Prospective plasma proteome changes in preterm infants with different gestational ages.
Pediatr Res 2018;
84:104-111. [PMID:
29795197 DOI:
10.1038/s41390-018-0003-2]
[Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 02/12/2018] [Accepted: 03/10/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND
In this study, we aimed to analyze time-resolved plasma proteome changes in preterm neonates stratified by their gestational age to detect malfunctioning pathways that derive from the systemic immaturity of the neonate and to highlight those that are differentially regulated during the early development.
METHODS
Preterm newborns were enrolled in three subgroups with different gestational ages: before 26 weeks of gestation (group 1), between 27 and 28 weeks of gestation (group 2), and between 29 and 30 (group 3) weeks of gestation. Plasma protein abundances were assessed at two time points (at preterm delivery and at the 36th week of post-menstrual age) by quantitative proteomics.
RESULT
The quantitative analysis of plasma proteome in preterm infants revealed a multitude of time-related differences in protein abundances between the studied groups. We report protein changes in several functional domains, including inflammatory domains, immunomodulatory factors, and coagulation regulators as key features, with important gestational age-dependent hemopexin induction.
CONCLUSION
The global trend emerging from our data, which can collectively be interpreted as a progression toward recovery from the perinatal perturbations, highlights the profound impact of gestation duration on the ability to bridge the gap in systemic homeostasis after preterm labor.
Collapse