51
|
Abstract
Protozoan parasites colonize numerous metazoan hosts and insect vectors through their life cycles, with the need to respond quickly and reversibly while encountering diverse and often hostile ecological niches. To succeed, parasites must also persist within individuals until transmission between hosts is achieved. Several parasitic protozoa cause a huge burden of disease in humans and livestock, and here we focus on the parasites that cause malaria and African trypanosomiasis. Efforts to understand how these pathogens adapt to survive in varied host environments, cause disease, and transmit between hosts have revealed a wealth of epigenetic phenomena. Epigenetic switching mechanisms appear to be ideally suited for the regulation of clonal antigenic variation underlying successful parasitism. We review the molecular players and complex mechanistic layers that mediate the epigenetic regulation of virulence gene expression. Understanding epigenetic processes will aid the development of antiparasitic therapeutics.
Collapse
Affiliation(s)
- Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, 651 Huntington Avenue, Boston, MA 02115, USA.
| | - David Horn
- Division of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
52
|
A Knockout Screen of ApiAP2 Genes Reveals Networks of Interacting Transcriptional Regulators Controlling the Plasmodium Life Cycle. Cell Host Microbe 2017; 21:11-22. [PMID: 28081440 PMCID: PMC5241200 DOI: 10.1016/j.chom.2016.12.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 08/17/2016] [Accepted: 11/17/2016] [Indexed: 01/17/2023]
Abstract
A family of apicomplexa-specific proteins containing AP2 DNA-binding domains (ApiAP2s) was identified in malaria parasites. This family includes sequence-specific transcription factors that are key regulators of development. However, functions for the majority of ApiAP2 genes remain unknown. Here, a systematic knockout screen in Plasmodium berghei identified ten ApiAP2 genes that were essential for mosquito transmission: four were critical for the formation of infectious ookinetes, and three were required for sporogony. We describe non-essential functions for AP2-O and AP2-SP proteins in blood stages, and identify AP2-G2 as a repressor active in both asexual and sexual stages. Comparative transcriptomics across mutants and developmental stages revealed clusters of co-regulated genes with shared cis promoter elements, whose expression can be controlled positively or negatively by different ApiAP2 factors. We propose that stage-specific interactions between ApiAP2 proteins on partly overlapping sets of target genes generate the complex transcriptional network that controls the Plasmodium life cycle. Mutants in 11 of 26 apiAP2 genes reveal gene functions in mosquito transmission Co-expression clustering across mutants and stages reveals molecular phenotypes Multifunctional apiAP2 genes create complex regulatory networks in Plasmodium Ap2-g2 is a transcriptional repressor in both asexual and sexual blood stages
Collapse
|
53
|
Ubhe S, Rawat M, Verma S, Anamika K, Karmodiya K. Genome-wide identification of novel intergenic enhancer-like elements: implications in the regulation of transcription in Plasmodium falciparum. BMC Genomics 2017; 18:656. [PMID: 28836940 PMCID: PMC5569477 DOI: 10.1186/s12864-017-4052-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 08/11/2017] [Indexed: 01/28/2023] Open
Abstract
Background The molecular mechanisms of transcriptional regulation are poorly understood in Plasmodium falciparum. In addition, most of the genes in Plasmodium falciparum are transcriptionally poised and only a handful of cis-regulatory elements are known to operate in transcriptional regulation. Here, we employed an epigenetic signature based approach to identify significance of previously uncharacterised intergenic regions enriched with histone modification marks leading to discovery of enhancer-like elements. Results We found that enhancer-like elements are significantly enriched with H3K4me1, generate unique non-coding bi-directional RNAs and majority of them can function as cis-regulators. Furthermore, functional enhancer reporter assay demonstrates that the enhancer-like elements regulate transcription of target genes in Plasmodium falciparum. Our study also suggests that the Plasmodium genome segregates functionally related genes into discrete housekeeping and pathogenicity/virulence clusters, presumably for robust transcriptional control of virulence/pathogenicity genes. Conclusions This report contributes to the understanding of parasite regulatory genomics by identification of enhancer-like elements, defining their epigenetic and transcriptional features and provides a resource of functional cis-regulatory elements that may give insights into the virulence/pathogenicity of Plasmodium falciparum. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4052-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suyog Ubhe
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, 411008, India
| | - Mukul Rawat
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, 411008, India
| | - Srikant Verma
- Labs, Persistent Systems Limited, Pingala - Aryabhata, Erandwane, Pune, 411004, India
| | - Krishanpal Anamika
- Labs, Persistent Systems Limited, Pingala - Aryabhata, Erandwane, Pune, 411004, India
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, 411008, India.
| |
Collapse
|
54
|
Swierzy IJ, Händel U, Kaever A, Jarek M, Scharfe M, Schlüter D, Lüder CGK. Divergent co-transcriptomes of different host cells infected with Toxoplasma gondii reveal cell type-specific host-parasite interactions. Sci Rep 2017; 7:7229. [PMID: 28775382 PMCID: PMC5543063 DOI: 10.1038/s41598-017-07838-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/30/2017] [Indexed: 02/06/2023] Open
Abstract
The apicomplexan parasite Toxoplasma gondii infects various cell types in avian and mammalian hosts including humans. Infection of immunocompetent hosts is mostly asymptomatic or benign, but leads to development of largely dormant bradyzoites that persist predominantly within neurons and muscle cells. Here we have analyzed the impact of the host cell type on the co-transcriptomes of host and parasite using high-throughput RNA sequencing. Murine cortical neurons and astrocytes, skeletal muscle cells (SkMCs) and fibroblasts differed by more than 16,200 differentially expressed genes (DEGs) before and after infection with T. gondii. However, only a few hundred of them were regulated by infection and these largely diverged in neurons, SkMCs, astrocytes and fibroblasts indicating host cell type-specific transcriptional responses after infection. The heterogeneous transcriptomes of host cells before and during infection coincided with ~5,400 DEGs in T. gondii residing in different cell types. Finally, we identified gene clusters in both T. gondii and its host, which correlated with the predominant parasite persistence in neurons or SkMCs as compared to astrocytes or fibroblasts. Thus, heterogeneous expression profiles of different host cell types and the parasites’ ability to adapting to them may govern the parasite-host cell interaction during toxoplasmosis.
Collapse
Affiliation(s)
- Izabela J Swierzy
- Institute for Medical Microbiology, University Medical Center, Georg-August-University, 37075, Göttingen, Germany
| | - Ulrike Händel
- Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke-University, 39120, Magdeburg, Germany
| | - Alexander Kaever
- Institute of Microbiology and Genetics, Department of Bioinformatics, Georg-August-University, 37077, Göttingen, Germany
| | - Michael Jarek
- Genome Analytics, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Maren Scharfe
- Genome Analytics, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke-University, 39120, Magdeburg, Germany.,Organ-Specific Immune Regulation, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Carsten G K Lüder
- Institute for Medical Microbiology, University Medical Center, Georg-August-University, 37075, Göttingen, Germany.
| |
Collapse
|
55
|
Santos JM, Josling G, Ross P, Joshi P, Orchard L, Campbell T, Schieler A, Cristea IM, Llinás M. Red Blood Cell Invasion by the Malaria Parasite Is Coordinated by the PfAP2-I Transcription Factor. Cell Host Microbe 2017; 21:731-741.e10. [PMID: 28618269 PMCID: PMC5855115 DOI: 10.1016/j.chom.2017.05.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 02/16/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
Abstract
Obligate intracellular parasites must efficiently invade host cells in order to mature and be transmitted. For the malaria parasite Plasmodium falciparum, invasion of host red blood cells (RBCs) is essential. Here we describe a parasite-specific transcription factor PfAP2-I, belonging to the Apicomplexan AP2 (ApiAP2) family, that is responsible for regulating the expression of genes involved in RBC invasion. Our genome-wide analysis by ChIP-seq shows that PfAP2-I interacts with a specific DNA motif in the promoters of target genes. Although PfAP2-I contains three AP2 DNA-binding domains, only one is required for binding of the target genes during blood stage development. Furthermore, we find that PfAP2-I associates with several chromatin-associated proteins, including the Plasmodium bromodomain protein PfBDP1 and that complex formation is associated with transcriptional regulation. As a key regulator of red blood cell invasion, PfAP2-I represents a potential new antimalarial therapeutic target.
Collapse
Affiliation(s)
- Joana Mendonca Santos
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, State College, PA 16802, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Gabrielle Josling
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, State College, PA 16802, USA
| | - Philipp Ross
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, State College, PA 16802, USA
| | - Preeti Joshi
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lindsey Orchard
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, State College, PA 16802, USA
| | - Tracey Campbell
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Ariel Schieler
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, State College, PA 16802, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemistry and Huck Center for Infectious Disease Dynamics, Pennsylvania State University, State College, PA 16802, USA.
| |
Collapse
|
56
|
Abstract
The increasing prevalence of infections involving intracellular apicomplexan parasites such as Plasmodium, Toxoplasma, and Cryptosporidium (the causative agents of malaria, toxoplasmosis, and cryptosporidiosis, respectively) represent a significant global healthcare burden. Despite their significance, few treatments are available; a situation that is likely to deteriorate with the emergence of new resistant strains of parasites. To lay the foundation for programs of drug discovery and vaccine development, genome sequences for many of these organisms have been generated, together with large-scale expression and proteomic datasets. Comparative analyses of these datasets are beginning to identify the molecular innovations supporting both conserved processes mediating fundamental roles in parasite survival and persistence, as well as lineage-specific adaptations associated with divergent life-cycle strategies. The challenge is how best to exploit these data to derive insights into parasite virulence and identify those genes representing the most amenable targets. In this review, we outline genomic datasets currently available for apicomplexans and discuss biological insights that have emerged as a consequence of their analysis. Of particular interest are systems-based resources, focusing on areas of metabolism and host invasion that are opening up opportunities for discovering new therapeutic targets.
