51
|
Moon JY, Park JM. Cross-Talk in Viral Defense Signaling in Plants. Front Microbiol 2016; 7:2068. [PMID: 28066385 PMCID: PMC5174109 DOI: 10.3389/fmicb.2016.02068] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/07/2016] [Indexed: 01/19/2023] Open
Abstract
Viruses are obligate intracellular parasites that have small genomes with limited coding capacity; therefore, they extensively use host intracellular machinery for their replication and infection in host cells. In recent years, it was elucidated that plants have evolved intricate defense mechanisms to prevent or limit damage from such pathogens. Plants employ two major strategies to counteract virus infections: resistance (R) gene-mediated and RNA silencing-based defenses. In this review, plant defenses and viral counter defenses are described, as are recent studies examining the cross-talk between different plant defense mechanisms.
Collapse
Affiliation(s)
- Ju Y. Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
- Department of Biosystems and Bioengineering, University of Science and TechnologyDaejeon, South Korea
| | - Jeong M. Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
- Department of Biosystems and Bioengineering, University of Science and TechnologyDaejeon, South Korea
| |
Collapse
|
52
|
Abstract
Virus-Induced Gene Silencing (VIGS) creates a natural antiviral defense in plants. However, it has been also a powerful tool for endogenous gene silencing in dicot and monocot plants by exploitation of recombinant viruses, harboring silencing inducing sequences. The Barley Stripe Mosaic Virus (BSMV) based VIGS system is an efficient and rapid RNAi approach that is routinely applied in functional genomics studies of cereals. We present here a protocol for BSMV VIGS application in barley based on mechanical inoculation of the plants with in vitro transcribed recombinant BSMV RNAs as the silencing triggers.
Collapse
|
53
|
Bejerman N, Mann KS, Dietzgen RG. Alfalfa dwarf cytorhabdovirus P protein is a local and systemic RNA silencing supressor which inhibits programmed RISC activity and prevents transitive amplification of RNA silencing. Virus Res 2016; 224:19-28. [PMID: 27543392 DOI: 10.1016/j.virusres.2016.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/09/2016] [Accepted: 08/14/2016] [Indexed: 11/16/2022]
Abstract
Plants employ RNA silencing as an innate defense mechanism against viruses. As a counter-defense, plant viruses have evolved to express RNA silencing suppressor proteins (RSS), which target one or more steps of the silencing pathway. In this study, we show that the phosphoprotein (P) encoded by the negative-sense RNA virus alfalfa dwarf virus (ADV), a species of the genus Cytorhabdovirus, family Rhabdoviridae, is a suppressor of RNA silencing. ADV P has a relatively weak local RSS activity, and does not prevent siRNA accumulation. On the other hand, ADV P strongly suppresses systemic RNA silencing, but does not interfere with the short-distance spread of silencing, which is consistent with its lack of inhibition of siRNA accumulation. The mechanism of suppression appears to involve ADV P binding to RNA-induced silencing complex proteins AGO1 and AGO4 as shown in protein-protein interaction assays when ectopically expressed. In planta, we demonstrate that ADV P likely functions by inhibiting miRNA-guided AGO1 cleavage and prevents transitive amplification by repressing the production of secondary siRNAs. As recently described for lettuce necrotic yellows cytorhabdovirus P, but in contrast to other viral RSS known to disrupt AGO activity, ADV P sequence does not contain any recognizable GW/WG or F-box motifs, which suggests that cytorhabdovirus P proteins may use alternative motifs to bind to AGO proteins.
Collapse
Affiliation(s)
- Nicolás Bejerman
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Krin S Mann
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
54
|
Untiveros M, Olspert A, Artola K, Firth AE, Kreuze JF, Valkonen JPT. A novel sweet potato potyvirus open reading frame (ORF) is expressed via polymerase slippage and suppresses RNA silencing. MOLECULAR PLANT PATHOLOGY 2016; 17:1111-23. [PMID: 26757490 PMCID: PMC4979677 DOI: 10.1111/mpp.12366] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/10/2015] [Accepted: 12/17/2015] [Indexed: 05/20/2023]
Abstract
The single-stranded, positive-sense RNA genome of viruses in the genus Potyvirus encodes a large polyprotein that is cleaved to yield 10 mature proteins. The first three cleavage products are P1, HCpro and P3. An additional short open reading frame (ORF), called pipo, overlaps the P3 region of the polyprotein ORF. Four related potyviruses infecting sweet potato (Ipomoea batatas) are predicted to contain a third ORF, called pispo, which overlaps the 3' third of the P1 region. Recently, pipo has been shown to be expressed via polymerase slippage at a conserved GA6 sequence. Here, we show that pispo is also expressed via polymerase slippage at a GA6 sequence, with higher slippage efficiency (∼5%) than at the pipo site (∼1%). Transient expression of recombinant P1 or the 'transframe' product, P1N-PISPO, in Nicotiana benthamiana suppressed local RNA silencing (RNAi), but only P1N-PISPO inhibited short-distance movement of the silencing signal. These results reveal that polymerase slippage in potyviruses is not limited to pipo expression, but can be co-opted for the evolution and expression of further novel gene products.
Collapse
Affiliation(s)
- Milton Untiveros
- Department of Agricultural Sciences, University of Helsinki, FI-00014, Helsinki, Finland
| | - Allan Olspert
- Department of Pathology, Division of Virology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Katrin Artola
- Department of Agricultural Sciences, University of Helsinki, FI-00014, Helsinki, Finland
| | - Andrew E Firth
- Department of Pathology, Division of Virology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | | | - Jari P T Valkonen
- Department of Agricultural Sciences, University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
55
|
Turina M, Kormelink R, Resende RO. Resistance to Tospoviruses in Vegetable Crops: Epidemiological and Molecular Aspects. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:347-371. [PMID: 27296139 DOI: 10.1146/annurev-phyto-080615-095843] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
During the past three decades, the economic impact of tospoviruses has increased, causing high yield losses in a variety of crops and ornamentals. Owing to the difficulty in combating thrips vectors with insecticides, the best way to limit/prevent tospovirus-induced diseases involves a management strategy that includes virus resistance. This review briefly presents current tospovirus taxonomy, diversity, molecular biology, and cytopathology as an introduction to a more extensive description of the two main resistance genes employed against tospoviruses: the Sw5 gene in tomato and the Tsw in pepper. Natural and experimental resistance-breaking (RB) isolates allowed the identification of the viral avirulence protein triggering each of the two resistance gene products; epidemiology of RB isolates is discussed to reinforce the need for allelic variants and the need to search for new/alternative resistance genes. Ongoing efforts for alternative resistance strategies are described not only for Tomato spotted wilt virus (TSWV) in pepper and tomato but also for other vegetable crops heavily impacted by tospoviruses.
