal cord ischemia injury (SCII) rats were induced by clamping the nontraumatic vascular clip on the abdominal aorta. Real-time PCR was conducted to determine the mRNA expression, and western blot was carried out to measure protein expression. TUNEL assay was used to measure cell apoptosis. RESULTS MiR-136 was up-regulated, while Tissue Inhibitor of Metalloproteinases-3 (TIMP3) was down-regulated in both SCII rats and hypoxic neurocytes. MiR-136 overexpression protected neurocytes against injury that induced by hypoxia. TIMP3 was the target gene of miR-136. Hypoxia supplementation decreased the expression of miR-136, promoted TIMP3 expression, and urged cell apoptosis, cells transfected with miR-136 mimic reversed the effect that induced by hypoxia, while cells co-transfected with pcDNA-TIMP3 abolished the results that induced by overexpressed miR-136. CONCLUSION MiR-136 regulated neurocytes apoptosis of SCII by mediating TIMP3.
Collapse
Affiliation(s)
- Rilong Jin
- Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Sanzhong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiangjin Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Miaoda Shen
- Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
55
|
Dai J, Chen W, Lin Y, Wang S, Guo X, Zhang QQ. Exposure to Concentrated Ambient Fine Particulate Matter Induces Vascular Endothelial Dysfunction via miR-21. Int J Biol Sci 2017; 13:868-877. [PMID: 28808419 PMCID: PMC5555104 DOI: 10.7150/ijbs.19868] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/03/2017] [Indexed: 12/22/2022] Open
Abstract
Vascular endothelial permeability transition does not cause significant lesions, but enhanced permeability may contribute to the development of vascular and other diseases, including atherosclerosis, hypertension, heart failure and cancer. Therefore, elucidating the effect of Particulate Matter 2.5 (PM2.5) on vascular endothelial permeability could help prevent disease that might be caused by PM2.5. Our previous study and the present one revealed that PM2.5 significantly increased the permeability of vascular endothelial cells and disrupted the barrier function of the vascular endothelium in Sprague Dawley (SD) rats. We found that the effect occurred mainly through induction of signal transducer and activator of transcription 3 (STAT3) phosphorylation, further transcriptional regulation of microRNA21 (miR-21) and promotion of miR-21 expression. These changes post-transcriptionally repress tissue inhibitor of metalloproteinases 3 (TIMP3) and promote matrix metalloproteinases 9 (MMP9) expression. This work provides evidence that PM2.5 exerts direct inhibitory action on vascular endothelial barrier function and might give rise to a number of vascular diseases.
Collapse
Affiliation(s)
- Jianwei Dai
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510182, China.,The State Key Lab of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
| | - Wensheng Chen
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510182, China
| | - Yuyin Lin
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510182, China
| | - Shiwen Wang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510182, China
| | - Xiaolan Guo
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510182, China
| | - Qian-Qian Zhang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
56
|
Wang P, Solorzano W, Diaz T, Magyar CE, Henning SM, Vadgama JV. Arctigenin inhibits prostate tumor cell growth in vitro and in vivo. CLINICAL NUTRITION EXPERIMENTAL 2017; 13:1-11. [PMID: 29062885 PMCID: PMC5650108 DOI: 10.1016/j.yclnex.2017.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The low bioavailability of most phytochemicals limits their translation to humans. We investigated whether arctigenin, a novel anti-inflammatory lignan from the seeds of Arctium lappa, has favorable bioavailability/potency against prostate cancer. The anticarcinogenic activity of arctigenin was investigated both in vitro using the androgen-sensitive LNCaP and LAPC-4 human prostate cancer cells and pre-malignant WPE1-NA22 cells, and in vivo using xenograft mouse models. Arctigenin at lower doses (< 2μM) significantly inhibited the proliferation of LNCaP and LAPC-4 cells by 30-50% at 48h compared to control, and inhibited WPE1-NA22 cells by 75%, while did not affect normal prostate epithelial cells. Male severe combined immunodeficiency (SCID) mice were implanted subcutaneously with LAPC-4 cells for in vivo studies. In one experiment, the intervention started one week after tumor implantation. Mice received arctigenin at 50mg/kg (LD) or 100mg/kg (HD) b.w. daily or vehicle control by oral gavage. After 6 weeks, tumor growth was inhibited by 50% (LD) and 70% (HD) compared to control. A stronger tumor inhibitory effect was observed in a second experiment where arctigenin intervention started two weeks prior to tumor implantation. Arc was detectable in blood and tumors in Arc groups, with a mean value up to 2.0 μM in blood, and 8.3 nmol/g tissue in tumors. Tumor levels of proliferation marker Ki67, total and nuclear androgen receptor, and growth factors including VEGF, EGF, and FGF-β were significantly decreased by Arc, along with an increase in apoptosis marker of Bax/Bcl-2 ratio. Genes responsive to arctigenin were identified including TIMP3 and ZNF185, and microRNAs including miR-126-5p, and miR-21-5p. This study provides the first in vivo evidence of the strong anticancer activity of arctigenin in prostate cancer. The effective dose of arctigenin in vitro is physiologically achievable in vivo, which provides a high promise in its translation to human application.
