51
|
Downregulation of integrin receptor-signaling genes by Epstein-Barr virus EBNA 3C via promoter-proximal and -distal binding elements. J Virol 2012; 86:5165-78. [PMID: 22357270 DOI: 10.1128/jvi.07161-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) establishes a persistent latent infection in B lymphocytes and is associated with the development of numerous human tumors. Epstein-Barr nuclear antigen 3C (EBNA 3C) is essential for B-cell immortalization, has potent cell cycle deregulation capabilities, and functions as a regulator of both viral- and cellular-gene expression. We performed transcription profiling on EBNA 3C-expressing B cells and identified several chemokines and members of integrin receptor-signaling pathways, including CCL3, CCL4, CXCL10, CXCL11, ITGA4, ITGB1, ADAM28, and ADAMDEC1, as cellular target genes that could be repressed by the action of EBNA 3C alone. Chemotaxis assays demonstrated that downregulation of CXCL10 and -11 by EBNA 3C is sufficient to reduce the migration of cells expressing the CXCL10 and -11 receptor CXCR3. Gene repression by EBNA 3C was accompanied by decreased histone H3 lysine 9/14 acetylation and increased histone H3 lysine 27 trimethylation. In an EBV-positive cell line expressing all latent genes, we identified binding sites for EBNA 3C at ITGB1 and ITGA4 and in a distal regulatory region between ADAMDEC1 and ADAM28, providing the first demonstration of EBNA 3C association with cellular-gene control regions. Our data implicate indirect mechanisms in CXCL10 and CXCL11 repression by EBNA 3C. In summary, we have unveiled key cellular pathways repressed by EBNA 3C that are likely to contribute to the ability of EBV-immortalized cells to modulate immune responses, adhesion, and B-lymphocyte migration to facilitate persistence in the host.
Collapse
|
52
|
Upregulation of the cell-cycle regulator RGC-32 in Epstein-Barr virus-immortalized cells. PLoS One 2011; 6:e28638. [PMID: 22163048 PMCID: PMC3232240 DOI: 10.1371/journal.pone.0028638] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/11/2011] [Indexed: 12/19/2022] Open
Abstract
Epstein-Barr virus (EBV) is implicated in the pathogenesis of multiple human tumours of lymphoid and epithelial origin. The virus infects and immortalizes B cells establishing a persistent latent infection characterized by varying patterns of EBV latent gene expression (latency 0, I, II and III). The CDK1 activator, Response Gene to Complement-32 (RGC-32, C13ORF15), is overexpressed in colon, breast and ovarian cancer tissues and we have detected selective high-level RGC-32 protein expression in EBV-immortalized latency III cells. Significantly, we show that overexpression of RGC-32 in B cells is sufficient to disrupt G2 cell-cycle arrest consistent with activation of CDK1, implicating RGC-32 in the EBV transformation process. Surprisingly, RGC-32 mRNA is expressed at high levels in latency I Burkitt's lymphoma (BL) cells and in some EBV-negative BL cell-lines, although RGC-32 protein expression is not detectable. We show that RGC-32 mRNA expression is elevated in latency I cells due to transcriptional activation by high levels of the differentially expressed RUNX1c transcription factor. We found that proteosomal degradation or blocked cytoplasmic export of the RGC-32 message were not responsible for the lack of RGC-32 protein expression in latency I cells. Significantly, analysis of the ribosomal association of the RGC-32 mRNA in latency I and latency III cells revealed that RGC-32 transcripts were associated with multiple ribosomes in both cell-types implicating post-initiation translational repression mechanisms in the block to RGC-32 protein production in latency I cells. In summary, our results are the first to demonstrate RGC-32 protein upregulation in cells transformed by a human tumour virus and to identify post-initiation translational mechanisms as an expression control point for this key cell-cycle regulator.