Collapse
Affiliation(s)
- Massimo Turina
- Institute for Sustainable Plant Protection, CNR Torino, 10135 Torino, Italy;
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Renato O Resende
- Department of Cell Biology, University of Brasília, 70910-900 Brasília, DF, Brazil
| |
Collapse
|
56
|
Hedil M, Kormelink R. Viral RNA Silencing Suppression: The Enigma of Bunyavirus NSs Proteins. Viruses 2016; 8:v8070208. [PMID: 27455310 PMCID: PMC4974542 DOI: 10.3390/v8070208] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
The Bunyaviridae is a family of arboviruses including both plant- and vertebrate-infecting representatives. The Tospovirus genus accommodates plant-infecting bunyaviruses, which not only replicate in their plant host, but also in their insect thrips vector during persistent propagative transmission. For this reason, they are generally assumed to encounter antiviral RNA silencing in plants and insects. Here we present an overview on how tospovirus nonstructural NSs protein counteracts antiviral RNA silencing in plants and what is known so far in insects. Like tospoviruses, members of the related vertebrate-infecting bunyaviruses classified in the genera Orthobunyavirus, Hantavirus and Phlebovirus also code for a NSs protein. However, for none of them RNA silencing suppressor activity has been unambiguously demonstrated in neither vertebrate host nor arthropod vector. The second part of this review will briefly describe the role of these NSs proteins in modulation of innate immune responses in mammals and elaborate on a hypothetical scenario to explain if and how NSs proteins from vertebrate-infecting bunyaviruses affect RNA silencing. If so, why this discovery has been hampered so far.
Collapse
Affiliation(s)
- Marcio Hedil
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, 6708PB, The Netherlands.
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, 6708PB, The Netherlands.
| |
Collapse
|
57
|
Herbert KM, Nag A. A Tale of Two RNAs during Viral Infection: How Viruses Antagonize mRNAs and Small Non-Coding RNAs in The Host Cell. Viruses 2016; 8:E154. [PMID: 27271653 PMCID: PMC4926174 DOI: 10.3390/v8060154] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/12/2016] [Accepted: 05/20/2016] [Indexed: 02/06/2023] Open
Abstract
Viral infection initiates an array of changes in host gene expression. Many viruses dampen host protein expression and attempt to evade the host anti-viral defense machinery. Host gene expression is suppressed at several stages of host messenger RNA (mRNA) formation including selective degradation of translationally competent messenger RNAs. Besides mRNAs, host cells also express a variety of noncoding RNAs, including small RNAs, that may also be subject to inhibition upon viral infection. In this review we focused on different ways viruses antagonize coding and noncoding RNAs in the host cell to its advantage.
Collapse
Affiliation(s)
- Kristina M Herbert
- Department of Experimental Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California 22860, Mexico.
| | - Anita Nag
- Department of Chemistry, Florida A&M University, Tallahassee, FL 32307, USA.
| |
Collapse
|
58
|
Li ML, Weng KF, Shih SR, Brewer G. The evolving world of small RNAs from RNA viruses. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:575-88. [PMID: 27046163 DOI: 10.1002/wrna.1351] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 11/10/2022]
Abstract
RNA virus infection in plants and invertebrates can produce virus-derived small RNAs. These RNAs share features with host endogenous small interfering RNAs (siRNAs). They can potentially mediate RNA interference (RNAi) and related RNA silencing pathways, resulting in specific antiviral defense. Although most RNA silencing components such as Dicer, Ago2, and RISC are conserved among eukaryotic hosts, whether RNA virus infection in mammals can generate functional small RNAs that act in antiviral defense remains under discussion. Here, we review recent studies on the molecular and biochemical features of viral siRNAs and other virus-derived small RNAs from infected plants, arthropods, nematodes, and vertebrates and discuss the genetic pathways for their biogenesis and their roles in antiviral activity. WIREs RNA 2016, 7:575-588. doi: 10.1002/wrna.1351 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Mei-Ling Li
- Department of Biochemistry & Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Kuo-Feng Weng
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Clinical Virology Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Gary Brewer
- Department of Biochemistry & Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
59
|
Mason GA, Lemus T, Queitsch C. The Mechanistic Underpinnings of an ago1-Mediated, Environmentally Dependent, and Stochastic Phenotype. PLANT PHYSIOLOGY 2016; 170:2420-31. [PMID: 26872948 PMCID: PMC4825122 DOI: 10.1104/pp.15.01928] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/10/2016] [Indexed: 05/07/2023]
Abstract
The crucial role of microRNAs in plant development is exceedingly well supported; their importance in environmental robustness is studied in less detail. Here, we describe a novel, environmentally dependent phenotype in hypomorphic argonaute1 (ago1) mutants and uncover its mechanistic underpinnings in Arabidopsis (Arabidopsis thaliana). AGO1 is a key player in microRNA-mediated gene regulation. We observed transparent lesions on embryonic leaves of ago1 mutant seedlings. These lesions increased in frequency in full-spectrum light. Notably, the lesion phenotype was most environmentally responsive in ago1-27 mutants. This allele is thought to primarily affect translational repression, which has been linked with the response to environmental perturbation. Using several lines of evidence, we found that these lesions represent dead and dying tissues due to an aberrant hypersensitive response. Although all three canonical defense hormone pathways (salicylic acid, jasmonate, and jasmonate/ethylene pathways) were up-regulated in ago1 mutants, we demonstrate that jasmonate perception drives the lesion phenotype. Double mutants of ago1 and coronatine insensitive1, the jasmonate receptor, showed greatly decreased frequency of affected seedlings. The chaperone HEAT SHOCK PROTEIN 90 (HSP90), which maintains phenotypic robustness in the face of environmental perturbations, is known to facilitate AGO1 function. HSP90 perturbation has been shown previously to up-regulate jasmonate signaling and to increase plant resistance to herbivory. Although single HSP90 mutants showed subtly elevated levels of lesions, double mutant analysis disagreed with a simple epistatic model for HSP90 and AGO1 interaction; rather, both appeared to act nonadditively in producing lesions. In summary, our study identifies AGO1 as a major, largely HSP90-independent, factor in providing environmental robustness to plants.