Collapse
Affiliation(s)
- Piwen Wang
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA 90059
- Center for Human Nutrition, School of Medicine, University of California, Los Angeles, CA, USA 90095
- David Geffen, School of Medicine, University of California, Los Angeles, CA, USA 90095
| | - Walter Solorzano
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA 90059
| | - Tanya Diaz
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA 90059
| | - Clara E. Magyar
- Department of Pathology, School of Medicine, University of California, Los Angeles, CA, USA 90095
| | - Susanne M. Henning
- Center for Human Nutrition, School of Medicine, University of California, Los Angeles, CA, USA 90095
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA 90059
- David Geffen, School of Medicine, University of California, Los Angeles, CA, USA 90095
| |
Collapse
|
57
|
Dai J, Lin Y, Duan Y, Li Z, Zhou D, Chen W, Wang L, Zhang QQ. Andrographolide Inhibits Angiogenesis by Inhibiting the Mir-21-5p/TIMP3 Signaling Pathway. Int J Biol Sci 2017; 13:660-668. [PMID: 28539838 PMCID: PMC5441182 DOI: 10.7150/ijbs.19194] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/17/2017] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis provides nutrients and oxygen to promote tumor growth and affords a channel that facilitates tumor cell entry into the circulation. Andrographolide (Andro) possess anti-tumor activity; however, its direct effect on angiogenesis still needs to be clarified. In this study, our experiments revealed that Andro significantly inhibited vascular growth in chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) models. Meanwhile, tumor angiogenesis was also suppressed by Andro. Additionally, we found that cell proliferation, migration and tube formation of vascular endothelial cells was inhibited by Andro treatment in vitro. The effect was primarily mediated through inhibition of miR-21-5p expression and further targeting of TIMP3. This work provides evidence that Andro directly inhibits angiogenesis and might be an effective anti-angiogenic therapeutic drug for cancer treatment.
Collapse
Affiliation(s)
- Jianwei Dai
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510000, China
| | - Yuyin Lin
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510000, China
| | - Youfa Duan
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zixuan Li
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dalei Zhou
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wensheng Chen
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510000, China
| | - Lijing Wang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian-Qian Zhang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
58
|
Zhang Y, Sui J, Shen X, Li C, Yao W, Hong W, Peng H, Pu Y, Yin L, Liang G. Differential expression profiles of microRNAs as potential biomarkers for the early diagnosis of lung cancer. Oncol Rep 2017; 37:3543-3553. [PMID: 28498428 DOI: 10.3892/or.2017.5612] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/10/2017] [Indexed: 11/05/2022] Open
Abstract
Lung cancer is one of the most lethal malignancies worldwide. To reduce the high morbidity and mortality of the disease, sensitive and specific biomarkers for early detection are urgently needed. Tumor-specific microRNAs (miRNAs) seem to be potential biomarkers for the early diagnosis and treatment of cancer. In this study, the microarray of miRNAs and mRNAs on the same samples was performed and the intersection taken with The Cancer Genome Atlas (TCGA) lung cancer miRNA/RNAseq dataset. Then, miRNA-mRNA regulatory network was constructed to identify miRNA candidates associated with lung cancer through integrating gene expression and miRNA-target prediction. Furthermore, the expression levels of miRNA candidates were validated by stem-loop real-time reverse transcription PCR (qRT-PCR) in larger lung cancer population. The relationship between signature miRNAs and the risk of lung cancer were assessed by conditional logistic regression analysis. Diagnostic value of these miRNAs was determined by areas under receiver operating characteristic curves (ROC). The Affymetrix microarray analysis identified a total of 116 miRNAs and 502 mRNAs that could distinguish lung tumor tissues from adjacent non-tumor tissues, of which 70 miRNAs and 136 mRNAs were upregulated, while 46 miRNAs and 366 mRNAs were downregulated, respectively. In combination with TCGA analysis, we identified 32 miRNAs and 377 mRNAs related to lung cancer. Then, 28 key miRNAs related to 61 inter-section mRNAs were identified by miRNA-mRNA network analysis. The miRNA function analysis was indicative of that 18 upregulated and 10 downregulated miRNAs involved in signaling pathways related to Environmental Information Processing and Human Diseases. Population result showed that the expression of 7 miRNAs (miR-205-5p, miR-3917, miR-30a-3p, miR-30a-5p, miR-30c-2-3p, miR-30d-5p and miR-27a-5p) was consistent with the analysis result of microarray and TCGA. In addition, upregulation of miR-205-5p, miR-3917 and downregulation of miR-30a-3p, miR-30a-5p, miR-30c-2-3p, miR-30d-5p, miR-27a-5p increased the risk of lung cancer by conditional logistic regression analysis. The diagnostic accuracy of miR-205-5p, miR-3917, miR-27a-5p, miR-30a-3p, miR-30a-5p, miR-30c-2-3p, miR-30d-5p showed that their corresponding AUCs were 0.728, 0.661, 0.637, 0.758, 0.772, 0.734, 0.776, respectively. Therefore, there are a set of signature miRNAs which may be promising biomarkers for the early screening of high-risk populations and early diagnosis of lung cancer.
Collapse
Affiliation(s)
- Yanqiu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Jing Sui
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xian Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Chengyun Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Wenzhuo Yao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Weiwei Hong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Hui Peng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
59
|
Lam GC, Sefton MV. Harnessing gene and drug delivery for vascularizing engineered tissue platforms. Drug Discov Today 2016; 21:1532-1539. [PMID: 27319292 DOI: 10.1016/j.drudis.2016.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 01/19/2023]
Abstract
Enhancement of tissue vascularization is a therapeutic target for many ischemic conditions, and is crucial for successful engraftment of therapeutic cells for tissue regeneration. The authors present opportunities for using these platforms for dissecting the role of angiogenic mechanisms and highlight recent gene and drug delivery strategies for enhancing vascularization of engineered tissues. Modular tissue engineering is featured as an example.
Collapse
Affiliation(s)
- Gabrielle C Lam
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Michael V Sefton
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|