51
|
Affiliation(s)
- Samia Hannaoui
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Calgary Prion Research Unit, University of Calgary, Calgary, Canada
| | - Hermann M. Schatzl
- Calgary Prion Research Unit, University of Calgary, Calgary, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Sabine Gilch
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Calgary Prion Research Unit, University of Calgary, Calgary, Canada
- * E-mail:
| |
Collapse
|
52
|
Pathogen-mediated selection in free-ranging elk populations infected by chronic wasting disease. Proc Natl Acad Sci U S A 2017; 114:12208-12212. [PMID: 29087314 DOI: 10.1073/pnas.1707807114] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pathogens can exert a large influence on the evolution of hosts via selection for alleles or genotypes that moderate pathogen virulence. Inconsistent interactions between parasites and the host genome, such as those resulting from genetic linkages and environmental stochasticity, have largely prevented observation of this process in wildlife species. We examined the prion protein gene (PRNP) in North American elk (Cervus elaphus nelsoni) populations that have been infected with chronic wasting disease (CWD), a contagious, fatal prion disease, and compared allele frequency to populations with no history of exposure to CWD. The PRNP in elk is highly conserved and a single polymorphism at codon 132 can markedly extend CWD latency when the minor leucine allele (132L) is present. We determined population exposure to CWD, genotyped 1,018 elk from five populations, and developed a hierarchical Bayesian model to examine the relationship between CWD prevalence and PRNP 132L allele frequency. Populations infected with CWD for at least 30-50 y exhibited 132L allele frequencies that were on average twice as great (range = 0.23-0.29) as those from uninfected populations (range = 0.04-0.17). Despite numerous differences between the elk populations in this study, the consistency of increase in 132L allele frequency suggests pathogen-mediated selection has occurred due to CWD. Although prior modeling work predicted that selection will continue, the potential for fitness costs of the 132L allele or new prion protein strains to arise suggest that it is prudent to assume balancing selection may prevent fixation of the 132L allele in populations with CWD.
Collapse
|
53
|
Cheng YC, Hannaoui S, John TR, Dudas S, Czub S, Gilch S. Real-time Quaking-induced Conversion Assay for Detection of CWD Prions in Fecal Material. J Vis Exp 2017. [PMID: 28994814 DOI: 10.3791/56373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The RT-QuIC technique is a sensitive in vitro cell-free prion amplification assay based mainly on the seeded misfolding and aggregation of recombinant prion protein (PrP) substrate using prion seeds as a template for the conversion. RT-QuIC is a novel high-throughput technique which is analogous to real-time polymerase chain reaction (PCR). Detection of amyloid fibril growth is based on the dye Thioflavin T, which fluoresces upon specific interaction with ᵦ-sheet rich proteins. Thus, amyloid formation can be detected in real time. We attempted to develop a reliable non-invasive screening test to detect chronic wasting disease (CWD) prions in fecal extract. Here, we have specifically adapted the RT-QuIC technique to reveal PrPSc seeding activity in feces of CWD infected cervids. Initially, the seeding activity of the fecal extracts we prepared was relatively low in RT-QuIC, possibly due to potential assay inhibitors in the fecal material. To improve seeding activity of feces extracts and remove potential assay inhibitors, we homogenized the fecal samples in a buffer containing detergents and protease inhibitors. We also submitted the samples to different methodologies to concentrate PrPSc on the basis of protein precipitation using sodium phosphotungstic acid, and centrifugal force. Finally, the feces extracts were tested by optimized RT-QuIC which included substrate replacement in the protocol to improve the sensitivity of detection. Thus, we established a protocol for sensitive detection of CWD prion seeding activity in feces of pre-clinical and clinical cervids by RT-QuIC, which can be a practical tool for non-invasive CWD diagnosis.