Collapse
Affiliation(s)
- G Alex Mason
- University of Washington, School of Medicine, Department of Genome Sciences, Seattle, Washington 98195-5065 (G.A.M., T.L., C.Q.)
| | - Tzitziki Lemus
- University of Washington, School of Medicine, Department of Genome Sciences, Seattle, Washington 98195-5065 (G.A.M., T.L., C.Q.)
| | - Christine Queitsch
- University of Washington, School of Medicine, Department of Genome Sciences, Seattle, Washington 98195-5065 (G.A.M., T.L., C.Q.)
| |
Collapse
|
60
|
Zielezinski A, Karlowski WM. Early origin and adaptive evolution of the GW182 protein family, the key component of RNA silencing in animals. RNA Biol 2016; 12:761-70. [PMID: 26106978 PMCID: PMC4615383 DOI: 10.1080/15476286.2015.1051302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The GW182 proteins are a key component of the miRNA-dependent post-transcriptional silencing pathway in animals. They function as scaffold proteins to mediate the interaction of Argonaute (AGO)-containing complexes with cytoplasmic poly(A)-binding proteins (PABP) and PAN2-PAN3 and CCR4-NOT deadenylases. The AGO-GW182 complexes mediate silencing of the target mRNA through induction of translational repression and/or mRNA degradation. Although the GW182 proteins are a subject of extensive experimental research in the recent years, very little is known about their origin and evolution. Here, based on complex functional annotation and phylogenetic analyses, we reveal 448 members of the GW182 protein family from the earliest animals to humans. Our results indicate that a single-copy GW182/TNRC6C progenitor gene arose with the emergence of multicellularity and it multiplied in the last common ancestor of vertebrates in 2 rounds of whole genome duplication (WGD) resulting in 3 genes. Before the divergence of vertebrates, both the AGO- and CCR4-NOT-binding regions of GW182s showed significant acceleration in the accumulation of amino acid changes, suggesting functional adaptation toward higher specificity to the molecules of the silencing complex. We conclude that the silencing ability of the GW182 proteins improves with higher position in the taxonomic classification and increasing complexity of the organism. The first reconstruction of the molecular journey of GW182 proteins from the ancestral metazoan protein to the current mammalian configuration provides new insight into development of the miRNA-dependent post-transcriptional silencing pathway in animals.
Collapse
Affiliation(s)
- Andrzej Zielezinski
- a Department of Computational Biology; Institute of Molecular Biology and Biotechnology; Adam Mickiewicz University ; Poznan , Poland
| | | |
Collapse
|
61
|
Mann KS, Johnson KN, Carroll BJ, Dietzgen RG. Cytorhabdovirus P protein suppresses RISC-mediated cleavage and RNA silencing amplification in planta. Virology 2016; 490:27-40. [PMID: 26808923 DOI: 10.1016/j.virol.2016.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/05/2016] [Accepted: 01/09/2016] [Indexed: 11/16/2022]
Abstract
Plant viruses have evolved to undermine the RNA silencing pathway by expressing suppressor protein(s) that interfere with one or more key components of this antiviral defense. Here we show that the recently identified RNA silencing suppressor (RSS) of lettuce necrotic yellows virus (LNYV), phosphoprotein P, binds to RNA silencing machinery proteins AGO1, AGO2, AGO4, RDR6 and SGS3 in protein-protein interaction assays when transiently expressed. In planta, we demonstrate that LNYV P inhibits miRNA-guided AGO1 cleavage and translational repression, and RDR6/SGS3-dependent amplification of silencing. Analysis of LNYV P deletion mutants identified a C-terminal protein domain essential for both local RNA silencing suppression and interaction with AGO1, AGO2, AGO4, RDR6 and SGS3. In contrast to other viral RSS known to disrupt AGO activity, LNYV P sequence does not contain any recognizable GW/WG or F-box motifs. This suggests that LNYV P may represent a new class of AGO binding proteins.
Collapse
Affiliation(s)
- Krin S Mann
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Karyn N Johnson
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
62
|
Omarov RT, Ciomperlik J, Scholthof HB. An in vitro reprogrammable antiviral RISC with size-preferential ribonuclease activity. Virology 2016; 490:41-8. [PMID: 26812224 DOI: 10.1016/j.virol.2015.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 01/29/2023]
Abstract
Infection of Nicotiana benthamiana plants with Tomato bushy stunt virus (TBSV) mutants compromised for silencing suppression induces formation of an antiviral RISC (vRISC) that can be isolated using chromatography procedures. The isolated vRISC sequence-specifically degrades TBSV RNA in vitro, its activity can be down-regulated by removing siRNAs, and re-stimulated by exogenous supply of siRNAs. vRISC is most effective at hydrolyzing the ~4.8kb genomic RNA, but less so for a ~2.2kb TBSV subgenomic mRNA (sgRNA1), while the 3' co-terminal sgRNA2 of ~0.9kb appears insensitive to vRISC cleavage. Moreover, experiments with in vitro generated 5' co-terminal viral transcripts show that RNAs of ~2.7kb are efficiently cleaved while those of ~1.1kb or shorter are unaffected. The isolated antiviral ribonuclease complex fails to degrade ~0.4kb defective interfering RNAs (DIs) in vitro, agreeing with findings that in plants DIs are not targeted by silencing.