Collapse
|
53
|
Disanto G, Meier U, Giovannoni G, Ramagopalan SV. Vitamin D: a link between Epstein-Barr virus and multiple sclerosis development? Expert Rev Neurother 2011; 11:1221-4. [PMID: 21864064 DOI: 10.1586/ern.11.97] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
54
|
C-terminal region of EBNA-2 determines the superior transforming ability of type 1 Epstein-Barr virus by enhanced gene regulation of LMP-1 and CXCR7. PLoS Pathog 2011; 7:e1002164. [PMID: 21857817 PMCID: PMC3145799 DOI: 10.1371/journal.ppat.1002164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 05/30/2011] [Indexed: 12/22/2022] Open
Abstract
Type 1 Epstein-Barr virus (EBV) strains immortalize B lymphocytes in vitro much more efficiently than type 2 EBV, a difference previously mapped to the EBNA-2 locus. Here we demonstrate that the greater transforming activity of type 1 EBV correlates with a stronger and more rapid induction of the viral oncogene LMP-1 and the cell gene CXCR7 (which are both required for proliferation of EBV-LCLs) during infection of primary B cells with recombinant viruses. Surprisingly, although the major sequence differences between type 1 and type 2 EBNA-2 lie in N-terminal parts of the protein, the superior ability of type 1 EBNA-2 to induce proliferation of EBV-infected lymphoblasts is mostly determined by the C-terminus of EBNA-2. Substitution of the C-terminus of type 1 EBNA-2 into the type 2 protein is sufficient to confer a type 1 growth phenotype and type 1 expression levels of LMP-1 and CXCR7 in an EREB2.5 cell growth assay. Within this region, the RG, CR7 and TAD domains are the minimum type 1 sequences required. Sequencing the C-terminus of EBNA-2 from additional EBV isolates showed high sequence identity within type 1 isolates or within type 2 isolates, indicating that the functional differences mapped are typical of EBV type sequences. The results indicate that the C-terminus of EBNA-2 accounts for the greater ability of type 1 EBV to promote B cell proliferation, through mechanisms that include higher induction of genes (LMP-1 and CXCR7) required for proliferation and survival of EBV-LCLs. Epstein-Barr virus (EBV) is a common human virus that is involved in several types of cancer and directly causes human B lymphocytes to proliferate when they become infected. EBV occurs naturally as two different viral types (type 1 and type 2). The genomes of these viruses are mostly very similar but they differ in a few genes, particularly the EBNA-2 gene. For many years it has been known that type 1 EBV is much more effective than type 2 EBV at causing B lymphocyte proliferation and this difference is mediated by the EBNA-2 gene. Here we have shown that the greater ability of type 1 EBNA-2 to cause B cell proliferation is due to superior induction of the EBV LMP-1 and the cell CXCR7 genes, both of which are required for growth of EBV-infected lymphocytes. We mapped the section of type 1 EBNA-2 responsible for this to the C-terminus of the protein, including the transactivation and EBNA-LP interaction domains. The results provide a mechanism for the long-standing question of the functional difference between these two major types of EBV and will be important in understanding the significance of the EBV types in human infection.
Collapse
|
55
|
Nikitin PA, Yan CM, Forte E, Bocedi A, Tourigny JP, White RE, Allday MJ, Patel A, Dave SS, Kim W, Hu K, Guo J, Tainter D, Rusyn E, Luftig MA. An ATM/Chk2-mediated DNA damage-responsive signaling pathway suppresses Epstein-Barr virus transformation of primary human B cells. Cell Host Microbe 2011; 8:510-22. [PMID: 21147465 PMCID: PMC3049316 DOI: 10.1016/j.chom.2010.11.004] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/25/2010] [Accepted: 11/04/2010] [Indexed: 12/01/2022]
Abstract
Epstein-Barr virus (EBV), an oncogenic herpesvirus that causes human
malignancies, infects and immortalizes primary human B cells in
vitro into indefinitely proliferating lymphoblastoid cell lines,
which represent a model for EBV-induced tumorigenesis. The immortalization
efficiency is very low suggesting that an innate tumor suppressor mechanism is
operative. We identify the DNA damage response (DDR) as a major component of the
underlying tumor suppressor mechanism. EBV-induced DDR activation was not due to
lytic viral replication nor did the DDR marks co-localize with latent episomes.