Collapse
Affiliation(s)
| | - John Parkinson
- a Program in Molecular Structure and Function , Hospital for Sick Children , Toronto , Ontario , Canada
- b Departments of Biochemistry, Molecular Genetics and Computer Science , University of Toronto , Toronto , Ontario , Canada
| |
Collapse
|
57
|
Sierra-Miranda M, Vembar SS, Delgadillo DM, Ávila-López PA, Herrera-Solorio AM, Lozano Amado D, Vargas M, Hernandez-Rivas R. PfAP2Tel, harbouring a non-canonical DNA-binding AP2 domain, binds to Plasmodium falciparum telomeres. Cell Microbiol 2017; 19. [PMID: 28376558 DOI: 10.1111/cmi.12742] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 03/18/2017] [Accepted: 03/21/2017] [Indexed: 12/11/2022]
Abstract
The telomeres of the malaria parasite Plasmodium falciparum are essential not only for chromosome end maintenance during blood stage development in humans but also to generate genetic diversity by facilitating homologous recombination of subtelomeric, multigene virulence families such as var and rifin. However, other than the telomerase PfTERT, proteins that act at P. falciparum telomeres are poorly characterised. To isolate components that bind to telomeres, we performed oligonucleotide pulldowns and electromobility shift assays with a telomeric DNA probe and identified a non-canonical member of the ApiAP2 family of transcription factors, PfAP2Tel (encoded by PF3D7_0622900), as a component of the P. falciparum telomere-binding protein complex. PfAP2Tel is expressed throughout the intra-erythrocytic life cycle and localises to the nuclear periphery, co-localising with telomeric clusters. Furthermore, EMSAs using the recombinant protein demonstrated direct binding of PfAP2Tel to telomeric repeats in vitro, while genome-wide chromatin immunoprecipitation followed by next generation sequencing corroborated the high specificity of this protein to telomeric ends of all 14 chromosomes in vivo. Taken together, our data describe a novel function for ApiAP2 proteins at chromosome ends and open new avenues to study the molecular machinery that regulates telomere function in P. falciparum.
Collapse
Affiliation(s)
- Miguel Sierra-Miranda
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| | - Shruthi-Sridhar Vembar
- Unité de Biologie des Interactions Hôte-Parasite, CNRS URA 2581, Institut Pasteur Paris, Paris, France.,CNRS ERL9195, Paris, France.,INSERM U1201, Paris, France
| | - Dulce María Delgadillo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| | - Pedro A Ávila-López
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| | - Abril-Marcela Herrera-Solorio
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| | - Daniela Lozano Amado
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| | - Miguel Vargas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| | - Rosaura Hernandez-Rivas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, México
| |
Collapse
|
58
|
Batugedara G, Lu XM, Bunnik EM, Le Roch KG. The Role of Chromatin Structure in Gene Regulation of the Human Malaria Parasite. Trends Parasitol 2017; 33:364-377. [PMID: 28065669 PMCID: PMC5410391 DOI: 10.1016/j.pt.2016.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/28/2016] [Accepted: 12/07/2016] [Indexed: 12/11/2022]
Abstract
The human malaria parasite, Plasmodium falciparum, depends on a coordinated regulation of gene expression for development and propagation within the human host. Recent developments suggest that gene regulation in the parasite is largely controlled by epigenetic mechanisms. Here, we discuss recent advancements contributing to our understanding of the mechanisms controlling gene regulation in the parasite, including nucleosome landscape, histone modifications, and nuclear architecture. In addition, various processes involved in regulation of parasite-specific genes and gene families are examined. Finally, we address the use of epigenetic processes as targets for novel antimalarial therapies. Collectively, these topics highlight the unique biology of P. falciparum, and contribute to our understanding of mechanisms regulating gene expression in this deadly parasite.
Collapse
Affiliation(s)
- Gayani Batugedara
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, CA 92521, USA
| | - Xueqing M Lu
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, CA 92521, USA
| | - Evelien M Bunnik
- Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Karine G Le Roch
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
59
|
Gupta AP, Bozdech Z. Epigenetic landscapes underlining global patterns of gene expression in the human malaria parasite, Plasmodium falciparum. Int J Parasitol 2017; 47:399-407. [PMID: 28414071 DOI: 10.1016/j.ijpara.2016.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/15/2016] [Accepted: 10/20/2016] [Indexed: 12/31/2022]
Abstract
The dynamic chromatin landscape displaying combinatorial complexity of the epigenome impacts gene expression that underlies many events of differentiation and cell cycle progression. In the past few years, epigenetic mechanisms have emerged as important processes involved in the tight gene regulation in malaria parasites, Plasmodium spp. Focusing predominantly on Plasmodium falciparum, the species associated with the most severe form of the disease, many advances have been made in our understanding of the interaction between transcriptional regulation and epigenetic mechanisms as the pivotal processes in regulating life cycle progression, host parasite interactions and parasite adaptation to the host environment. This review focuses on the epigenome and its effect on transcriptional regulation in P. falciparum, highlighting its unique, evolutionary diverse features.
Collapse
Affiliation(s)
- Archana P Gupta
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
60
|
Malaria parasites possess a telomere repeat-binding protein that shares ancestry with transcription factor IIIA. Nat Microbiol 2017; 2:17033. [PMID: 28288093 DOI: 10.1038/nmicrobiol.2017.33] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/09/2017] [Indexed: 12/19/2022]
Abstract
Telomere repeat-binding factors (TRFs) are essential components of the molecular machinery that regulates telomere function. TRFs are widely conserved across eukaryotes and bind duplex telomere repeats via a characteristic MYB-type domain. Here, we identified the telomere repeat-binding protein PfTRZ in the malaria parasite Plasmodium falciparum, a member of the Alveolate phylum for which TRFs have not been described so far. PfTRZ lacks an MYB domain and binds telomere repeats via a C2H2-type zinc finger domain instead. In vivo, PfTRZ binds with high specificity to the telomeric tract and to interstitial telomere repeats upstream of subtelomeric virulence genes. Conditional depletion experiments revealed that PfTRZ regulates telomere length homeostasis and is required for efficient cell cycle progression. Intriguingly, we found that PfTRZ also binds to and regulates the expression of 5S rDNA genes. Combined with detailed phylogenetic analyses, our findings identified PfTRZ as a remote functional homologue of the basic transcription factor TFIIIA, which acquired a new function in telomere maintenance early in the apicomplexan lineage. Our work sheds unexpected new light on the evolution of telomere repeat-binding proteins and paves the way for dissecting the presumably divergent mechanisms regulating telomere functionality in one of the most deadly human pathogens.
Collapse
|
61
|
Ganter M, Goldberg JM, Dvorin JD, Paulo JA, King JG, Tripathi AK, Paul AS, Yang J, Coppens I, Jiang RH, Elsworth B, Baker DA, Dinglasan RR, Gygi SP, Duraisingh MT. Plasmodium falciparum CRK4 directs continuous rounds of DNA replication during schizogony. Nat Microbiol 2017; 2:17017. [PMID: 28211852 PMCID: PMC5328244 DOI: 10.1038/nmicrobiol.2017.17] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 01/13/2017] [Indexed: 02/08/2023]
Abstract
Plasmodium parasites, the causative agents of malaria, have evolved a unique cell division cycle in the clinically relevant asexual blood stage of infection1. DNA replication commences approximately halfway through the intracellular development following invasion and parasite growth. The schizont stage is associated with multiple rounds of DNA replication and nuclear division without cytokinesis, resulting in a multinucleated cell. Nuclei divide asynchronously through schizogony, with only the final round of DNA replication and segregation being synchronous and coordinated with daughter cell assembly2,3. However, the control mechanisms for this divergent mode of replication are unknown. Here, we show that the Plasmodium-specific kinase PfCRK4 is a key cell-cycle regulator that orchestrates multiple rounds of DNA replication throughout schizogony in Plasmodium falciparum. PfCRK4 depletion led to a complete block in nuclear division and profoundly inhibited DNA replication. Quantitative phosphoproteomic profiling identified a set of PfCRK4-regulated phosphoproteins with greatest functional similarity to CDK2 substrates, particularly proteins involved in the origin of replication firing. PfCRK4 was required for initial and subsequent rounds of DNA replication during schizogony and, in addition, was essential for development in the mosquito vector. Our results identified an essential S-phase promoting factor of the unconventional P. falciparum cell cycle. PfCRK4 is required for both a prolonged period of the intraerythrocytic stage of Plasmodium infection, as well as for transmission, revealing a broad window for PfCRK4-targeted chemotherapeutics.
Collapse
Affiliation(s)
- Markus Ganter
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jonathan M. Goldberg
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jeffrey D. Dvorin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Jonas G. King
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Abhai K. Tripathi
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Aditya S. Paul
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jing Yang
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Isabelle Coppens
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rays H.Y. Jiang
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David A. Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Rhoel R. Dinglasan
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Manoj T. Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
62
|
Lehti-Shiu MD, Panchy N, Wang P, Uygun S, Shiu SH. Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:3-20. [PMID: 27522016 DOI: 10.1016/j.bbagrm.2016.08.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/21/2016] [Accepted: 08/06/2016] [Indexed: 12/19/2022]
Abstract
Plant transcription factors (TFs) that interact with specific sequences via DNA-binding domains are crucial for regulating transcriptional initiation and are fundamental to plant development and environmental response. In addition, expansion of TF families has allowed functional divergence of duplicate copies, which has contributed to novel, and in some cases adaptive, traits in plants. Thus, TFs are central to the generation of the diverse plant species that we see today. Major plant agronomic traits, including those relevant to domestication, have also frequently arisen through changes in TF coding sequence or expression patterns. Here our goal is to provide an overview of plant TF evolution by first comparing the diversity of DNA-binding domains and the sizes of these domain families in plants and other eukaryotes. Because TFs are among the most highly expanded gene families in plants, the birth and death process of TFs as well as the mechanisms contributing to their retention are discussed. We also provide recent examples of how TFs have contributed to novel traits that are important in plant evolution and in agriculture.This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
| | - Nicholas Panchy
- The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | - Peipei Wang
- Department of Plant Biology, East Lansing, MI 48824, USA
| | - Sahra Uygun
- The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | - Shin-Han Shiu
- Department of Plant Biology, East Lansing, MI 48824, USA; The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
63
|
Zhu L, Mok S, Imwong M, Jaidee A, Russell B, Nosten F, Day NP, White NJ, Preiser PR, Bozdech Z. New insights into the Plasmodium vivax transcriptome using RNA-Seq. Sci Rep 2016; 6:20498. [PMID: 26858037 PMCID: PMC4746618 DOI: 10.1038/srep20498] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022] Open
Abstract
Historically seen as a benign disease, it is now becoming clear that Plasmodium vivax can cause significant morbidity. Effective control strategies targeting P. vivax malaria is hindered by our limited understanding of vivax biology. Here we established the P. vivax transcriptome of the Intraerythrocytic Developmental Cycle (IDC) of two clinical isolates in high resolution by Illumina HiSeq platform. The detailed map of transcriptome generates new insights into regulatory mechanisms of individual genes and reveals their intimate relationship with specific biological functions. A transcriptional hotspot of vir genes observed on chromosome 2 suggests a potential active site modulating immune evasion of the Plasmodium parasite across patients. Compared to other eukaryotes, P. vivax genes tend to have unusually long 5′ untranslated regions and also present multiple transcription start sites. In contrast, alternative splicing is rare in P. vivax but its association with the late schizont stage suggests some of its significance for gene function. The newly identified transcripts, including up to 179 vir like genes and 3018 noncoding RNAs suggest an important role of these gene/transcript classes in strain specific transcriptional regulation.