Collapse
Affiliation(s)
- Yo Ching Cheng
- Dept. of Ecosystem and Public Health, Calgary Prion Research Units, Faculty of Veterinary Medicine, University of Calgary
| | - Samia Hannaoui
- Dept. of Ecosystem and Public Health, Calgary Prion Research Units, Faculty of Veterinary Medicine, University of Calgary
| | | | - Sandor Dudas
- Canadian Food Inspection Agency, Lethbridge Laboratories
| | - Stefanie Czub
- Canadian Food Inspection Agency, Lethbridge Laboratories
| | - Sabine Gilch
- Dept. of Ecosystem and Public Health, Calgary Prion Research Units, Faculty of Veterinary Medicine, University of Calgary;
| |
Collapse
|
54
|
Candelise N, Schmitz M, Da Silva Correia SM, Arora AS, Villar-Piqué A, Zafar S, Llorens F, Cramm M, Zerr I. Applications of the real-time quaking-induced conversion assay in diagnosis, prion strain-typing, drug pre-screening and other amyloidopathies. Expert Rev Mol Diagn 2017; 17:897-904. [PMID: 28817974 DOI: 10.1080/14737159.2017.1368389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The development of in vitro protein misfolding amplification assays for the detection and analysis of abnormally folded proteins, such as proteinase K resistant prion protein (PrPres) was a major innovation in the prion field. In prion diseases, these types of assays imitate the pathological conversion of the cellular PrP (PrPC) into a proteinase resistant associated conformer or amyloid, called PrPres. Areas covered: The most prominent protein misfolding amplification assays are the protein misfolding cyclic amplification (PMCA), which is based on sonication and the real-time quaking-induced conversion (RT-QuIC) technique based on shaking. The more recently established RT-QuIC is fully automatic and enables the monitoring of misfolded protein aggregates in real-time by using a fluorescent dye. Expert commentary: RT-QuIC is a very robust and highly reproducible test system which is applicable in diagnosis, prion strain-typing, drug pre-screening and other amyloidopathies.
Collapse
Affiliation(s)
- Niccolò Candelise
- a Department of Neurology , University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Matthias Schmitz
- a Department of Neurology , University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Susana Margarida Da Silva Correia
- a Department of Neurology , University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Amandeep Singh Arora
- a Department of Neurology , University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Anna Villar-Piqué
- a Department of Neurology , University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Saima Zafar
- a Department of Neurology , University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Franc Llorens
- b Department of Neuropathology , Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) , Barcelona , Spain
| | - Maria Cramm
- a Department of Neurology , University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Inga Zerr
- a Department of Neurology , University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| |
Collapse
|
55
|
Davenport KA, Hoover CE, Bian J, Telling GC, Mathiason CK, Hoover EA. PrPC expression and prion seeding activity in the alimentary tract and lymphoid tissue of deer. PLoS One 2017; 12:e0183927. [PMID: 28880938 PMCID: PMC5589181 DOI: 10.1371/journal.pone.0183927] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/14/2017] [Indexed: 11/19/2022] Open
Abstract
The agent responsible for prion diseases is a misfolded form of a normal protein (PrPC). The prion hypothesis stipulates that PrPC must be present for the disease to manifest. Cervid populations across the world are infected with chronic wasting disease, a horizontally-transmissible prion disease that is likely spread via oral exposure to infectious prions (PrPCWD). Though PrPCWD has been identified in many tissues, there has been little effort to characterize the overall PrPC expression in cervids and its relationship to PrPCWD accumulation. We used immunohistochemistry (IHC), western blot and enzyme-linked immunosorbent assay to describe PrPC expression in naïve white-tailed deer. We used real-time, quaking-induced conversion (RT-QuIC) to detect prion seeding activity in CWD-infected deer. We assessed tissues comprising the alimentary tract, alimentary-associated lymphoid tissue and systemic lymphoid tissue from 5 naïve deer. PrPC was expressed in all tissues, though expression was often very low compared to the level in the CNS. IHC identified specific cell types wherein PrPC expression is very high. To compare the distribution of PrPC to PrPCWD, we examined 5 deer with advanced CWD infection. Using RT-QuIC, we detected prion seeding activity in all 21 tissues. In 3 subclinical deer sacrificed 4 months post-inoculation, we detected PrPCWD consistently in alimentary-associated lymphoid tissue, irregularly in alimentary tract tissues, and not at all in the brain. Contrary to our hypothesis that PrPC levels dictate prion accumulation, PrPC expression was higher in the lower gastrointestinal tissues than in the alimentary-associated lymphoid system and was higher in salivary glands than in the oropharyngeal lymphoid tissue. These data suggest that PrPC expression is not the sole driver of prion accumulation and that alimentary tract tissues accumulate prions before centrifugal spread from the brain occurs.