Rather, a transient period of EBV-induced hyper-proliferation correlated with
DDR activation. Inhibition of the DDR kinases ATM and Chk2 markedly increased
transformation efficiency of primary B cells. Further, the viral latent
oncoproteins EBNA3C was required to attenuate the EBV-induced DNA damage
response We propose that heightened oncogenic activity in early cell divisions
activates a growth-suppressive DDR which is attenuated by viral latency products
to induce cell immortalization.
Collapse
Affiliation(s)
- Pavel A Nikitin
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, NC 27712, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Epstein-Barr virus nuclear antigens 3C and 3A maintain lymphoblastoid cell growth by repressing p16INK4A and p14ARF expression. Proc Natl Acad Sci U S A 2011; 108:1919-24. [PMID: 21245331 DOI: 10.1073/pnas.1019599108] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA3C) and EBNA3A are each essential for EBV conversion of primary human B lymphocytes into continuously proliferating lymphoblast cell lines (LCLs) and for maintaining LCL growth. We now find that EBNA3C and EBNA3A's essential roles are to repress p16(INK4A) and p14(ARF). In the absence of EBNA3C or EBNA3A, p16(INK4A) and p14(ARF) expression increased and cell growth ceased. EBNA3C inactivation did not alter p16(INK4A) promoter CpG methylation, but reduced already low H3K27me3, relative to resting B cells, and increased H3K4me3 and H3-acetylation, linking EBNA3C inactivation to histone modifications associated with increased transcription. Importantly, knockdown of p16(INK4A) or p14(ARF) partially rescued LCLs from EBNA3C or EBNA3A inactivation-induced growth arrest and knockdown of both rescued LCL growth, confirming central roles for p16(INK4A) and p14(ARF) in LCL growth arrest following EBNA3C or EBNA3A inactivation. Moreover, blockade of p16(INK4A) and p14(ARF) effects on pRb and p53 by human papilloma virus type 16 E7 and E6 expression, sustained LCL growth after EBNA3C or EBNA3A inactivation. These data indicate that EBNA3C and EBNA3A joint repression of CDKN2A p16(INK4A) and p14(ARF) is essential for LCL growth.
Collapse
|
57
|
Epstein-Barr virus nuclear antigen 3C regulated genes in lymphoblastoid cell lines. Proc Natl Acad Sci U S A 2010; 108:337-42. [PMID: 21173222 DOI: 10.1073/pnas.1017419108] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
EBV nuclear antigen 3C (EBNA3C) is an essential transcription factor for EBV transformed lymphoblast cell line (LCL) growth. To identify EBNA3C-regulated genes in LCLs, microarrays were used to measure RNA abundances in each of three different LCLs that conditionally express EBNA3C fused to a 4-OH-Tamoxifen-dependent estrogen receptor hormone binding domain (EBNA3CHT). At least three RNAs were assayed for each EBNA3CHT LCL under nonpermissive conditions, permissive conditions, and nonpermissive conditions with wild-type EBNA3C transcomplementation. Using a two-way ANOVA model of EBNA3C levels, we identified 550 regulated genes that were at least 1.5-fold up- or down-regulated with false discovery rates < 0.01. EBNA3C-regulated genes overlapped significantly with genes regulated by EBNA2 and EBNA3A consistent with coordinated effects on cell gene transcription. Of the 550 EBNA3C-regulated genes, 106 could be placed in protein networks. A seeded Bayesian network analysis of the 80 most significant EBNA3C-regulated genes suggests that RAC1, LYN, and TNF are upstream of other EBNA3C-regulated genes. Gene set enrichment analysis found enrichment for MAP kinase signaling, cytokine-cytokine receptor interactions, JAK-STAT signaling, and cell adhesion molecules, implicating these pathways in EBNA3C effects on LCL growth or survival. EBNA3C significantly up-regulated the CXCL12 ligand and its CXCR4 receptor and increased LCL migration. CXCL12 up-regulation depended on EBNA3C's interaction with the cell transcription factor, RBPJ, which is essential for LCL growth. EBNA3C also up-regulated MYC 1.3-fold and down-regulated CDKN2A exons 2 and 3, shared by p16 and p14, 1.4-fold, with false discovery rates < 5 × 10(-4).