Collapse
Affiliation(s)
- Lei Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sachel Mok
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Mallika Imwong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anchalee Jaidee
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Bruce Russell
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Nicholas P Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
64
|
Kono M, Heincke D, Wilcke L, Wong TWY, Bruns C, Herrmann S, Spielmann T, Gilberger TW. Pellicle formation in the malaria parasite. J Cell Sci 2016; 129:673-80. [PMID: 26763910 PMCID: PMC4760376 DOI: 10.1242/jcs.181230] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/31/2015] [Indexed: 12/20/2022] Open
Abstract
The intraerythrocytic developmental cycle of Plasmodium falciparum is completed with the release of up to 32 invasive daughter cells, the merozoites, into the blood stream. Before release, the final step of merozoite development is the assembly of the cortical pellicle, a multi-layered membrane structure. This unique apicomplexan feature includes the inner membrane complex (IMC) and the parasite's plasma membrane. A dynamic ring structure, referred to as the basal complex, is part of the IMC and helps to divide organelles and abscises in the maturing daughter cells. Here, we analyze the dynamics of the basal complex of P. falciparum. We report on a novel transmembrane protein of the basal complex termed BTP1, which is specific to the genus Plasmodium. It colocalizes with the known basal complex marker protein MORN1 and shows distinct dynamics as well as localization when compared to other IMC proteins during schizogony. Using a parasite plasma membrane marker cell line, we correlate dynamics of the basal complex with the acquisition of the maternal membrane. We show that plasma membrane invagination and IMC propagation are interlinked during the final steps of cell division.
Collapse
Affiliation(s)
- Maya Kono
- Department of Cellular Parasitology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg 20359, Germany
| | - Dorothee Heincke
- Department of Cellular Parasitology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg 20359, Germany M.G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Louisa Wilcke
- Department of Cellular Parasitology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg 20359, Germany M.G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Tatianna Wai Ying Wong
- Department of Cellular Parasitology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg 20359, Germany M.G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Caroline Bruns
- Department of Cellular Parasitology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg 20359, Germany
| | - Susann Herrmann
- Department of Cellular Parasitology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg 20359, Germany M.G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Tobias Spielmann
- Department of Cellular Parasitology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg 20359, Germany
| | - Tim W Gilberger
- Department of Cellular Parasitology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg 20359, Germany M.G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada Center for Structural Systems Biology, Hamburg 22607, Germany
| |
Collapse
|
65
|
Leckenby A, Hall N. Genomic changes during evolution of animal parasitism in eukaryotes. Curr Opin Genet Dev 2015; 35:86-92. [PMID: 26637954 DOI: 10.1016/j.gde.2015.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/21/2022]
Abstract
Understanding how pathogens have evolved to survive in close association with their hosts is an important step in unraveling the biology of host-pathogen interactions. Comparative genomics is a powerful tool to approach this problem as an increasing number of genomes of multiple pathogen species and strains become available. The ever-growing catalog of genome sequences makes comparison of organisms easier, but it also allows us to reconstitute the evolutionary processes occurring at the genomic level that may have led to the acquisition of pathogenic or parasitic mechanisms.
Collapse
Affiliation(s)
- Amber Leckenby
- Department of Functional and Comparative Genomics, The University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Neil Hall
- Department of Functional and Comparative Genomics, The University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK.
| |
Collapse
|
66
|
Analysis of nucleosome positioning landscapes enables gene discovery in the human malaria parasite Plasmodium falciparum. BMC Genomics 2015; 16:1005. [PMID: 26607328 PMCID: PMC4658763 DOI: 10.1186/s12864-015-2214-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 11/13/2015] [Indexed: 12/26/2022] Open
Abstract
Background Plasmodium falciparum, the deadliest malaria-causing parasite, has an extremely AT-rich (80.7 %) genome. Because of high AT-content, sequence-based annotation of genes and functional elements remains challenging. In order to better understand the regulatory network controlling gene expression in the parasite, a more complete genome annotation as well as analysis tools adapted for AT-rich genomes are needed. Recent studies on genome-wide nucleosome positioning in eukaryotes have shown that nucleosome landscapes exhibit regular characteristic patterns at the 5’- and 3’-end of protein and non-protein coding genes. In addition, nucleosome depleted regions can be found near transcription start sites. These unique nucleosome landscape patterns may be exploited for the identification of novel genes. In this paper, we propose a computational approach to discover novel putative genes based exclusively on nucleosome positioning data in the AT-rich genome of P. falciparum. Results Using binary classifiers trained on nucleosome landscapes at the gene boundaries from two independent nucleosome positioning data sets, we were able to detect a total of 231 regions containing putative genes in the genome of Plasmodium falciparum, of which 67 highly confident genes were found in both data sets. Eighty-eight of these 231 newly predicted genes exhibited transcription signal in RNA-Seq data, indicative of active transcription. In addition, 20 out of 21 selected gene candidates were further validated by RT-PCR, and 28 out of the 231 genes showed significant matches using BLASTN against an expressed sequence tag (EST) database. Furthermore, 108 (47 %) out of the 231 putative novel genes overlapped with previously identified but unannotated long non-coding RNAs. Collectively, these results provide experimental validation for 163 predicted genes (70.6 %). Finally, 73 out of 231 genes were found to be potentially translated based on their signal in polysome-associated RNA-Seq representing transcripts that are actively being translated. Conclusion Our results clearly indicate that nucleosome positioning data contains sufficient information for novel gene discovery. As distinct nucleosome landscapes around genes are found in many other eukaryotic organisms, this methodology could be used to characterize the transcriptome of any organism, especially when coupled with other DNA-based gene finding and experimental methods (e.g., RNA-Seq). Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2214-9) contains supplementary material, which is available to authorized users.
Collapse
|
67
|
Josling GA, Llinás M. Sexual development in Plasmodium parasites: knowing when it's time to commit. Nat Rev Microbiol 2015; 13:573-87. [DOI: 10.1038/nrmicro3519] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
68
|
Subudhi AK, Boopathi PA, Pandey I, Kaur R, Middha S, Acharya J, Kochar SK, Kochar DK, Das A. Disease specific modules and hub genes for intervention strategies: A co-expression network based approach for Plasmodium falciparum clinical isolates. INFECTION GENETICS AND EVOLUTION 2015; 35:96-108. [PMID: 26247716 DOI: 10.1016/j.meegid.2015.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/29/2015] [Accepted: 08/01/2015] [Indexed: 11/19/2022]
Abstract
Systems biology approaches that are based on gene expression and bioinformatics analysis have been successful in predicting the functions of many genes in Plasmodium falciparum, a protozoan parasite responsible for most of the deaths due to malaria. However, approaches that can provide information about the biological processes that are active in this parasite in vivo during complicated malaria conditions have been scarcely deployed. Here we report the analysis of a weighted gene co-expression based network for P. falciparum, from non-cerebral clinical complications. Gene expression profiles of 20 P. falciparum clinical isolates were utilized to construct the same. A total of 20 highly interacting modules were identified post network creation. In 12 of these modules, at least 10% of the member genes, were found to be differentially regulated in parasites from patient isolates showing complications, when compared with those from patients with uncomplicated disease. Enrichment analysis helped identify biological processes like oxidation-reduction, electron transport chain, protein synthesis, ubiquitin dependent catabolic processes, RNA binding and purine nucleotide metabolic processes as associated with these modules. Additionally, for each module, highly connected hub genes were identified. Detailed functional analysis of many of these, which have known annotated functions underline their importance in parasite development and survival. This suggests, that other hub genes with unknown functions may also be playing crucial roles in parasite biology, and, are potential candidates for intervention strategies.
Collapse
Affiliation(s)
- Amit Kumar Subudhi
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - Pon Arunachalam Boopathi
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - Isha Pandey
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - Ramandeep Kaur
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - Sheetal Middha
- Department of Medicine, S.P. Medical College, Bikaner, Rajasthan, India.
| | - Jyoti Acharya
- Department of Medicine, S.P. Medical College, Bikaner, Rajasthan, India.
| | - Sanjay K Kochar
- Department of Medicine, S.P. Medical College, Bikaner, Rajasthan, India.
| | - Dhanpat K Kochar
- Rajasthan University of Health Sciences, Jaipur, Rajasthan, India.