Collapse
Affiliation(s)
- Kristen A. Davenport
- Prion Research Center, Microbiology, Immunology and Pathology Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Clare E. Hoover
- Prion Research Center, Microbiology, Immunology and Pathology Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jifeng Bian
- Prion Research Center, Microbiology, Immunology and Pathology Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Glenn C. Telling
- Prion Research Center, Microbiology, Immunology and Pathology Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Candace K. Mathiason
- Prion Research Center, Microbiology, Immunology and Pathology Department, Colorado State University, Fort Collins, Colorado, United States of America
| | - Edward A. Hoover
- Prion Research Center, Microbiology, Immunology and Pathology Department, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
56
|
Immunization of cervidized transgenic mice with multimeric deer prion protein induces self-antibodies that antagonize chronic wasting disease infectivity in vitro. Sci Rep 2017; 7:10538. [PMID: 28874781 PMCID: PMC5585258 DOI: 10.1038/s41598-017-11235-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022] Open
Abstract
Chronic wasting disease (CWD) is the most contagious prion disease. It is expanding rapidly in North America, was found recently in Europe, and the potential for transmission to humans cannot be excluded yet. We hypothesized that it is possible to prevent peripheral CWD infection and CWD prion shedding by inducing auto-antibodies against the cellular prion protein (PrPC) by active vaccination. Our objective is to overcome self-tolerance against PrP by using a multimeric recombinant PrP (recPrP) as an immunogen. We expressed in E. coli, purified and refolded four immunogens: cervid and murine recPrP in monomeric and dimeric form. Testing immunogenicity in sera of the vaccinated transgenic mice expressing cervid PrP revealed that all four immunogens effectively overcame self-tolerance against the prion protein as shown by high antibody titers. Confocal microscopy analysis revealed effective binding of post-immune sera to surface-located PrPC in both murine and cervid PrP expressing cultured cells. Remarkably, the post-immune auto-antibodies effectively inhibited CWD-induced prion conversion in RT-QuIC assay when incubated with either PrP substrate or CWD seed. Furthermore, they mitigated prion propagation in CWD-infected cervid-PrP expressing RK13 cells. Together, multimeric recombinant cervid PrP effectively overcomes self-tolerance to PrP and induces auto-antibodies that interfere with CWD conversion in vitro.
Collapse
|
57
|
Hannaoui S, Amidian S, Cheng YC, Duque Velásquez C, Dorosh L, Law S, Telling G, Stepanova M, McKenzie D, Wille H, Gilch S. Destabilizing polymorphism in cervid prion protein hydrophobic core determines prion conformation and conversion efficiency. PLoS Pathog 2017; 13:e1006553. [PMID: 28800624 PMCID: PMC5568445 DOI: 10.1371/journal.ppat.1006553] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/23/2017] [Accepted: 07/26/2017] [Indexed: 11/27/2022] Open
Abstract
Prion diseases are infectious neurodegenerative disorders of humans and animals caused by misfolded forms of the cellular prion protein PrPC. Prions cause disease by converting PrPC into aggregation-prone PrPSc. Chronic wasting disease (CWD) is the most contagious prion disease with substantial lateral transmission, affecting free-ranging and farmed cervids. Although the PrP primary structure is highly conserved among cervids, the disease phenotype can be modulated by species-specific polymorphisms in the prion protein gene. How the resulting amino-acid substitutions impact PrPC and PrPSc structure and propagation is poorly understood. We investigated the effects of the cervid 116A>G substitution, located in the most conserved PrP domain, on PrPC structure and conversion and on 116AG-prion conformation and infectivity. Molecular dynamics simulations revealed structural de-stabilization of 116G-PrP, which enhanced its in vitro conversion efficiency when used as recombinant PrP substrate in real-time quaking-induced conversion (RT-QuIC). We demonstrate that 116AG-prions are conformationally less stable, show lower activity as a seed in RT-QuIC and exhibit reduced infectivity in vitro and in vivo. Infectivity of 116AG-prions was significantly enhanced upon secondary passage in mice, yet conformational features were retained. These findings indicate that structurally de-stabilized PrPC is readily convertible by cervid prions of different genetic background and results in a prion conformation adaptable to cervid wild-type PrP. Conformation is an important criterion when assessing transmission barrier, and conformational variants can target a different host range. Therefore, a thorough analysis of CWD isolates and re-assessment of species-barriers is important in order to fully exclude a zoonotic potential of CWD. Chronic wasting disease (CWD) is a prion disease which affects wild and captive cervids. Prion diseases are infectious neurodegenerative disorders, and the causative agent consists of abnormally folded prion protein termed PrPSc. Prions replicate without genetic information, and their three-dimensional structure is thought to encode heritable information necessary to propagate using the cellular prion protein PrPC as a substrate for conversion. In this study, we use in vitro and in vivo techniques to analyze the effect of a polymorphism at codon 116 (A>G) of the white-tailed deer prion protein on CWD prion conformation, propagation and pathogenesis. We observed differences in conformation, infectivity and seeding activity in vitro between CWD prions isolated from white-tailed deer encoding wild-type (116AA) PrPC or 116AG-PrPC. In mouse bioassays conformational differences are retained, however, 116AG CWD prions resulted in significantly shortened incubation times upon passages. Molecular dynamics simulations suggest that the structure of 116G-PrPC is more flexible, which is supported by an improved convertibility in an in vitro conversion assay. Altogether these data indicate the importance of a variation in the most conserved PrP domain, and highlight the relationship between PrPC structural flexibility, prion conformation and conversion, and pathogenesis of prion disease in vivo.