Collapse
Affiliation(s)
- Rustem T Omarov
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843, United States
| | - Jessica Ciomperlik
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843, United States
| | - Herman B Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843, United States.
| |
Collapse
|
63
|
Mingot A, Valli A, Rodamilans B, San León D, Baulcombe DC, García JA, López-Moya JJ. The P1N-PISPO trans-Frame Gene of Sweet Potato Feathery Mottle Potyvirus Is Produced during Virus Infection and Functions as an RNA Silencing Suppressor. J Virol 2016; 90:3543-57. [PMID: 26792740 PMCID: PMC4794657 DOI: 10.1128/jvi.02360-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/07/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED The positive-sense RNA genome of Sweet potato feathery mottle virus (SPFMV) (genus Potyvirus, family Potyviridae) contains a large open reading frame (ORF) of 3,494 codons translatable as a polyprotein and two embedded shorter ORFs in the -1 frame: PISPO, of 230 codons, and PIPO, of 66 codons, located in the P1 and P3 regions, respectively. PISPO is specific to some sweet potato-infecting potyviruses, while PIPO is present in all potyvirids. In SPFMV these two extra ORFs are preceded by conserved G2A6 motifs. We have shown recently that a polymerase slippage mechanism at these sites could produce transcripts bringing these ORFs in frame with the upstream polyprotein, thus leading to P1N-PISPO and P3N-PIPO products (B. Rodamilans, A. Valli, A. Mingot, D. San Leon, D. B. Baulcombe, J. J. Lopez-Moya, and J.A. Garcia, J Virol 89:6965-6967, 2015, doi:10.1128/JVI.00337-15). Here, we demonstrate by liquid chromatography coupled to mass spectrometry that both P1 and P1N-PISPO are produced during viral infection and coexist in SPFMV-infected Ipomoea batatas plants. Interestingly, transient expression of SPFMV gene products coagroinfiltrated with a reporter gene in Nicotiana benthamiana revealed that P1N-PISPO acts as an RNA silencing suppressor, a role normally associated with HCPro in other potyviruses. Moreover, mutation of WG/GW motifs present in P1N-PISPO abolished its silencing suppression activity, suggesting that the function might require interaction with Argonaute components of the silencing machinery, as was shown for other viral suppressors. Altogether, our results reveal a further layer of complexity of the RNA silencing suppression activity within the Potyviridae family. IMPORTANCE Gene products of potyviruses include P1, HCPro, P3, 6K1, CI, 6K2, VPg/NIaPro, NIb, and CP, all derived from the proteolytic processing of a large polyprotein, and an additional P3N-PIPO product, with the PIPO segment encoded in a different frame within the P3 cistron. In sweet potato feathery mottle virus (SPFMV), another out-of-frame element (PISPO) was predicted within the P1 region. We have shown recently that a polymerase slippage mechanism can generate the transcript variants with extra nucleotides that could be translated into P1N-PISPO and P3N-PIPO. Now, we demonstrate by mass spectrometry analysis that P1N-PISPO is indeed produced in SPFMV-infected plants, in addition to P1. Interestingly, while in other potyviruses the suppressor of RNA silencing is HCPro, we show here that P1N-PISPO exhibited this activity in SPFMV, revealing how the complexity of the gene content could contribute to supply this essential function in members of the Potyviridae family.
Collapse
Affiliation(s)
- Ares Mingot
- Center for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
| | - Adrián Valli
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | - David San León
- Centro Nacional de Biotecnología CNB, CSIC, Madrid, Spain
| | - David C Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Juan José López-Moya
- Center for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
64
|
The battle for survival between viruses and their host plants. Curr Opin Virol 2016; 17:32-38. [PMID: 26800310 DOI: 10.1016/j.coviro.2015.12.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022]
Abstract
Evolution has equipped plants with defense mechanisms to counterattack virus infections. However, some viruses have acquired the capacity to escape these defense barriers. In their combats, plants use mechanisms such as antiviral RNA silencing that viruses fight against using silencing-repressors. Plants could also resist by mutating a host factor required by the virus to complete a particular step of its infectious cycle. Another successful mechanism of resistance is the hypersensitive response, where plants engineer R genes that recognize specifically their assailants. The recognition is followed by the triggering of a broad spectrum resistance. New understanding of such resistance mechanisms will probably helps to propose new means to enhance plant resistance against viruses.
Collapse
|
65
|
Fernández-Calvino L, Martínez-Priego L, Szabo EZ, Guzmán-Benito I, González I, Canto T, Lakatos L, Llave C. Tobacco rattle virus 16K silencing suppressor binds ARGONAUTE 4 and inhibits formation of RNA silencing complexes. J Gen Virol 2016; 97:246-257. [PMID: 26498945 DOI: 10.1099/jgv.0.000323] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The cysteine-rich 16K protein of tobacco rattle virus (TRV), the type member of the genus Tobravirus, is known to suppress RNA silencing. However, the mechanism of action of the 16K suppressor is not well understood. In this study, we used a GFP-based sensor strategy and an Agrobacterium-mediated transient assay in Nicotiana benthamiana to show that 16K was unable to inhibit the activity of existing small interfering RNA (siRNA)- and microRNA (miRNA)-programmed RNA-induced silencing effector complexes (RISCs). In contrast, 16K efficiently interfered with de novo formation of miRNA- and siRNA-guided RISCs, thus preventing cleavage of target RNA. Interestingly, we found that transiently expressed endogenous miR399 and miR172 directed sequence-specific silencing of complementary sequences of viral origin. 16K failed to bind small RNAs, although it interacted with ARGONAUTE 4, as revealed by bimolecular fluorescence complementation and immunoprecipitation assays. Site-directed mutagenesis demonstrated that highly conserved cysteine residues within the N-terminal and central regions of the 16K protein are required for protein stability and/or RNA silencing suppression.