| | - Ashis Das
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| |
Collapse
|
69
|
Woo YH, Ansari H, Otto TD, Klinger CM, Kolisko M, Michálek J, Saxena A, Shanmugam D, Tayyrov A, Veluchamy A, Ali S, Bernal A, del Campo J, Cihlář J, Flegontov P, Gornik SG, Hajdušková E, Horák A, Janouškovec J, Katris NJ, Mast FD, Miranda-Saavedra D, Mourier T, Naeem R, Nair M, Panigrahi AK, Rawlings ND, Padron-Regalado E, Ramaprasad A, Samad N, Tomčala A, Wilkes J, Neafsey DE, Doerig C, Bowler C, Keeling PJ, Roos DS, Dacks JB, Templeton TJ, Waller RF, Lukeš J, Oborník M, Pain A. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. eLife 2015; 4:e06974. [PMID: 26175406 PMCID: PMC4501334 DOI: 10.7554/elife.06974] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/16/2015] [Indexed: 12/18/2022] Open
Abstract
The eukaryotic phylum Apicomplexa encompasses thousands of obligate intracellular parasites of humans and animals with immense socio-economic and health impacts. We sequenced nuclear genomes of Chromera velia and Vitrella brassicaformis, free-living non-parasitic photosynthetic algae closely related to apicomplexans. Proteins from key metabolic pathways and from the endomembrane trafficking systems associated with a free-living lifestyle have been progressively and non-randomly lost during adaptation to parasitism. The free-living ancestor contained a broad repertoire of genes many of which were repurposed for parasitic processes, such as extracellular proteins, components of a motility apparatus, and DNA- and RNA-binding protein families. Based on transcriptome analyses across 36 environmental conditions, Chromera orthologs of apicomplexan invasion-related motility genes were co-regulated with genes encoding the flagellar apparatus, supporting the functional contribution of flagella to the evolution of invasion machinery. This study provides insights into how obligate parasites with diverse life strategies arose from a once free-living phototrophic marine alga. DOI:http://dx.doi.org/10.7554/eLife.06974.001 Single-celled parasites cause many severe diseases in humans and animals. The apicomplexans form probably the most successful group of these parasites and include the parasites that cause malaria. Apicomplexans infect a broad range of hosts, including humans, reptiles, birds, and insects, and often have complicated life cycles. For example, the malaria-causing parasites spread by moving from humans to female mosquitoes and then back to humans. Despite significant differences amongst apicomplexans, these single-celled parasites also share a number of features that are not seen in other living species. How and when these features arose remains unclear. It is known from previous work that apicomplexans are closely related to single-celled algae. But unlike apicomplexans, which depend on a host animal to survive, these algae live freely in their environment, often in close association with corals. Woo et al. have now sequenced the genomes of two photosynthetic algae that are thought to be close living relatives of the apicomplexans. These genomes were then compared to each other and to the genomes of other algae and apicomplexans. These comparisons reconfirmed that the two algae that were studied were close relatives of the apicomplexans. Further analyses suggested that thousands of genes were lost as an ancient free-living algae evolved into the apicomplexan ancestor, and further losses occurred as these early parasites evolved into modern species. The lost genes were typically those that are important for free-living organisms, but are either a hindrance to, or not needed in, a parasitic lifestyle. Some of the ancestor's genes, especially those that coded for the building blocks of flagella (structures which free-living algae use to move around), were repurposed in ways that helped the apicomplexans to invade their hosts. Understanding this repurposing process in greater detail will help to identify key molecules in these deadly parasites that could be targeted by drug treatments. It will also offer answers to one of the most fascinating questions in evolutionary biology: how parasites have evolved from free-living organisms. DOI:http://dx.doi.org/10.7554/eLife.06974.002
Collapse
Affiliation(s)
- Yong H Woo
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Hifzur Ansari
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Thomas D Otto
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | | | - Martin Kolisko
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Jan Michálek
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Alka Saxena
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Annageldi Tayyrov
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alaguraj Veluchamy
- Ecology and Evolutionary Biology Section, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197 INSERM U1024, Paris, France
| | - Shahjahan Ali
- Bioscience Core Laboratory, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Axel Bernal
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Javier del Campo
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Jaromír Cihlář
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Pavel Flegontov
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | | | - Eva Hajdušková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jan Janouškovec
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | | | - Fred D Mast
- Seattle Biomedical Research Institute, Seattle, United States
| | - Diego Miranda-Saavedra
- Centro de Biología Molecular Severo Ochoa, CSIC/Universidad Autónoma de Madrid, Madrid, Spain
| | - Tobias Mourier
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Raeece Naeem
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mridul Nair
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Aswini K Panigrahi
- Bioscience Core Laboratory, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Neil D Rawlings
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Eriko Padron-Regalado
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Abhinay Ramaprasad
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Nadira Samad
- School of Botany, University of Melbourne, Parkville, Australia
| | - Aleš Tomčala
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jon Wilkes
- Wellcome Trust Centre For Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniel E Neafsey
- Broad Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Christian Doerig
- Department of Microbiology, Monash University, Clayton, Australia
| | - Chris Bowler
- Ecology and Evolutionary Biology Section, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197 INSERM U1024, Paris, France
| | - Patrick J Keeling
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | - David S Roos
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Thomas J Templeton
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, United States
| | - Ross F Waller
- School of Botany, University of Melbourne, Parkville, Australia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Arnab Pain
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
70
|
Josling G, Petter M, Oehring S, Gupta A, Dietz O, Wilson D, Schubert T, Längst G, Gilson P, Crabb B, Moes S, Jenoe P, Lim S, Brown G, Bozdech Z, Voss T, Duffy M. A Plasmodium Falciparum Bromodomain Protein Regulates Invasion Gene Expression. Cell Host Microbe 2015; 17:741-51. [DOI: 10.1016/j.chom.2015.05.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/30/2015] [Accepted: 05/14/2015] [Indexed: 11/27/2022]
|
71
|
Russell K, Emes R, Horrocks P. Triaging informative cis-regulatory elements for the combinatorial control of temporal gene expression during Plasmodium falciparum intraerythrocytic development. Parasit Vectors 2015; 8:81. [PMID: 25652008 PMCID: PMC4322800 DOI: 10.1186/s13071-015-0701-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/27/2015] [Indexed: 01/18/2023] Open
Abstract
Background Over 2700 genes are subject to stage-specific regulation during the intraerythrocytic development of the human malaria parasite Plasmodium falciparum. Bioinformatic analyses have identified a large number of over-represented motifs in the 5′ flanking regions of these genes that may act as cis-acting factors in the promoter-based control of temporal expression. Triaging these lists to provide candidates most likely to play a role in regulating temporal expression is challenging, but important if we are to effectively design in vitro studies to validate this role. Methods We report here the application of a repeated search of variations of 5′ flanking sequences from P. falciparum using the Finding Informative Regulatory Elements (FIRE) algorithm. Results Our approach repeatedly found a short-list of high scoring DNA motifs, for which cognate specific transcription factors were available, that appear to be typically associated with upregulation of mRNA accumulation during the first half of intraerythrocytic development. Conclusions We propose these cis-trans interactions may provide a combinatorial promoter-based control of gene expression to complement more global mechanisms of gene regulation that can account for temporal control during the second half of intraerythrocytic development. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-0701-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karen Russell
- Institute for Science and Technology in Medicine, Keele University, Staffordshire, ST5 5BG, UK.
| | - Richard Emes
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, LE12 5RD, UK. .,Advanced Data Analysis Centre, University of Nottingham, Leicestershire, LE12 5RD, UK.
| | - Paul Horrocks
- Institute for Science and Technology in Medicine, Keele University, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
72
|
Wetzel J, Herrmann S, Swapna LS, Prusty D, John Peter AT, Kono M, Saini S, Nellimarla S, Wong TWY, Wilcke L, Ramsay O, Cabrera A, Biller L, Heincke D, Mossman K, Spielmann T, Ungermann C, Parkinson J, Gilberger TW. The role of palmitoylation for protein recruitment to the inner membrane complex of the malaria parasite. J Biol Chem 2015; 290:1712-1728. [PMID: 25425642 PMCID: PMC4340414 DOI: 10.1074/jbc.m114.598094] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/20/2014] [Indexed: 08/27/2023] Open
Abstract
To survive and persist within its human host, the malaria parasite Plasmodium falciparum utilizes a battery of lineage-specific innovations to invade and multiply in human erythrocytes. With central roles in invasion and cytokinesis, the inner membrane complex, a Golgi-derived double membrane structure underlying the plasma membrane of the parasite, represents a unique and unifying structure characteristic to all organisms belonging to a large phylogenetic group called Alveolata. More than 30 structurally and phylogenetically distinct proteins are embedded in the IMC, where a portion of these proteins displays N-terminal acylation motifs. Although N-terminal myristoylation is catalyzed co-translationally within the cytoplasm of the parasite, palmitoylation takes place at membranes and is mediated by palmitoyl acyltransferases (PATs). Here, we identify a PAT (PfDHHC1) that is exclusively localized to the IMC. Systematic phylogenetic analysis of the alveolate PAT family reveals PfDHHC1 to be a member of a highly conserved, apicomplexan-specific clade of PATs. We show that during schizogony this enzyme has an identical distribution like two dual-acylated, IMC-localized proteins (PfISP1 and PfISP3). We used these proteins to probe into specific sequence requirements for IMC-specific membrane recruitment and their interaction with differentially localized PATs of the parasite.
Collapse
Affiliation(s)
- Johanna Wetzel
- From the M. G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Susann Herrmann
- From the M. G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Lakshmipuram Seshadri Swapna
- the Program in Molecular Structure and Function, Hospital for Sick Children, and Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Dhaneswar Prusty
- From the M. G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Arun T John Peter
- the Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, 49076 Osnabrück, Germany
| | - Maya Kono
- the Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany, and
| | - Sidharth Saini
- From the M. G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Srinivas Nellimarla
- From the M. G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Tatianna Wai Ying Wong
- From the M. G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Louisa Wilcke
- From the M. G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada, the Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany, and
| | - Olivia Ramsay
- From the M. G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Ana Cabrera
- From the M. G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Laura Biller
- the Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany, and
| | - Dorothee Heincke
- From the M. G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada, the Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany, and
| | - Karen Mossman
- From the M. G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Tobias Spielmann
- the Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany, and
| | - Christian Ungermann
- the Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, 49076 Osnabrück, Germany
| | - John Parkinson
- the Program in Molecular Structure and Function, Hospital for Sick Children, and Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Tim W Gilberger
- From the M. G. DeGroote Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada, the Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany, and the Center for Structural Systems Biology, 22607 Hamburg, Germany
| |
Collapse
|
73
|
Yamagishi J, Wakaguri H, Yokoyama N, Yamashita R, Suzuki Y, Xuan X, Igarashi I. The Babesia bovis gene and promoter model: an update from full-length EST analysis. BMC Genomics 2014; 15:678. [PMID: 25124460 PMCID: PMC4148916 DOI: 10.1186/1471-2164-15-678] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/08/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Babesia bovis is an apicomplexan parasite that causes babesiosis in infected cattle. Genomes of pathogens contain promising information that can facilitate the development of methods for controlling infections. Although the genome of B. bovis is publically available, annotated gene models are not highly reliable prior to experimental validation. Therefore, we validated a preproposed gene model of B. bovis and extended the associated annotations on the basis of experimentally obtained full-length expressed sequence tags (ESTs). RESULTS From in vitro cultured merozoites, 12,286 clones harboring full-length cDNAs were sequenced from both ends using the Sanger method, and 6,787 full-length cDNAs were assembled. These were then clustered, and a nonredundant referential data set of 2,115 full-length cDNA sequences was constructed. The comparison of the preproposed gene model with our data set identified 310 identical genes, 342 almost identical genes, 1,054 genes with potential structural inconsistencies, and 409 novel genes. The median length of 5' untranslated regions (UTRs) was 152 nt. Subsequently, we identified 4,086 transcription start sites (TSSs) and 2,023 transcriptionally active regions (TARs) by examining 5' ESTs. We identified ATGGGG and CCCCAT sites as consensus motifs in TARs that were distributed around -50 bp from TSSs. In addition, we found ACACA, TGTGT, and TATAT sites, which were distributed periodically around TSSs in cycles of approximately 150 bp. Moreover, related periodical distributions were not observed in mammalian promoter regions. CONCLUSIONS The observations in this study indicate the utility of integrated bioinformatics and experimental data for improving genome annotations. In particular, full-length cDNAs with one-base resolution for TSSs enabled the identification of consensus motifs in promoter sequences and demonstrated clear distributions of identified motifs. These observations allowed the illustration of a model promoter composition, which supports the differences in transcriptional regulation frameworks between apicomplexan parasites and mammals.