Collapse
Affiliation(s)
- Samia Hannaoui
- Department of Ecosystem and Public Health, Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sara Amidian
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Yo Ching Cheng
- Department of Ecosystem and Public Health, Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Camilo Duque Velásquez
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Lyudmyla Dorosh
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Sampson Law
- Department of Ecosystem and Public Health, Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Glenn Telling
- Prion Research Center, Colorado State University, Fort Collins, Colorado, United States of America
| | - Maria Stepanova
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Debbie McKenzie
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Holger Wille
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Sabine Gilch
- Department of Ecosystem and Public Health, Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
58
|
Mathiason CK. Scrapie, CWD, and Transmissible Mink Encephalopathy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:267-292. [PMID: 28838664 DOI: 10.1016/bs.pmbts.2017.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs), or prions, are neurodegenerative diseases that affect a variety of animal species, including humans. Cruetzfeldt-Jakob disease (CJD) in humans, sheep and goat scrapie, chronic wasting disease (CWD) of cervids, and transmissible mink encephalopathy (TME) of mink are classified as TSEs. According to the "protein-only" hypothesis (Prusiner, 1982),1 prions are devoid of nucleic acids and consist of assemblies of misfolded host-encoded normal protein, the prion protein (PrPC). Prion propagation is thought to occur by a templating mechanism during which PrPC is recruited, converted to a disease-associated isoform (PrPD), and assembled onto the growing amyloid fibril. This fibular assembly is infectious, with ability to initiate disease processes similar to other pathogenic agents. Evidence indicates that scrapie, CWD, and TME disease processes follow this rule.
Collapse
|
59
|
Henderson DM, Tennant JM, Haley NJ, Denkers ND, Mathiason CK, Hoover EA. Detection of chronic wasting disease prion seeding activity in deer and elk feces by real-time quaking-induced conversion. J Gen Virol 2017; 98:1953-1962. [PMID: 28703697 DOI: 10.1099/jgv.0.000844] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chronic wasting disease (CWD) is an emergent prion disease affecting cervid species in North America, Canada, South Korea, and recently, Norway. Detection of CWD has been advanced by techniques that rely on amplification of low levels of prion amyloid to a detectable level. However, the increased sensitivity of amplification assays is often compromised by inhibitors and/or activators in complex biologic samples including body fluids, excreta, or the environment. Here, we adapt real-time quaking-induced conversion conditions to specifically detect CWD prions in fecal samples from both experimentally infected deer and naturally infected elk and estimate environmental contamination. The results have application to detection, surveillance and management of CWD, and potentially to other protein-misfolding diseases.
Collapse
Affiliation(s)
- Davin M Henderson
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Joanne M Tennant
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Nicholas J Haley
- Department of Microbiology and Pathology, Midwestern State University, Glendale, AZ, USA
| | - Nathaniel D Denkers
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Candace K Mathiason
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Edward A Hoover
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
60
|
Cheng YC, Musiani M, Cavedon M, Gilch S. High prevalence of prion protein genotype associated with resistance to chronic wasting disease in one Alberta woodland caribou population. Prion 2017; 11:136-142. [PMID: 28350512 PMCID: PMC5399904 DOI: 10.1080/19336896.2017.1300741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Chronic wasting disease (CWD) is a prion disease found in deer, elk and moose in North America and since recently, wild reindeer in Norway. Caribou are at-risk to encounter CWD in areas such as Alberta, Canada, where the disease spreads toward caribou habitats. CWD susceptibility is modulated by species-specific polymorphisms in the prion protein gene (Prnp). We sequenced Prnp of woodland caribou from 9 Albertan populations. In one population (Chinchaga) a significantly higher frequency of the 138N allele linked to reduced CWD susceptibility was observed. These data are relevant for developing CWD management strategies including conservation of threatened caribou populations.
Collapse
Affiliation(s)
- Yo Ching Cheng
- a Department of Ecosystem and Public Health , Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary , Calgary , Canada
| | - Marco Musiani
- b Department of Biological Sciences, Faculty of Science , University of Calgary , Calgary , Canada
| | - Maria Cavedon
- b Department of Biological Sciences, Faculty of Science , University of Calgary , Calgary , Canada
| | - Sabine Gilch
- a Department of Ecosystem and Public Health , Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary , Calgary , Canada
| |
Collapse
|