Collapse
Affiliation(s)
- Lourdes Fernández-Calvino
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Llúcia Martínez-Priego
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Edit Z Szabo
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Koranyi str. 6, Hungary
| | - Irene Guzmán-Benito
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Inmaculada González
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Tomás Canto
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Lóránt Lakatos
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Koranyi str. 6, Hungary
- MTA-SZTE Dermatological Research Group, Hungary
| | - César Llave
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
66
|
Almasi R, Miller WA, Ziegler-Graff V. Mild and severe cereal yellow dwarf viruses differ in silencing suppressor efficiency of the P0 protein. Virus Res 2015; 208:199-206. [PMID: 26116275 DOI: 10.1016/j.virusres.2015.06.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 10/23/2022]
Abstract
Viral pathogenicity has often been correlated to the expression of the viral encoded-RNA silencing suppressor protein (SSP). The silencing suppressor activity of the P0 protein encoded by cereal yellow dwarf virus-RPV (CYDV-RPV) and -RPS (CYDV-RPS), two poleroviruses differing in their symptomatology was investigated. CYDV-RPV displays milder symptoms in oat and wheat whereas CYDV-RPS is responsible for more severe disease. We showed that both P0 proteins (P0(CY-RPV) and P0(CY-RPS)) were able to suppress local RNA silencing induced by either sense or inverted repeat transgenes in an Agrobacterium tumefaciens-mediated expression assay in Nicotiana benthamiana. P0(CY-RPS) displayed slightly higher activity. Systemic spread of the silencing signal was not impaired. Analysis of short-interfering RNA (siRNA) abundance revealed that accumulation of primary siRNA was not affected, but secondary siRNA levels were reduced by both CYDV P0 proteins, suggesting that they act downstream of siRNA production. Correlated with this finding we showed that both P0 proteins partially destabilized ARGONAUTE1. Finally both P0(CY-RPV) and P0(CY-RPS) interacted in yeast cells with ASK2, a component of an E3-ubiquitin ligase, with distinct affinities.
Collapse
Affiliation(s)
- Reza Almasi
- Institut de Biologie Moléculaire des Plantes CNRS-UPR 2357, associée à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France; Plant Virology Research Center, College of Agriculture, Shiraz University, Iran
| | - W Allen Miller
- Institut de Biologie Moléculaire des Plantes CNRS-UPR 2357, associée à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France; Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Véronique Ziegler-Graff
- Institut de Biologie Moléculaire des Plantes CNRS-UPR 2357, associée à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| |
Collapse
|
67
|
Zhou M, Law JA. RNA Pol IV and V in gene silencing: Rebel polymerases evolving away from Pol II's rules. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:154-64. [PMID: 26344361 PMCID: PMC4618083 DOI: 10.1016/j.pbi.2015.07.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/15/2015] [Accepted: 07/19/2015] [Indexed: 05/19/2023]
Abstract
Noncoding RNAs regulate gene expression at both the transcriptional and post-transcriptional levels, and play critical roles in development, imprinting and the maintenance of genome integrity in eukaryotic organisms [1,2,3]. Therefore, it is important to understand how the production of such RNAs are controlled. In addition to the three canonical DNA dependent RNA polymerases (Pol) Pol I, II and III, two non-redundant plant-specific RNA polymerases, Pol IV and Pol V, have been identified and shown to generate noncoding RNAs that are required for transcriptional gene silencing via the RNA-directed DNA methylation (RdDM) pathway. Thus, somewhat paradoxically, transcription is required for gene silencing. This paradox extends beyond plants, as silencing pathways in yeast, fungi, flies, worms, and mammals also require transcriptional machinery [4,5]. As plants have evolved specialized RNA polymerases to carry out gene silencing in a manner that is separate from the essential roles of Pol II, their characterization offers unique insights into how RNA polymerases facilitate gene silencing. In this review, we focus on the mechanisms of Pol IV and Pol V function, including their compositions, their transcripts, and their modes of recruitment to chromatin.
Collapse
Affiliation(s)
- Ming Zhou
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Julie A Law
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
68
|
Carbonell A, Carrington JC. Antiviral roles of plant ARGONAUTES. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:111-7. [PMID: 26190744 PMCID: PMC4618181 DOI: 10.1016/j.pbi.2015.06.013] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/11/2015] [Accepted: 06/19/2015] [Indexed: 05/20/2023]
Abstract
ARGONAUTES (AGOs) are the effector proteins functioning in eukaryotic RNA silencing pathways. AGOs associate with small RNAs and are programmed to target complementary RNA or DNA. Plant viruses induce a potent and specific antiviral RNA silencing host response in which AGOs play a central role. Antiviral AGOs associate with virus-derived small RNAs to repress complementary viral RNAs or DNAs, or with endogenous small RNAs to regulate host gene expression and promote antiviral defense. Here, we review recent progress towards understanding the roles of plant AGOs in antiviral defense. We also discuss the strategies that viruses have evolved to modulate, attenuate or suppress AGO antiviral functions.
Collapse
Affiliation(s)
- Alberto Carbonell
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | | |
Collapse
|
69
|
Dengue NS3, an RNAi suppressor, modulates the human miRNA pathways through its interacting partner. Biochem J 2015. [DOI: 10.1042/bj20150445] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
NS3 protein from dengue virus (DV) suppresses host RNA silencing machinery. It interacts with HSC70 protein and affects loading of miRNAs into Argonaute 1 to regulate mRNA levels of dengue viral host factors (DVHFs) in human cell lines.