Collapse
Affiliation(s)
- Junya Yamagishi
- />Tohoku Medical Megabank Organization, Tohoku University, 6-3-09, aza Aoba, Sendai, Miyagi 980-8579 Japan
- />National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho west 2-13, Obihiro, Hokkaido 080-8555 Japan
| | - Hiroyuki Wakaguri
- />Department of Medical Genome Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562 Japan
| | - Naoaki Yokoyama
- />National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho west 2-13, Obihiro, Hokkaido 080-8555 Japan
| | - Riu Yamashita
- />Tohoku Medical Megabank Organization, Tohoku University, 6-3-09, aza Aoba, Sendai, Miyagi 980-8579 Japan
| | - Yutaka Suzuki
- />Department of Medical Genome Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562 Japan
| | - Xuenan Xuan
- />National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho west 2-13, Obihiro, Hokkaido 080-8555 Japan
| | - Ikuo Igarashi
- />National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho west 2-13, Obihiro, Hokkaido 080-8555 Japan
| |
Collapse
|
74
|
Oberstaller J, Pumpalova Y, Schieler A, Llinás M, Kissinger JC. The Cryptosporidium parvum ApiAP2 gene family: insights into the evolution of apicomplexan AP2 regulatory systems. Nucleic Acids Res 2014; 42:8271-84. [PMID: 24957599 PMCID: PMC4117751 DOI: 10.1093/nar/gku500] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/15/2014] [Accepted: 05/19/2014] [Indexed: 01/13/2023] Open
Abstract
We provide the first comprehensive analysis of any transcription factor family in Cryptosporidium, a basal-branching apicomplexan that is the second leading cause of infant diarrhea globally. AP2 domain-containing proteins have evolved to be the major regulatory family in the phylum to the exclusion of canonical regulators. We show that apicomplexan and perkinsid AP2 domains cluster distinctly from other chromalveolate AP2s. Protein-binding specificity assays of C. parvum AP2 domains combined with motif conservation upstream of co-regulated gene clusters allowed the construction of putative AP2 regulons across the in vitro life cycle. Orthologous Apicomplexan AP2 (ApiAP2) expression has been rearranged relative to the malaria parasite P. falciparum, suggesting ApiAP2 network rewiring during evolution. C. hominis orthologs of putative C. parvum ApiAP2 proteins and target genes show greater than average variation. C. parvum AP2 domains display reduced binding diversity relative to P. falciparum, with multiple domains binding the 5'-TGCAT-3', 5'-CACACA-3' and G-box motifs (5'-G[T/C]GGGG-3'). Many overrepresented motifs in C. parvum upstream regions are not AP2 binding motifs. We propose that C. parvum is less reliant on ApiAP2 regulators in part because it utilizes E2F/DP1 transcription factors. C. parvum may provide clues to the ancestral state of apicomplexan transcriptional regulation, pre-AP2 domination.
Collapse
Affiliation(s)
- Jenna Oberstaller
- Department of Genetics, University of Georgia, Athens, GA 30602, USA Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Yoanna Pumpalova
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Ariel Schieler
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Manuel Llinás
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Jessica C Kissinger
- Department of Genetics, University of Georgia, Athens, GA 30602, USA Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
75
|
Voss TS, Bozdech Z, Bártfai R. Epigenetic memory takes center stage in the survival strategy of malaria parasites. Curr Opin Microbiol 2014; 20:88-95. [PMID: 24945736 DOI: 10.1016/j.mib.2014.05.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 05/13/2014] [Indexed: 11/19/2022]
Abstract
Malaria parasites run through a complex life cycle in the vertebrate host and mosquito vector. This not only requires tightly controlled mechanisms to govern stage-specific gene expression but also necessitates effective strategies for survival under changing environmental conditions. In recent years, the combination of different -omics approaches and targeted functional studies highlighted that Plasmodium falciparum blood stage parasites use heterochromatin-based gene silencing as a unifying strategy for clonally variant expression of hundreds of genes. In this article, we describe the epigenetic control mechanisms that mediate alternative expression states of genes involved in antigenic variation, nutrient uptake and sexual conversion and discuss the relevance of this strategy for the survival and transmission of malaria parasites.
Collapse
Affiliation(s)
- Till S Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4051, Switzerland; University of Basel, Petersplatz 1, Basel 4003, Switzerland.
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Richárd Bártfai
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen 6525 GA, The Netherlands
| |
Collapse
|
76
|
Ay F, Bunnik EM, Varoquaux N, Bol SM, Prudhomme J, Vert JP, Noble WS, Le Roch KG. Three-dimensional modeling of the P. falciparum genome during the erythrocytic cycle reveals a strong connection between genome architecture and gene expression. Genome Res 2014; 24:974-88. [PMID: 24671853 PMCID: PMC4032861 DOI: 10.1101/gr.169417.113] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The development of the human malaria parasite Plasmodium falciparum is controlled by coordinated changes in gene expression throughout its complex life cycle, but the corresponding regulatory mechanisms are incompletely understood. To study the relationship between genome architecture and gene regulation in Plasmodium, we assayed the genome architecture of P. falciparum at three time points during its erythrocytic (asexual) cycle. Using chromosome conformation capture coupled with next-generation sequencing technology (Hi-C), we obtained high-resolution chromosomal contact maps, which we then used to construct a consensus three-dimensional genome structure for each time point. We observed strong clustering of centromeres, telomeres, ribosomal DNA, and virulence genes, resulting in a complex architecture that cannot be explained by a simple volume exclusion model. Internal virulence gene clusters exhibit domain-like structures in contact maps, suggesting that they play an important role in the genome architecture. Midway during the erythrocytic cycle, at the highly transcriptionally active trophozoite stage, the genome adopts a more open chromatin structure with increased chromosomal intermingling. In addition, we observed reduced expression of genes located in spatial proximity to the repressive subtelomeric center, and colocalization of distinct groups of parasite-specific genes with coordinated expression profiles. Overall, our results are indicative of a strong association between the P. falciparum spatial genome organization and gene expression. Understanding the molecular processes involved in genome conformation dynamics could contribute to the discovery of novel antimalarial strategies.
Collapse
Affiliation(s)
- Ferhat Ay
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Evelien M Bunnik
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521, USA
| | - Nelle Varoquaux
- Centre for Computational Biology, Mines ParisTech, Fontainebleau F-77300, France; Institut Curie, Paris F-75248, France; U900, INSERM, Paris F-75248, France
| | - Sebastiaan M Bol
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521, USA
| | - Jacques Prudhomme
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521, USA
| | - Jean-Philippe Vert
- Centre for Computational Biology, Mines ParisTech, Fontainebleau F-77300, France; Institut Curie, Paris F-75248, France; U900, INSERM, Paris F-75248, France
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA; Department of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Karine G Le Roch
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521, USA
| |
Collapse
|
77
|
Epigenetic control of effector gene expression in the plant pathogenic fungus Leptosphaeria maculans. PLoS Genet 2014; 10:e1004227. [PMID: 24603691 PMCID: PMC3945186 DOI: 10.1371/journal.pgen.1004227] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/22/2014] [Indexed: 01/07/2023] Open
Abstract
Plant pathogens secrete an arsenal of small secreted proteins (SSPs) acting as effectors that modulate host immunity to facilitate infection. SSP-encoding genes are often located in particular genomic environments and show waves of concerted expression at diverse stages of plant infection. To date, little is known about the regulation of their expression. The genome of the Ascomycete Leptosphaeria maculans comprises alternating gene-rich GC-isochores and gene-poor AT-isochores. The AT-isochores harbor mosaics of transposable elements, encompassing one-third of the genome, and are enriched in putative effector genes that present similar expression patterns, namely no expression or low-level expression during axenic cultures compared to strong induction of expression during primary infection of oilseed rape (Brassica napus). Here, we investigated the involvement of one specific histone modification, histone H3 lysine 9 methylation (H3K9me3), in epigenetic regulation of concerted effector gene expression in L. maculans. For this purpose, we silenced the expression of two key players in heterochromatin assembly and maintenance, HP1 and DIM-5 by RNAi. By using HP1-GFP as a heterochromatin marker, we observed that almost no chromatin condensation is visible in strains in which LmDIM5 was silenced by RNAi. By whole genome oligoarrays we observed overexpression of 369 or 390 genes, respectively, in the silenced-LmHP1 and -LmDIM5 transformants during growth in axenic culture, clearly favouring expression of SSP-encoding genes within AT-isochores. The ectopic integration of four effector genes in GC-isochores led to their overexpression during growth in axenic culture. These data strongly suggest that epigenetic control, mediated by HP1 and DIM-5, represses the expression of at least part of the effector genes located in AT-isochores during growth in axenic culture. Our hypothesis is that changes of lifestyle and a switch toward pathogenesis lift chromatin-mediated repression, allowing a rapid response to new environmental conditions.