Collapse
|
58
|
Feederle R, Bartlett EJ, Delecluse HJ. Epstein-Barr virus genetics: talking about the BAC generation. HERPESVIRIDAE 2010; 1:6. [PMID: 21429237 PMCID: PMC3063228 DOI: 10.1186/2042-4280-1-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 12/07/2010] [Indexed: 01/29/2023]
Abstract
Genetic mutant organisms pervade all areas of Biology. Early on, herpesviruses (HV) were found to be amenable to genetic analysis using homologous recombination techniques in eukaryotic cells. More recently, HV genomes cloned onto a bacterial artificial chromosome (BAC) have become available. HV BACs can be easily modified in E.coli and reintroduced in eukaryotic cells to produce infectious viruses. Mutants derived from HV BACs have been used both to understand the functions of all types of genetic elements present on the virus genome, but also to generate mutants with potentially medically relevant properties such as preventative vaccines. Here we retrace the development of the BAC technology applied to the Epstein-Barr virus (EBV) and review the strategies available for the construction of mutants. We expand on the appropriate controls required for proper use of the EBV BACs, and on the technical hurdles researchers face in working with these recombinants. We then discuss how further technological developments might successfully overcome these difficulties. Finally, we catalog the EBV BAC mutants that are currently available and illustrate their contributions to the field using a few representative examples.
Collapse
Affiliation(s)
- Regina Feederle
- German Cancer Research Centre, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
59
|
Yenamandra SP, Hellman U, Kempkes B, Darekar SD, Petermann S, Sculley T, Klein G, Kashuba E. Epstein-Barr virus encoded EBNA-3 binds to vitamin D receptor and blocks activation of its target genes. Cell Mol Life Sci 2010; 67:4249-56. [PMID: 20593215 PMCID: PMC11115686 DOI: 10.1007/s00018-010-0441-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 06/01/2010] [Accepted: 06/17/2010] [Indexed: 02/06/2023]
Abstract
Epstein-Barr virus (EBV) is a human gamma herpes virus that infects B cells and induces their transformation into immortalized lymphoblasts that can grow as cell lines (LCLs) in vitro. EBNA-3 is a member of the EBNA-3-protein family that can regulate transcription of cellular and viral genes. The identification of EBNA-3 cellular partners and a study of its influence on cellular pathways are important for understanding the transforming action of the virus. In this work, we have identified the vitamin D receptor (VDR) protein as a binding partner of EBNA-3. We found that EBNA3 blocks the activation of VDR-dependent genes and protects LCLs against vitamin-D3-induced growth arrest and/or apoptosis. The presented data shed some light on the anti-apoptotic EBV program and the role of the EBNA-3-VDR interaction in the viral strategy.