Collapse
|
70
|
Hedil M, Sterken MG, de Ronde D, Lohuis D, Kormelink R. Analysis of Tospovirus NSs Proteins in Suppression of Systemic Silencing. PLoS One 2015; 10:e0134517. [PMID: 26275304 PMCID: PMC4537313 DOI: 10.1371/journal.pone.0134517] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/09/2015] [Indexed: 01/05/2023] Open
Abstract
RNA silencing is a sequence-specific gene regulation mechanism that in plants also acts antiviral. In order to counteract antiviral RNA silencing, viruses have evolved RNA silencing suppressors (RSS). In the case of tospoviruses, the non-structural NSs protein has been identified as the RSS. Although the tomato spotted wilt virus (TSWV) tospovirus NSs protein has been shown to exhibit affinity to long and small dsRNA molecules, its ability to suppress the non-cell autonomous part of RNA silencing has only been studied to a limited extent. Here, the NSs proteins of TSWV, groundnut ringspot virus (GRSV) and tomato yellow ring virus (TYRV), representatives for three distinct tospovirus species, have been studied on their ability and strength to suppress local and systemic silencing. A system has been developed to quantify suppression of GFP silencing in Nicotiana benthamiana 16C lines, to allow a comparison of relative RNA silencing suppressor strength. It is shown that NSs of all three tospoviruses are suppressors of local and systemic silencing. Unexpectedly, suppression of systemic RNA silencing by NSsTYRV was just as strong as those by NSsTSWV and NSsGRSV, even though NSsTYRV was expressed in lower amounts. Using the system established, a set of selected NSsTSWV gene constructs mutated in predicted RNA binding domains, as well as NSs from TSWV isolates 160 and 171 (resistance breakers of the Tsw resistance gene), were analyzed for their ability to suppress systemic GFP silencing. The results indicate another mode of RNA silencing suppression by NSs that acts further downstream the biogenesis of siRNAs and their sequestration. The findings are discussed in light of the affinity of NSs for small and long dsRNA, and recent mutant screen of NSsTSWV to map domains required for RSS activity and triggering of Tsw-governed resistance.
Collapse
Affiliation(s)
- Marcio Hedil
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Mark G. Sterken
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Dryas de Ronde
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Dick Lohuis
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
71
|
Wang KD, Empleo R, Nguyen TTV, Moffett P, Sacco MA. Elicitation of hypersensitive responses in Nicotiana glutinosa by the suppressor of RNA silencing protein P0 from poleroviruses. MOLECULAR PLANT PATHOLOGY 2015; 16:435-48. [PMID: 25187258 PMCID: PMC6638411 DOI: 10.1111/mpp.12201] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant disease resistance (R) proteins that confer resistance to viruses recognize viral gene products with diverse functions, including viral suppressors of RNA silencing (VSRs). The P0 protein from poleroviruses is a VSR that targets the ARGONAUTE1 (AGO1) protein for degradation, thereby disrupting RNA silencing and antiviral defences. Here, we report resistance against poleroviruses in Nicotiana glutinosa directed against Turnip yellows virus (TuYV) and Potato leafroll virus (PLRV). The P0 proteins from TuYV (P0(T) (u) ), PLRV (P0(PL) ) and Cucurbit aphid-borne yellows virus (P0(CA) ) were found to elicit a hypersensitive response (HR) in N. glutinosa accession TW59, whereas other accessions recognized P0(PL) only. Genetic analysis showed that recognition of P0(T) (u) by a resistance gene designated RPO1 (Resistance to POleroviruses 1) is inherited as a dominant allele. Expression of P0 from a Potato virus X (PVX) expression vector transferred recognition to the recombinant virus on plants expressing RPO1, supporting P0 as the unique Polerovirus factor eliciting resistance. The induction of HR required a functional P0 protein, as P0(T) (u) mutants with substitutions in the F-box motif that abolished VSR activity were unable to elicit HR. We surmised that the broad P0 recognition seen in TW59 and the requirement for the F-box protein motif could indicate detection of P0-induced AGO1 degradation and disruption of RNA silencing; however, other viral silencing suppressors, including the PVX P25 that also causes AGO1 degradation, failed to elicit HR in N. glutinosa. Investigation of P0 elicitation of RPO1 could provide insight into P0 activities within the cell that trigger resistance.
Collapse
Affiliation(s)
- Ken-Der Wang
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, 92834-6850, USA
| | | | | | | | | |
Collapse
|
72
|
Symptom recovery in virus-infected plants: Revisiting the role of RNA silencing mechanisms. Virology 2015; 479-480:167-79. [DOI: 10.1016/j.virol.2015.01.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/02/2015] [Accepted: 01/08/2015] [Indexed: 01/11/2023]
|
73
|
Csorba T, Kontra L, Burgyán J. viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology 2015; 479-480:85-103. [DOI: 10.1016/j.virol.2015.02.028] [Citation(s) in RCA: 368] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/31/2015] [Accepted: 02/16/2015] [Indexed: 12/27/2022]
|
74
|
Garcia-Ruiz H, Carbonell A, Hoyer JS, Fahlgren N, Gilbert KB, Takeda A, Giampetruzzi A, Garcia Ruiz MT, McGinn MG, Lowery N, Martinez Baladejo MT, Carrington JC. Roles and programming of Arabidopsis ARGONAUTE proteins during Turnip mosaic virus infection. PLoS Pathog 2015; 11:e1004755. [PMID: 25806948 PMCID: PMC4373807 DOI: 10.1371/journal.ppat.1004755] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/19/2015] [Indexed: 11/24/2022] Open
Abstract
In eukaryotes, ARGONAUTE proteins (AGOs) associate with microRNAs (miRNAs), short interfering RNAs (siRNAs), and other classes of small RNAs to regulate target RNA or target loci. Viral infection in plants induces a potent and highly specific antiviral RNA silencing response characterized by the formation of virus-derived siRNAs. Arabidopsis thaliana has ten AGO genes of which AGO1, AGO2, and AGO7 have been shown to play roles in antiviral defense. A genetic analysis was used to identify and characterize the roles of AGO proteins in antiviral defense against Turnip mosaic virus (TuMV) in Arabidopsis. AGO1, AGO2 and AGO10 promoted anti-TuMV defense in a modular way in various organs, with AGO2 providing a prominent antiviral role in leaves. AGO5, AGO7 and AGO10 had minor effects in leaves. AGO1 and AGO10 had overlapping antiviral functions in inflorescence tissues after systemic movement of the virus, although the roles of AGO1 and AGO10 accounted for only a minor amount of the overall antiviral activity. By combining AGO protein immunoprecipitation with high-throughput sequencing of associated small RNAs, AGO2, AGO10, and to a lesser extent AGO1 were shown to associate with siRNAs derived from silencing suppressor (HC-Pro)-deficient TuMV-AS9, but not with siRNAs derived from wild-type TuMV. Co-immunoprecipitation and small RNA sequencing revealed that viral siRNAs broadly associated with wild-type HC-Pro during TuMV infection. These results support the hypothesis that suppression of antiviral silencing during TuMV infection, at least in part, occurs through sequestration of virus-derived siRNAs away from antiviral AGO proteins by HC-Pro. These findings indicate that distinct AGO proteins function as antiviral modules, and provide a molecular explanation for the silencing suppressor activity of HC-Pro. RNA silencing is a primary, adaptive defense system against viruses in plants. Viruses have evolved counter-defensive mechanisms that inhibit RNA silencing through the activity of silencing suppressor proteins. Understanding how antiviral silencing is controlled, and how suppressor proteins function, is essential for understanding how plants normally resist viruses, why some viruses are highly virulent in different hosts, and how sustainable antiviral resistance strategies can be deployed in agricultural settings. We used a mutant version of Turnip mosaic virus lacking a functional silencing suppressor (HC-Pro) to understand the genetic requirements for resistance in the model plant Arabidopsis thaliana. We focused on ARGONAUTE proteins, which have long been hypothesized to bind short interfering RNAs (siRNAs) derived from virus genomes for use as sequence-specific guides to recognize and target viral RNA for degradation or repression. We demonstrated specialized antiviral roles for specific ARGONAUTES and showed that several can bind viral siRNAs from across the entire viral genome. However, ARGONAUTE proteins are only loaded with virus-derived siRNAs in the absence of HC-Pro, which we showed binds siRNAs from the viral genome. This indicates that several AGO proteins, which collectively are necessary for full anti-TuMV defense, need to properly load virus-derived siRNAs to execute their antiviral roles.