Collapse
|
78
|
Dalmasso MC, Carmona SJ, Angel SO, Agüero F. Characterization of Toxoplasma gondii subtelomeric-like regions: identification of a long-range compositional bias that is also associated with gene-poor regions. BMC Genomics 2014; 15:21. [PMID: 24417889 PMCID: PMC4008256 DOI: 10.1186/1471-2164-15-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/02/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Chromosome ends are composed of telomeric repeats and subtelomeric regions, which are patchworks of genes interspersed with repeated elements. Although chromosome ends display similar arrangements in different species, their sequences are highly divergent. In addition, these regions display a particular nucleosomal composition and bind specific factors, therefore producing a special kind of heterochromatin. Using data from currently available draft genomes we have characterized these putative Telomeric Associated Sequences in Toxoplasma gondii. RESULTS An all-vs-all pairwise comparison of T. gondii assembled chromosomes revealed the presence of conserved regions of ∼ 30 Kb located near the ends of 9 of the 14 chromosomes of the genome of the ME49 strain. Sequence similarity among these regions is ∼ 70%, and they are also highly conserved in the GT1 and VEG strains. However, they are unique to Toxoplasma with no detectable similarity in other Apicomplexan parasites. The internal structure of these sequences consists of 3 repetitive regions separated by high-complexity sequences without annotated genes, except for a gene from the Toxoplasma Specific Family. ChIP-qPCR experiments showed that nucleosomes associated to these sequences are enriched in histone H4 monomethylated at K20 (H4K20me1), and the histone variant H2A.X, suggesting that they are silenced sequences (heterochromatin). A detailed characterization of the base composition of these sequences, led us to identify a strong long-range compositional bias, which was similar to that observed in other genomic silenced fragments such as those containing centromeric sequences, and was negatively correlated to gene density. CONCLUSIONS We identified and characterized a region present in most Toxoplasma assembled chromosomes. Based on their location, sequence features, and nucleosomal markers we propose that these might be part of subtelomeric regions of T. gondii. The identified regions display a unique trinucleotide compositional bias, which is shared (despite the lack of any detectable sequence similarity) with other silenced sequences, such as those making up the chromosome centromeres. We also identified other genomic regions with this compositional bias (but no detectable sequence similarity) that might be functionally similar.
Collapse
Affiliation(s)
| | | | - Sergio O Angel
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús, UNSAM - CONICET, Sede Chascomús, Av, Intendente Marino Km 8, 2 CC 164, B 7130 IWA, Chascomús, Argentina.
| | | |
Collapse
|
79
|
Duffy MF, Selvarajah SA, Josling GA, Petter M. Epigenetic regulation of the Plasmodium falciparum genome. Brief Funct Genomics 2013; 13:203-16. [PMID: 24326119 DOI: 10.1093/bfgp/elt047] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent research has highlighted some unique aspects of chromatin biology in the malaria parasite Plasmodium falciparum. During its erythrocytic lifecycle P. falciparum maintains its genome primarily as unstructured euchromatin. Indeed there is no clear role for chromatin-mediated silencing of the majority of the developmentally expressed genes in P. falciparum. However discontinuous stretches of heterochromatin are critical for variegated expression of contingency genes that mediate key pathogenic processes in malaria. These range from invasion of erythrocytes and antigenic variation to solute transport and growth adaptation in response to environmental changes. Despite lack of structure within euchromatin the nucleus maintains functional compartments that regulate expression of many genes at the nuclear periphery, particularly genes with clonally variant expression. The typical components of the chromatin regulatory machinery are present in P. falciparum; however, some of these appear to have evolved novel species-specific functions, e.g. the dynamic regulation of histone variants at virulence gene promoters. The parasite also appears to have repeatedly acquired chromatin regulatory proteins through lateral transfer from endosymbionts and from the host. P. falciparum chromatin regulators have been successfully targeted with multiple drugs in laboratory studies; hopefully their functional divergence from human counterparts will allow the development of parasite-specific inhibitors.
Collapse
|
80
|
Wyse BA, Oshidari R, Jeffery DC, Yankulov KY. Parasite epigenetics and immune evasion: lessons from budding yeast. Epigenetics Chromatin 2013; 6:40. [PMID: 24252437 PMCID: PMC3843538 DOI: 10.1186/1756-8935-6-40] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/11/2013] [Indexed: 11/23/2022] Open
Abstract
The remarkable ability of many parasites to evade host immunity is the key to their success and pervasiveness. The immune evasion is directly linked to the silencing of the members of extended families of genes that encode for major parasite antigens. At any time only one of these genes is active. Infrequent switches to other members of the gene family help the parasites elude the immune system and cause prolonged maladies. For most pathogens, the detailed mechanisms of gene silencing and switching are poorly understood. On the other hand, studies in the budding yeast Saccharomyces cerevisiae have revealed similar mechanisms of gene repression and switching and have provided significant insights into the molecular basis of these phenomena. This information is becoming increasingly relevant to the genetics of the parasites. Here we summarize recent advances in parasite epigenetics and emphasize the similarities between S. cerevisiae and pathogens such as Plasmodium, Trypanosoma, Candida, and Pneumocystis. We also outline current challenges in the control and the treatment of the diseases caused by these parasites and link them to epigenetics and the wealth of knowledge acquired from budding yeast.
Collapse
Affiliation(s)
| | | | | | - Krassimir Y Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2 W1, Canada.
| |
Collapse
|
81
|
Oberstaller J, Joseph SJ, Kissinger JC. Genome-wide upstream motif analysis of Cryptosporidium parvum genes clustered by expression profile. BMC Genomics 2013; 14:516. [PMID: 23895416 PMCID: PMC3734150 DOI: 10.1186/1471-2164-14-516] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/09/2013] [Indexed: 11/16/2022] Open
Abstract
Background There are very few molecular genetic tools available to study the apicomplexan parasite Cryptosporidium parvum. The organism is not amenable to continuous in vitro cultivation or transfection, and purification of intracellular developmental stages in sufficient numbers for most downstream molecular applications is difficult and expensive since animal hosts are required. As such, very little is known about gene regulation in C. parvum. Results We have clustered whole-genome gene expression profiles generated from a previous study of seven post-infection time points of 3,281 genes to identify genes that show similar expression patterns throughout the first 72 hours of in vitro epithelial cell culture. We used the algorithms MEME, AlignACE and FIRE to identify conserved, overrepresented DNA motifs in the upstream promoter region of genes with similar expression profiles. The most overrepresented motifs were E2F (5′-TGGCGCCA-3′); G-box (5′-G.GGGG-3′); a well-documented ApiAP2 binding motif (5′-TGCAT-3′), and an unknown motif (5′-[A/C] AACTA-3′). We generated a recombinant C. parvum DNA-binding protein domain from a putative ApiAP2 transcription factor [CryptoDB: cgd8_810] and determined its binding specificity using protein-binding microarrays. We demonstrate that cgd8_810 can putatively bind the overrepresented G-box motif, implicating this ApiAP2 in the regulation of many gene clusters. Conclusion Several DNA motifs were identified in the upstream sequences of gene clusters that might serve as potential cis-regulatory elements. These motifs, in concert with protein DNA binding site data, establish for the first time the beginnings of a global C. parvum gene regulatory map that will contribute to our understanding of the development of this zoonotic parasite.
Collapse
Affiliation(s)
- Jenna Oberstaller
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
82
|
Coleman BI, Ribacke U, Manary M, Bei AK, Winzeler EA, Wirth DF, Duraisingh MT. Nuclear repositioning precedes promoter accessibility and is linked to the switching frequency of a Plasmodium falciparum invasion gene. Cell Host Microbe 2013; 12:739-50. [PMID: 23245319 DOI: 10.1016/j.chom.2012.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 07/14/2012] [Accepted: 10/26/2012] [Indexed: 02/07/2023]
Abstract
Variation of surface adhesins, such as the Plasmodium falciparum erythrocyte invasion ligand PfRh4, is critical for virulence and immune evasion in many microbes. While phenotypic switching is linked to transcriptional changes and chromatin function, the determinants of switching frequency remain poorly defined. By expressing a prokaryotic DNA methylase in P. falciparum, we directly assayed accessibility of transcriptionally active and silent chromatin at the PfRh4 locus. Parasites selected for in vivo PfRh4 activation show a reversible increase in promoter accessibility and exhibit perinuclear repositioning of the locus from a silent to a conserved activation domain. Forced activation of a proximal gene results in a similar repositioning of the PfRh4 locus, with a concomitant increase in PfRh4 activation in a subpopulation of parasites and promoter accessibility correlating with actively transcribed loci. Thus, nuclear repositioning is associated with increased P. falciparum switching frequency, while promoter accessibility is tightly linked to clonally active PfRh4 promoters.
Collapse
Affiliation(s)
- Bradley I Coleman
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
Dahan-Pasternak N, Nasereddin A, Kolevzon N, Pe'er M, Wong W, Shinder V, Turnbull L, Whitchurch CB, Elbaum M, Gilberger TW, Yavin E, Baum J, Dzikowski R. PfSec13 is an unusual chromatin-associated nucleoporin of Plasmodium falciparum that is essential for parasite proliferation in human erythrocytes. J Cell Sci 2013; 126:3055-69. [PMID: 23687383 DOI: 10.1242/jcs.122119] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Plasmodium falciparum, the deadliest form of human malaria, the nuclear periphery has drawn much attention due to its role as a sub-nuclear compartment involved in virulence gene expression. Recent data have implicated components of the nuclear envelope in regulating gene expression in several eukaryotes. Special attention has been given to nucleoporins that compose the nuclear pore complex (NPC). However, very little is known about components of the nuclear envelope in Plasmodium parasites. Here we characterize PfSec13, an unusual nucleoporin of P. falciparum, which shows unique structural similarities suggesting that it is a fusion between Sec13 and Nup145C of yeast. Using super resolution fluorescence microscopy (3D-SIM) and in vivo imaging, we show that the dynamic localization of PfSec13 during parasites' intra-erythrocytic development corresponds with that of the NPCs and that these dynamics are associated with microtubules rather than with F-actin. In addition, PfSec13 does not co-localize with the heterochormatin markers HP1 and H3K9me3, suggesting euchromatic location of the NPCs. The proteins associated with PfSec13 indicate that this unusual Nup is involved in several cellular processes. Indeed, ultrastructural and chromatin immunoprecipitation analyses revealed that, in addition to the NPCs, PfSec13 is found in the nucleoplasm where it is associated with chromatin. Finally, we used peptide nucleic acids (PNA) to downregulate PfSec13 and show that it is essential for parasite proliferation in human erythrocytes.