Collapse
Affiliation(s)
- Surya Pavan Yenamandra
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institute, 171 77 Stockholm, Sweden
- Present Address: Bioinformatics Institute, 30 Biopolis Street, No. 07-01, 138671 Matrix, Singapore
| | - Ulf Hellman
- Ludwig Institute for Cancer Research, Uppsala Branch, 751 24 Uppsala, Sweden
| | - Bettina Kempkes
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Center for Environmental Health, 81377 Munich, Germany
| | - Suhas Deoram Darekar
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institute, 171 77 Stockholm, Sweden
| | - Sabine Petermann
- Institute of Clinical Molecular Biology and Tumor Genetics, Helmholtz Center for Environmental Health, 81377 Munich, Germany
| | - Tom Sculley
- Queensland Institute for Medical Research, Brisbane, QLD 4029 Australia
| | - George Klein
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institute, 171 77 Stockholm, Sweden
| | - Elena Kashuba
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institute, 171 77 Stockholm, Sweden
- R. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NASU, 03022 Kyiv, Ukraine
| |
Collapse
|
60
|
White RE, Groves IJ, Turro E, Yee J, Kremmer E, Allday MJ. Extensive co-operation between the Epstein-Barr virus EBNA3 proteins in the manipulation of host gene expression and epigenetic chromatin modification. PLoS One 2010; 5:e13979. [PMID: 21085583 PMCID: PMC2981562 DOI: 10.1371/journal.pone.0013979] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 10/07/2010] [Indexed: 12/15/2022] Open
Abstract
Epstein-Barr virus (EBV) is able to drive the transformation of B-cells, resulting in the generation of lymphoblastoid cell lines (LCLs) in vitro. EBV nuclear proteins EBNA3A and EBNA3C are necessary for efficient transformation, while EBNA3B is dispensable. We describe a transcriptome analysis of BL31 cells infected with a series of EBNA3-knockout EBVs, including one deleted for all three EBNA3 genes. Using Affymetrix Exon 1.0 ST microarrays analysed with the MMBGX algorithm, we have identified over 1000 genes whose regulation by EBV requires one of the EBNA3s. Remarkably, a third of the genes identified require more than one EBNA3 for their regulation, predominantly EBNA3C co-operating with either EBNA3B, EBNA3A or both. The microarray was validated by real-time PCR, while ChIP analysis of a selection of co-operatively repressed promoters indicates a role for polycomb group complexes. Targets include genes involved in apoptosis, cell migration and B-cell differentiation, and show a highly significant but subtle alteration in genes involved in mitosis. In order to assess the relevance of the BL31 system to LCLs, we analysed the transcriptome of a set of EBNA3B knockout (3BKO) LCLs. Around a third of the genes whose expression level in LCLs was altered in the absence of EBNA3B were also altered in 3BKO-BL31 cell lines. Among these are TERT and TCL1A, implying that EBV-induced changes in the expression of these genes are not required for B-cell transformation. We also identify 26 genes that require both EBNA3A and EBNA3B for their regulation in LCLs. Together, this shows the complexity of the interaction between EBV and its host, whereby multiple EBNA3 proteins co-operate to modulate the behaviour of the host cell.
Collapse
Affiliation(s)
- Robert E. White
- Section of Virology, Imperial College London, London, United Kingdom
- * E-mail:
| | - Ian J. Groves
- Section of Virology, Imperial College London, London, United Kingdom
| | - Ernest Turro
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Jade Yee
- Section of Virology, Imperial College London, London, United Kingdom
| | - Elisabeth Kremmer
- Institute of Molecular Immunology Helmholtz Zentrum München - German Research Center for Environmental Health, Munich, Germany
| | - Martin J. Allday
- Section of Virology, Imperial College London, London, United Kingdom
| |
Collapse
|
61
|
Klein G, Klein E, Kashuba E. Interaction of Epstein-Barr virus (EBV) with human B-lymphocytes. Biochem Biophys Res Commun 2010; 396:67-73. [PMID: 20494113 DOI: 10.1016/j.bbrc.2010.02.146] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 02/22/2010] [Indexed: 12/22/2022]
Abstract
Epstein-Barr virus, EBV, and humans have a common history that reaches back to our primate ancestors. The virus co-evolved with man and has established a largely harmless and highly complex co-existence. It is carried as silent infection by almost all human adults. A serendipitous discovery established that it is the causative agent of infectious mononucleosis. Still, EBV became known first in 1964, in a rare, geographically prevalent malignant lymphoma of B-cell origin, Burkitt lymphoma BL. Its association with a malignancy prompted intensive studies and its capacity to immortalize B-lymphocytes in vitro was soon demonstrated. Consequently EBV was classified therefore as a potentially tumorigenic virus. Despite of this property however, the virus carrier state itself does not lead to malignancies because the transformed cells are recognized by the immune response. Consequently the EBV induced proliferation of EBV carrying B-lymphocytes is manifested only under immunosuppressive conditions. The expression of EBV encoded genes is regulated by the cell phenotype. The virus genome can be found in malignancies originating from cell types other than the B-lymphocyte. Even in the EBV infected B-cell, the direct transforming capacity is restricted to a defined window of differentiation. A complex interaction between virally encoded proteins and B-cell specific cellular proteins constitute the proliferation inducing program. In this short review we touch upon aspects which are the subject of our present work. We describe the mechanisms of some of the functional interactions between EBV encoded and cellular proteins that determine the phenotype of latently infected B-cells. The growth promoting EBV encoded genes are not expressed in the virus carrying BL cells. Still, EBV seems to contribute to the etiology of this tumor by modifying events that influence cell survival and proliferation. We describe a possible growth promoting mechanism in the genesis of Burkitt lymphoma that depends on the presence of EBV.