Collapse
Affiliation(s)
- Hernan Garcia-Ruiz
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Alberto Carbonell
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - J. Steen Hoyer
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Computational and Systems Biology Program, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Noah Fahlgren
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Kerrigan B. Gilbert
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Atsushi Takeda
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Annalisa Giampetruzzi
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Mayra T. Garcia Ruiz
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Michaela G. McGinn
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Nicholas Lowery
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | | | - James C. Carrington
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
75
|
Small-RNA loading licenses Argonaute for assembly into a transcriptional silencing complex. Nat Struct Mol Biol 2015; 22:328-35. [PMID: 25730778 DOI: 10.1038/nsmb.2979] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 01/31/2015] [Indexed: 12/29/2022]
Abstract
Argonautes and their small-RNA cofactors form the core effectors of ancient and diverse gene-silencing mechanisms whose roles include regulation of gene expression and defense against foreign genetic elements. Although Argonautes generally act within multisubunit complexes, what governs their assembly into these machineries is not well defined. Here, we show that loading of small RNAs onto Argonaute is a checkpoint for Argonaute's association with conserved GW-protein components of silencing complexes. We demonstrate that the Argonaute small interfering RNA chaperone (ARC) complex mediates loading of small RNAs onto Ago1 in Schizosaccharomyces pombe and that deletion of its subunits, or mutations in Ago1 that prevent small-RNA loading, abolish the assembly of the GW protein-containing RNA-induced transcriptional silencing (RITS) complex. Our studies uncover a mechanism that ensures that Argonaute loading precedes RITS assembly and thereby averts the formation of inert and potentially deleterious complexes.
Collapse
|
76
|
Wieczorek P, Obrępalska-Stęplowska A. Suppress to Survive-Implication of Plant Viruses in PTGS. PLANT MOLECULAR BIOLOGY REPORTER 2015; 33:335-346. [PMID: 25999662 PMCID: PMC4432016 DOI: 10.1007/s11105-014-0755-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In higher plants, evolutionarily conserved processes playing an essential role during gene expression rely on small noncoding RNA molecules (sRNA). Within a wide range of sRNA-dependent cellular events, there is posttranscriptional gene silencing, the process that is activated in response to the presence of double-stranded RNAs (dsRNAs) in planta. The sequence-specific mechanism of silencing is based on RNase-mediated trimming of dsRNAs into translationally inactive short molecules. Viruses invading and replicating in host are also a source of dsRNAs and are recognized as such by cellular posttranscriptional silencing machinery leading to degradation of the pathogenic RNA. However, viruses are not totally defenseless. In parallel with evolving plant defense strategies, viruses have managed a wide range of multifunctional proteins that efficiently impede the posttranscriptional gene silencing. These viral counteracting factors are known as suppressors of RNA silencing. The aim of this review is to summarize the role and the mode of action of several functionally characterized RNA silencing suppressors encoded by RNA viruses directly involved in plant-pathogen interactions. Additionally, we point out that the widely diverse functions, structures, and modes of action of viral suppressors can be performed by different proteins, even in related viruses. All those adaptations have been evolved to achieve the same goal: to maximize the rate of viral genetic material replication by interrupting the evolutionary conserved plant defense mechanism of posttranscriptional gene silencing.
Collapse
Affiliation(s)
- Przemysław Wieczorek
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection-National Research Institute, 20 Władysława Węgorka St, 60-318 Poznań, Poland
| | - Aleksandra Obrępalska-Stęplowska
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection-National Research Institute, 20 Władysława Węgorka St, 60-318 Poznań, Poland
| |
Collapse
|
77
|
Pérez-Cañamás M, Hernández C. Key importance of small RNA binding for the activity of a glycine-tryptophan (GW) motif-containing viral suppressor of RNA silencing. J Biol Chem 2014; 290:3106-20. [PMID: 25505185 DOI: 10.1074/jbc.m114.593707] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viruses express viral suppressors of RNA silencing (VSRs) to counteract RNA silencing-based host defenses. Although virtually all stages of the antiviral silencing pathway can be inhibited by VSRs, small RNAs (sRNAs) and Argonaute (AGO) proteins seem to be the most frequent targets. Recently, GW/WG motifs of some VSRs have been proposed to dictate their suppressor function by mediating interaction with AGO(s). Here we have studied the VSR encoded by Pelargonium line pattern virus (family Tombusviridae). The results show that p37, the viral coat protein, blocks RNA silencing. Site-directed mutagenesis of some p37 sequence traits, including a conserved GW motif, allowed generation of suppressor-competent and -incompetent molecules and uncoupling of the VSR and particle assembly capacities. The engineered mutants were used to assess the importance of p37 functions for viral infection and the relative contribution of diverse molecular interactions to suppressor activity. Two main conclusions can be drawn: (i) the silencing suppression and encapsidation functions of p37 are both required for systemic Pelargonium line pattern virus infection, and (ii) the suppressor activity of p37 relies on the ability to bind sRNAs rather than on interaction with AGOs. The data also caution against potential misinterpretations of results due to overlap of sequence signals related to distinct protein properties. This is well illustrated by mutation of the GW motif in p37 that concurrently affects nucleolar localization, efficient interaction with AGO1, and sRNA binding capability. These concomitant effects could have been overlooked in other GW motif-containing suppressors, as we exemplify with the orthologous p38 of turnip crinkle virus.