Collapse
Affiliation(s)
- Noa Dahan-Pasternak
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Russell K, Hasenkamp S, Emes R, Horrocks P. Analysis of the spatial and temporal arrangement of transcripts over intergenic regions in the human malarial parasite Plasmodium falciparum. BMC Genomics 2013; 14:267. [PMID: 23601558 PMCID: PMC3681616 DOI: 10.1186/1471-2164-14-267] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/06/2013] [Indexed: 11/25/2022] Open
Abstract
Background The ability of the human malarial parasite Plasmodium falciparum to invade, colonise and multiply within diverse host environments, as well as to manifest its virulence within the human host, are activities tightly linked to the temporal and spatial control of gene expression. Yet, despite the wealth of high throughput transcriptomic data available for this organism there is very little information regarding the location of key transcriptional landmarks or their associated cis-acting regulatory elements. Here we provide a systematic exploration of the size and organisation of transcripts within intergenic regions to yield surrogate information regarding transcriptional landmarks, and to also explore the spatial and temporal organisation of transcripts over these poorly characterised genomic regions. Results Utilising the transcript data for a cohort of 105 genes we demonstrate that the untranscribed regions of mRNA are large and apportioned predominantly to the 5′ end of the open reading frame. Given the relatively compact size of the P. falciparum genome, we suggest that whilst transcriptional units are likely to spatially overlap, temporal co-transcription of adjacent transcriptional units is actually limited. Critically, the size of intergenic regions is directly dependent on the orientation of the two transcriptional units arrayed over them, an observation we extend to an analysis of the complete sequences of twelve additional organisms that share moderately compact genomes. Conclusions Our study provides a theoretical framework that extends our current understanding of the transcriptional landscape across the P. falciparum genome. Demonstration of a consensus gene-spacing rule that is shared between P. falciparum and ten other moderately compact genomes of apicomplexan parasites reveals the potential for our findings to have a wider impact across a phylum that contains many organisms important to human and veterinary health.
Collapse
Affiliation(s)
- Karen Russell
- Institute for Science and Technology in Medicine, Keele University, Huxley Building, Staffordshire ST5 5BG, United Kingdom
| | | | | | | |
Collapse
|
85
|
ApiAP2 transcription factor restricts development of the Toxoplasma tissue cyst. Proc Natl Acad Sci U S A 2013; 110:6871-6. [PMID: 23572590 DOI: 10.1073/pnas.1300059110] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cellular differentiation leading to formation of the bradyzoite tissue cyst stage is the underlying cause of chronic toxoplasmosis. Consequently, mechanisms responsible for controlling development in the Toxoplasma intermediate life cycle have long been sought. Here, we identified 15 Toxoplasma mRNAs induced in early bradyzoite development that encode proteins with apicomplexan AP2 (ApiAP2) DNA binding domains. Of these 15 mRNAs, the AP2IX-9 mRNA demonstrated the largest expression increase during alkaline-induced differentiation. At the protein level, we found that AP2IX-9 was restricted to the early bradyzoite nucleus and is repressed in tachyzoites and in mature bradyzoites from 30-d infected animals. Conditional overexpression of AP2IX-9 significantly reduced tissue cyst formation and conferred alkaline pH-resistant growth, whereas disruption of the AP2IX-9 gene increased tissue cyst formation, indicating AP2IX-9 operates as a repressor of bradyzoite development. Consistent with a role as a repressor, AP2IX-9 specifically inhibited the expression of bradyzoite mRNAs, including the canonical bradyzoite marker, bradyzoite antigen 1 (BAG1). Using protein binding microarrays, we established the AP2 domain of AP2IX-9 binds a CAGTGT DNA sequence motif and is capable of binding cis-regulatory elements controlling the BAG1 and bradyzoite-specific nucleoside triphosphatase (B-NTPase) promoters. The effect of AP2IX-9 on BAG1 expression was direct because this factor inhibits expression of a firefly luciferase reporter under the control of the BAG1 promoter in vivo, and epitope-tagged AP2IX-9 can be immunoprecipitated with the BAG1 promoter in parasite chromatin. Altogether, these results indicate AP2IX-9 restricts Toxoplasma commitment to develop the mature bradyzoite tissue cyst.
Collapse
|
86
|
Hernández-Rivas R, Herrera-Solorio AM, Sierra-Miranda M, Delgadillo DM, Vargas M. Impact of chromosome ends on the biology and virulence of Plasmodium falciparum. Mol Biochem Parasitol 2013; 187:121-8. [PMID: 23354131 DOI: 10.1016/j.molbiopara.2013.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 01/15/2013] [Accepted: 01/17/2013] [Indexed: 11/15/2022]
Abstract
In recent years, many studies have focused on heterochromatin located at chromosome ends, which plays an important role in regulating gene expression in many organisms ranging from yeast to humans. Similarly, in the protozoan Plasmodium falciparum, which is the most virulent human malaria parasite, the heterochromatin present in telomeres and subtelomeric regions exerts a silencing effect on the virulence gene families located therein. Studies addressing P. falciparum chromosome ends have demonstrated that these regions participate in other functions, such as the formation of the T-loop structure, the replication of telomeric regions, the regulation of telomere length and the formation of telomeric heterochromatin. In addition, telomeres are involved in anchoring chromosome ends to the nuclear periphery, thereby playing an important role in nuclear architecture and gene expression regulation. Here, we review the current understanding of chromosome ends, the proteins that bind to these regions and their impact on the biology and virulence of P. falciparum.
Collapse
Affiliation(s)
- Rosaura Hernández-Rivas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del, Instituto Politécnico Nacional (IPN), Apartado postal 14-740, 07360 México, D.F., Mexico.
| | | | | | | | | |
Collapse
|
87
|
Hoeijmakers WAM, Salcedo-Amaya AM, Smits AH, Françoijs KJ, Treeck M, Gilberger TW, Stunnenberg HG, Bártfai R. H2A.Z/H2B.Z double-variant nucleosomes inhabit the AT-rich promoter regions of the Plasmodium falciparum genome. Mol Microbiol 2013; 87:1061-73. [PMID: 23320541 PMCID: PMC3594968 DOI: 10.1111/mmi.12151] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2013] [Indexed: 02/06/2023]
Abstract
Histone variants are key components of the epigenetic code and evolved to perform specific functions in transcriptional regulation, DNA repair, chromosome segregation and other fundamental processes. Although variants for histone H2A and H3 are found throughout the eukaryotic kingdom, variants of histone H2B and H4 are rarely encountered. H2B.Z is one of those rare H2B variants and is apicomplexan-specific. Here we show that in Plasmodium falciparum H2B.Z localizes to euchromatic intergenic regions throughout intraerythrocytic development and together with H2A.Z forms a double-variant nucleosome subtype. These nucleosomes are enriched in promoters over 3′ intergenic regions and their occupancy generally correlates with the strength of the promoter, but not with its temporal activity. Remarkably, H2B.Z occupancy levels exhibit a clear correlation with the base-composition of the underlying DNA, raising the intriguing possibility that the extreme AT content of the intergenic regions within the Plasmodium genome might be instructive for histone variant deposition. In summary, our data show that the H2A.Z/H2B.Z double-variant nucleosome demarcates putative regulatory regions of the P. falciparum epigenome and likely provides a scaffold for dynamic regulation of gene expression in this deadly human pathogen.
Collapse
Affiliation(s)
- Wieteke A M Hoeijmakers
- Department of Molecular Biology, Radboud University, Nijmegen Centre for Molecular Life Sciences, Nijmegen 6525GA, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Abstract
Chromatin immunoprecipitation (ChIP) studies have been used extensively in recent years to study the functional role of histone marks, variant histones, and other chromatin factors in gene expression in the human malaria parasite, Plasmodium falciparum. In this chapter, we present a ChIP-sequencing protocol optimized for blood-stage forms of this parasite. The processing of the immunoprecipitated DNA prior to high-throughput sequencing is performed in a way to minimize amplification biases due to the high genomic AT-content of the parasite.
Collapse
|
89
|
Cai H, Hong C, Gu J, Lilburn TG, Kuang R, Wang Y. Module-based subnetwork alignments reveal novel transcriptional regulators in malaria parasite Plasmodium falciparum. BMC SYSTEMS BIOLOGY 2012; 6 Suppl 3:S5. [PMID: 23282319 PMCID: PMC3524314 DOI: 10.1186/1752-0509-6-s3-s5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Malaria causes over one million deaths annually, posing an enormous health and economic burden in endemic regions. The completion of genome sequencing of the causative agents, a group of parasites in the genus Plasmodium, revealed potential drug and vaccine candidates. However, genomics-driven target discovery has been significantly hampered by our limited knowledge of the cellular networks associated with parasite development and pathogenesis. In this paper, we propose an approach based on aligning neighborhood PPI subnetworks across species to identify network components in the malaria parasite P. falciparum. Results Instead of only relying on sequence similarities to detect functional orthologs, our approach measures the conservation between the neighborhood subnetworks in protein-protein interaction (PPI) networks in two species, P. falciparum and E. coli. 1,082 P. falciparum proteins were predicted as functional orthologs of known transcriptional regulators in the E. coli network, including general transcriptional regulators, parasite-specific transcriptional regulators in the ApiAP2 protein family, and other potential regulatory proteins. They are implicated in a variety of cellular processes involving chromatin remodeling, genome integrity, secretion, invasion, protein processing, and metabolism. Conclusions In this proof-of-concept study, we demonstrate that a subnetwork alignment approach can reveal previously uncharacterized members of the subnetworks, which opens new opportunities to identify potential therapeutic targets and provide new insights into parasite biology, pathogenesis and virulence. This approach can be extended to other systems, especially those with poor genome annotation and a paucity of knowledge about cellular networks.
Collapse
Affiliation(s)
- Hong Cai
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | |
Collapse
|
90
|
Cortés A, Crowley VM, Vaquero A, Voss TS. A view on the role of epigenetics in the biology of malaria parasites. PLoS Pathog 2012; 8:e1002943. [PMID: 23271963 PMCID: PMC3521673 DOI: 10.1371/journal.ppat.1002943] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Alfred Cortés
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Catalonia, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
- * E-mail:
| | - Valerie M. Crowley
- Institute for Research in Biomedicine (IRB), Barcelona, Catalonia, Spain
| | - Alejandro Vaquero
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Till S. Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
91
|
Pino P, Sebastian S, Kim E, Bush E, Brochet M, Volkmann K, Kozlowski E, Llinás M, Billker O, Soldati-Favre D. A Tetracycline-Repressible Transactivator System to Study Essential Genes in Malaria Parasites. Cell Host Microbe 2012; 12:824-34. [PMID: 23245327 PMCID: PMC3712325 DOI: 10.1016/j.chom.2012.10.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 09/10/2012] [Accepted: 10/12/2012] [Indexed: 11/25/2022]
Abstract
A major obstacle in analyzing gene function in apicomplexan parasites is the absence of a practical regulatable expression system. Here, we identified functional transcriptional activation domains within Apicomplexan AP2 (ApiAP2) family transcription factors. These ApiAP2 transactivation domains were validated in blood-, liver-, and mosquito-stage parasites and used to create a robust conditional expression system for stage-specific, tetracycline-dependent gene regulation in Toxoplasma gondii, Plasmodium berghei, and Plasmodium falciparum. To demonstrate the utility of this system, we created conditional knockdowns of two essential P. berghei genes: profilin (PRF), a protein implicated in parasite invasion, and N-myristoyltransferase (NMT), which catalyzes protein acylation. Tetracycline-induced repression of PRF and NMT expression resulted in a dramatic reduction in parasite viability. This efficient regulatable system will allow for the functional characterization of essential proteins that are found in these important parasites.