Collapse
Affiliation(s)
- George Klein
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology (MTC), Box 280, S17177 Stockholm, Sweden.
| | | | | |
Collapse
|
62
|
Skalska L, White RE, Franz M, Ruhmann M, Allday MJ. Epigenetic repression of p16(INK4A) by latent Epstein-Barr virus requires the interaction of EBNA3A and EBNA3C with CtBP. PLoS Pathog 2010; 6:e1000951. [PMID: 20548956 PMCID: PMC2883600 DOI: 10.1371/journal.ppat.1000951] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 05/12/2010] [Indexed: 12/14/2022] Open
Abstract
As an inhibitor of cyclin-dependent kinases, p16INK4A is an important tumour suppressor and inducer of cellular senescence that is often inactivated during the development of cancer by promoter DNA methylation. Using newly established lymphoblastoid cell lines (LCLs) expressing a conditional EBNA3C from recombinant EBV, we demonstrate that EBNA3C inactivation initiates chromatin remodelling that resets the epigenetic status of p16INK4A to permit transcriptional activation: the polycomb-associated repressive H3K27me3 histone modification is substantially reduced, while the activation-related mark H3K4me3 is modestly increased. Activation of EBNA3C reverses the distribution of these epigenetic marks, represses p16INK4A transcription and allows proliferation. LCLs lacking EBNA3A express relatively high levels of p16INK4A and have a similar pattern of histone modifications on p16INK4A as produced by the inactivation of EBNA3C. Since binding to the co-repressor of transcription CtBP has been linked to the oncogenic activity of EBNA3A and EBNA3C, we established LCLs with recombinant viruses encoding EBNA3A- and/or EBNA3C-mutants that no longer bind CtBP. These novel LCLs have revealed that the chromatin remodelling and epigenetic repression of p16INK4A requires the interaction of both EBNA3A and EBNA3C with CtBP. The repression of p16INK4A by latent EBV will not only overcome senescence in infected B cells, but may also pave the way for p16INK4A DNA methylation during B cell lymphomagenesis. We previously showed that two Epstein-Barr virus latency-associated proteins—EBNA3A and EBNA3C—contribute to enhanced B cell survival by inhibiting the expression of the death-inducing protein BIM. This repression involves remodelling of the BIM gene promoter by polycomb proteins and DNA methylation within an unusually large CpG-island that flanks the transcription initiation site. Here we show that the same two proteins, EBNA3A and EBNA3C, functionally cooperate in the polycomb-mediated chromatin remodelling of another tumour suppressor gene, p16INK4A, that encodes a cyclin-dependent kinase inhibitor capable of blocking cell proliferation. Both EBV proteins can bind the highly conserved co-repressor of transcription CtBP, and these interactions appear to be required for the efficient repression of p16INK4A. Thus by utilising the polycomb system to induce the heritable repression of two major tumour suppressor genes—one that induces cell death (BIM) and one that induces growth arrest (p16INK4A)—EBV profoundly alters latently infected B cells and their progeny, making them significantly more prone to malignant transformation.
Collapse
Affiliation(s)
- Lenka Skalska
- Section of Virology, Division of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Robert E. White
- Section of Virology, Division of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Melanie Franz
- Section of Virology, Division of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Michaela Ruhmann
- Section of Virology, Division of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Martin J. Allday
- Section of Virology, Division of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
63
|
Epstein-Barr virus nuclear protein 3C domains necessary for lymphoblastoid cell growth: interaction with RBP-Jkappa regulates TCL1. J Virol 2009; 83:12368-77. [PMID: 19776126 DOI: 10.1128/jvi.01403-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B lymphocytes converted into lymphoblastoid cell lines (LCLs) by an Epstein-Barr virus that expresses a conditional EBNA3C require complementation with EBNA3C for growth under nonpermissive conditions. Complementation with relatively large EBNA3C deletion mutants identified amino acids (aa) 1 to 506 (which includes the RBP-Jkappa/CSL [RBP-Jkappa] binding domain) and 733 to 909 to be essential for LCL growth, aa 728 to 732 and 910 to 992 to be important for full wild-type (wt) growth, and only aa 507 to 727 to be unimportant (S. Maruo, Y. Wu, T. Ito, T. Kanda, E. D. Kieff, and K. Takada, Proc. Natl. Acad. Sci. USA 106:4419-4424, 2009). When mutants with smaller deletions were used, only aa 51 to 400 and 851 to 900 were essential for LCL growth; aa 447 to 544, 701 to 750, 801 to 850, and 901 to 992 were important for full wt growth; and aa 4 to 50, 401 to 450, 550 to 707, and 751 to 800 were unimportant. These data reduce the EBNA3C essential residues from 68% to 40% of the open reading frame. Point mutations confirmed RBP-Jkappa binding to be essential for wt growth and indicated that SUMO and CtBP binding interactions were important only for full wt growth. EBNA3C aa 51 to 150, 249 to 311, and 851 to 900 were necessary for maintaining LCL growth, but not RBP-Jkappa interaction, and likely mediate interactions with other key cell proteins. Moreover, all mutants null for LCL growth had fewer S+G(2)/M-phase cells at 14 days, consistent with EBNA3C interaction with RBP-Jkappa as well as aa 51 to 150, 249 to 311, and 851 to 900 being required to suppress p16(INK4A) (S. Maruo, Y. Wu, S. Ishikawa, T. Kanda, D. Iwakiri, and K. Takada, Proc. Natl. Acad. Sci. USA 103:19500-19505, 2006). We have confirmed that EBNA3C upregulates TCL1 and discovered that EBNA3C upregulates TCL1 through RBP-Jkappa, indicating a central role for EBNA3C interaction with RBP-Jkappa in mediating cell gene transcription.
Collapse
|
64
|
Allday MJ. How does Epstein-Barr virus (EBV) complement the activation of Myc in the pathogenesis of Burkitt's lymphoma? Semin Cancer Biol 2009; 19:366-76. [PMID: 19635566 PMCID: PMC3770905 DOI: 10.1016/j.semcancer.2009.07.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 07/10/2009] [Indexed: 12/12/2022]
Abstract
A defining characteristic of the aggressive B cell tumour Burkitt's lymphoma (BL) is a reciprocal chromosomal translocation that activates the Myc oncogene by juxtaposing it to one of the immunoglobulin gene loci. The consequences of activating Myc include cell growth and proliferation that can lead to lymphomagenesis; however, as part of a fail-safe mechanism that has evolved in metazoans to reduce the likelihood of neoplastic disease, activated oncogenes such as Myc may also induce cell death by apoptosis and/or an irreversible block to proliferation called senescence. For lymphoma to develop it is necessary that these latter processes are repressed. More than 95% of a subset of BL – known as endemic (e)BL because they are largely restricted to regions of equatorial Africa and similar geographical regions – carry latent Epstein–Barr virus (EBV) in the form of nuclear extra-chromosomal episomes. Although EBV is not generally regarded as a driving force of BL cell proliferation, it plays an important role in the pathogenesis of eBL. Latency-associated EBV gene products can inhibit a variety of pathways that lead to apoptosis and senescence; therefore EBV probably counteracts the proliferation-restricting activities of deregulated Myc and so facilitates the development of BL.
Collapse
Affiliation(s)
- Martin J Allday
- Department of Virology, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK.
| |
Collapse
|