Collapse
|
92
|
Insulator-like pairing elements regulate silencing and mutually exclusive expression in the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci U S A 2012. [PMID: 23197831 DOI: 10.1073/pnas.1214572109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Plasmodium falciparum causes the deadliest form of human malaria. Its virulence is attributed to its ability to modify the infected RBC and to evade human immune attack through antigenic variation. Antigenic variation is achieved through tight regulation of antigenic switches between variable surface antigens named "P. falciparum erythrocyte membrane protein-1" encoded by the var multicopy gene family. Individual parasites express only a single var gene at a time, maintaining the remaining var genes in a transcriptionally silent state. Strict pairing between var gene promoters and a second promoter within an intron found in each var gene is required for silencing and counting of var genes by the mechanism that controls mutually exclusive expression. We have identified and characterized insulator-like DNA elements that are required for pairing var promoters and introns and thus are essential for regulating silencing and mutually exclusive expression. These elements, found in the regulatory regions of each var gene, are bound by distinct nuclear protein complexes. Any alteration in the specific, paired structure of these elements by either deletion or insertion of additional elements results in an unregulated var gene. We propose a model by which silencing and mutually exclusive expression of var genes is regulated by the precise arrangement of insulator-like DNA pairing elements.
Collapse
|
93
|
Oehring SC, Woodcroft BJ, Moes S, Wetzel J, Dietz O, Pulfer A, Dekiwadia C, Maeser P, Flueck C, Witmer K, Brancucci NMB, Niederwieser I, Jenoe P, Ralph SA, Voss TS. Organellar proteomics reveals hundreds of novel nuclear proteins in the malaria parasite Plasmodium falciparum. Genome Biol 2012. [PMID: 23181666 PMCID: PMC4053738 DOI: 10.1186/gb-2012-13-11-r108] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The post-genomic era of malaria research provided unprecedented insights into the biology of Plasmodium parasites. Due to the large evolutionary distance to model eukaryotes, however, we lack a profound understanding of many processes in Plasmodium biology. One example is the cell nucleus, which controls the parasite genome in a development- and cell cycle-specific manner through mostly unknown mechanisms. To study this important organelle in detail, we conducted an integrative analysis of the P. falciparum nuclear proteome. RESULTS We combined high accuracy mass spectrometry and bioinformatic approaches to present for the first time an experimentally determined core nuclear proteome for P. falciparum. Besides a large number of factors implicated in known nuclear processes, one-third of all detected proteins carry no functional annotation, including many phylum- or genus-specific factors. Importantly, extensive experimental validation using 30 transgenic cell lines confirmed the high specificity of this inventory, and revealed distinct nuclear localization patterns of hitherto uncharacterized proteins. Further, our detailed analysis identified novel protein domains potentially implicated in gene transcription pathways, and sheds important new light on nuclear compartments and processes including regulatory complexes, the nucleolus, nuclear pores, and nuclear import pathways. CONCLUSION Our study provides comprehensive new insight into the biology of the Plasmodium nucleus and will serve as an important platform for dissecting general and parasite-specific nuclear processes in malaria parasites. Moreover, as the first nuclear proteome characterized in any protist organism, it will provide an important resource for studying evolutionary aspects of nuclear biology.
Collapse
|
94
|
Cai H, Zhou Z, Gu J, Wang Y. Comparative Genomics and Systems Biology of Malaria Parasites Plasmodium.. Curr Bioinform 2012; 7. [PMID: 24298232 DOI: 10.2174/157489312803900965] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Malaria is a serious infectious disease that causes over one million deaths yearly. It is caused by a group of protozoan parasites in the genus Plasmodium. No effective vaccine is currently available and the elevated levels of resistance to drugs in use underscore the pressing need for novel antimalarial targets. In this review, we survey omics centered developments in Plasmodium biology, which have set the stage for a quantum leap in our understanding of the fundamental processes of the parasite life cycle and mechanisms of drug resistance and immune evasion.
Collapse
Affiliation(s)
- Hong Cai
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | |
Collapse
|
95
|
Hoeijmakers WAM, Stunnenberg HG, Bártfai R. Placing the Plasmodium falciparum epigenome on the map. Trends Parasitol 2012; 28:486-95. [PMID: 22999479 DOI: 10.1016/j.pt.2012.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/23/2012] [Accepted: 08/23/2012] [Indexed: 02/04/2023]
Abstract
It is becoming increasingly evident that epigenetic mechanisms that act on and regulate chromatin structure play a key role in the development, adaptation, and survival of the malaria parasite within its human host. The study of epigenetics in Plasmodium falciparum started to flourish in recent years due to improvement of genomic technologies. Here we summarize the knowledge gained from genome-wide localization profiling of different epigenetic features, and discuss hypotheses emerging from the analysis of these 'descriptive' epigenetic maps. Furthermore, we highlight key questions to be answered, and provide a glimpse of developments required to gain true mechanistic understanding and to lift this maturing field to the next level.
Collapse
Affiliation(s)
- Wieteke A M Hoeijmakers
- Department of Molecular Biology, Radboud University, Nijmegen Center for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands.
| | | | | |
Collapse
|
96
|
Abstract
Plasmodium falciparum PfEMP1 is a malaria virulence protein whose expression is epigenetically regulated. The parasite's ability to express exclusively only one of the sixty var genes that encode PfEMP1 is essential for disease pathogenesis. Two recent papers identify key molecular players in determining whether a var gene is active or silenced (Volz et al., 2012; Zhang et al., 2011).
Collapse
Affiliation(s)
- Kami Kim
- Department of Medicine (Division of Infectious Diseases), Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
97
|
Tarr SJ, Nisbet RER, Howe CJ. Transcript level responses of Plasmodium falciparum to antimycin A. Protist 2012; 163:755-66. [PMID: 22503086 PMCID: PMC3657180 DOI: 10.1016/j.protis.2012.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 12/23/2011] [Accepted: 01/28/2012] [Indexed: 01/06/2023]
Abstract
The mitochondrial electron transport chain is essential to Plasmodium and is the target of the antimalarial drug atovaquone. The mitochondrial genomes of Plasmodium sp. are the most reduced known, and the majority of mitochondrial proteins are encoded in the nucleus and imported into the mitochondrion post-translationally. Many organisms have signalling pathways between the mitochondria and the nucleus to regulate the expression of nuclear-encoded mitochondrially-targeted proteins, for example in response to mitochondrial dysfunction. We have studied the transcript profiles of synchronous Plasmodium falciparum treated with an LD50 concentration of the complex III inhibitor antimycin A, to investigate whether such pathways exist in the parasite. There was a broad perturbation of gene expression. The differentially expressed genes were enriched for transcripts encoding proteins involved in invasion, stress response, nucleotide biosynthesis and respiration. Some effects were attributable to a delay in the gene expression phase of drug-treated parasites. However, our data indicated regulation of mitochondrial stress response genes and genes involved in pyrimidine biosynthesis, implying the existence of a signalling pathway from the mitochondrion to the nucleus.
Collapse
Affiliation(s)
- Sarah J Tarr
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, Cambridgeshire, CB2 1QW, United Kingdom
| | | | | |
Collapse
|
98
|
Chromatin modifications, epigenetics, and how protozoan parasites regulate their lives. Trends Parasitol 2012; 28:202-13. [PMID: 22480826 DOI: 10.1016/j.pt.2012.02.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/21/2012] [Accepted: 02/29/2012] [Indexed: 12/19/2022]
Abstract
Chromatin structure plays a vital role in epigenetic regulation of protozoan parasite gene expression. Epigenetic gene regulation impacts upon parasite virulence, differentiation and cell-cycle control. Recent work in many laboratories has elucidated the functions of proteins that regulate parasite gene expression by chemical modification of constituent nucleosomes. A major focus of investigation has been the characterization of post-translational modifications (PTMs) of histones and the identification of the enzymes responsible. Despite conserved features and specificity common to all eukaryotes, parasite enzymes involved in chromatin modification have unique functions that regulate unique aspects of parasite biology.
Collapse
|
99
|
Iwanaga S, Kato T, Kaneko I, Yuda M. Centromere plasmid: a new genetic tool for the study of Plasmodium falciparum. PLoS One 2012; 7:e33326. [PMID: 22479383 PMCID: PMC3316556 DOI: 10.1371/journal.pone.0033326] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/07/2012] [Indexed: 11/19/2022] Open
Abstract
The introduction of transgenes into Plasmodium falciparum, a highly virulent human malaria parasite, has been conducted either by single crossover recombination or by using episomal plasmids. However, these techniques remain insufficient because of the low transfection efficiency and the low frequency of recombination. To improve the genetic manipulation of P. falciparum, we developed the centromere plasmid as a new genetic tool. First, we attempted to clone all of the predicted centromeres from P. falciparum into E. coli cells but failed because of the high A/T contents of these sequences. To overcome this difficulty, we identified the common sequence features of the centromere of Plasmodium spp. and designed a small centromere that retained those features. The centromere plasmid constructed with the small centromere sequence, pFCEN, segregated into daughter parasites with approximately 99% efficiency, resulting in the stable maintenance of this plasmid in P. falciparum even in the absence of drug selection. This result demonstrated that the small centromere sequence harboured in pFCEN could function as an actual centromere in P. falciparum. In addition, transgenic parasites were more rapidly generated when using pFCEN than when using the control plasmid, which did not contain the centromere sequence. Furthermore, in contrast to the control plasmid, pFCEN did not form concatemers and, thus, was maintained as a single copy over multiple cell divisions. These unique properties of the pFCEN plasmid will solve the current technical limitations of the genetic manipulation of P. falciparum, and thus, this plasmid will become a standard genetic tool for the study of this parasite.
Collapse
Affiliation(s)
- Shiroh Iwanaga
- Mie University, School of Medicine, Tsu, Japan
- * E-mail: (SI); (MY)
| | | | | | - Masao Yuda
- Mie University, School of Medicine, Tsu, Japan
- * E-mail: (SI); (MY)
| |
Collapse
|
100
|
Duffy MF, Selvarajah SA, Josling GA, Petter M. The role of chromatin in Plasmodium gene expression. Cell Microbiol 2012; 14:819-28. [DOI: 10.1111/j.1462-5822.2012.01777.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|