Collapse
Affiliation(s)
- Miryam Pérez-Cañamás
- From the Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| | - Carmen Hernández
- From the Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
78
|
O'Neal ST, Samuel GH, Adelman ZN, Myles KM. Mosquito-borne viruses and suppressors of invertebrate antiviral RNA silencing. Viruses 2014; 6:4314-31. [PMID: 25393896 PMCID: PMC4246224 DOI: 10.3390/v6114314] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/28/2014] [Accepted: 10/31/2014] [Indexed: 02/05/2023] Open
Abstract
The natural maintenance cycles of many mosquito-borne viruses require establishment of persistent non-lethal infections in the invertebrate host. While the mechanisms by which this occurs are not well understood, antiviral responses directed by small RNAs are important in modulating the pathogenesis of viral infections in disease vector mosquitoes. In yet another example of an evolutionary arms race between host and pathogen, some plant and insect viruses have evolved to encode suppressors of RNA silencing (VSRs). Whether or not mosquito-borne viral pathogens encode VSRs has been the subject of debate. While at first there would seem to be little evolutionary benefit to mosquito-borne viruses encoding proteins or sequences that strongly interfere with RNA silencing, we present here a model explaining how the expression of VSRs by these viruses in the vector might be compatible with the establishment of persistence. We also discuss the challenges associated with interrogating these viruses for the presence of suppressor proteins or sequences, as well as the candidates that have been identified in the genomes of mosquito-borne pathogens thus far.
Collapse
Affiliation(s)
- Scott T O'Neal
- Fralin Life Science Institute and Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Glady Hazitha Samuel
- Fralin Life Science Institute and Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Zach N Adelman
- Fralin Life Science Institute and Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Kevin M Myles
- Fralin Life Science Institute and Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
79
|
Kong L, Wang Y, Yang X, Sunter G, Zhou X. Broad bean wilt virus 2 encoded VP53, VP37 and large capsid protein orchestrate suppression of RNA silencing in plant. Virus Res 2014; 192:62-73. [PMID: 25173697 DOI: 10.1016/j.virusres.2014.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/19/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
Abstract
Viruses encode RNA silencing suppressors to counteract host RNA silencing-mediated defense responses. In this study, we demonstrate that VP53, VP37 and LCP encoded by RNA2 of broad bean wilt virus 2 (BBWV-2), a member of the genus Fabavirus, are strong suppressors of RNA silencing triggered by single-stranded sense RNA. They, however, had no effect on suppression of RNA silencing induced by double-stranded RNA. We provide evidence that these three suppressors can significantly limit the accumulation of small interfering RNAs (siRNAs) in tissues where the GFP gene has been silenced, and prevent the long distance spread of the induced silencing signal. Gel mobility shift assays showed that all three suppressors could bind ssRNA in a size-specific manner. Interestingly, VP37 and LCP, but not VP53, could reverse the silencing of a GFP gene in leaf tissue. Furthermore, these three proteins are capable of enhancing pathogenicity of potato virus X. Collectively, our findings indicate that viruses employ a more sophisticated strategy to overcome the host defense response mediated through suppression of RNA silencing during virus infection. As far as we are aware, this is the first report of RNA silencing suppressors encoded by a virus in the genus Fabavirus.
Collapse
Affiliation(s)
- Lingfang Kong
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Xiuling Yang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Garry Sunter
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China.
| |
Collapse
|
80
|
Rajamäki ML, Streng J, Valkonen JPT. Silencing suppressor protein VPg of a potyvirus interacts with the plant silencing-related protein SGS3. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1199-210. [PMID: 25099340 DOI: 10.1094/mpmi-04-14-0109-r] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Viral genome-linked protein (VPg) of potyviruses is involved in multiple steps of the potyvirus infection cycle, including viral multiplication and movement in plants. Recently, we showed that VPg of Potato virus A (PVA; genus Potyvirus) suppresses sense-mediated RNA silencing, which is linked to one or both nuclear or nucleolar localization. Here, we studied interactions between VPg and components of the plant RNA silencing pathway. Results showed that VPg interacts with the SGS3 protein of Solanum tuberosum and Arabidopsis thaliana, as shown by yeast two-hybrid analysis and bimolecular fluorescence complementation assays. VPg-SGS3 interactions co-localized with small cytoplasmic bodies that contained plant RNA-dependent RNA polymerase 6 (RDR6) (likely SGS3/RDR6 bodies). The N-terminal zinc finger (ZF) domain of SGS3 was the main determinant of the VPg interaction. Our data also suggest that the ZF domain controls SGS3 localization. SGS3 homodimerization was controlled by multiple protein regions. The VPg-SGS3 interaction appeared beneficial for PVA, as viral RNA levels correlated positively with sgs3 mRNA levels in the SGS3-silenced and SGS3-overexpressing leaves of Nicotiana benthamiana. The data support the idea that VPg acts as a suppressor of RNA silencing and suggest that an interaction with SGS3 may be important, especially in suppression of sense-mediated RNA silencing.
Collapse
|
81
|
Zielezinski A, Karlowski WM. Integrative data analysis indicates an intrinsic disordered domain character of Argonaute-binding motifs. ACTA ACUST UNITED AC 2014; 31:332-9. [PMID: 25304778 DOI: 10.1093/bioinformatics/btu666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
MOTIVATION Argonaute-interacting WG/GW proteins are characterized by the presence of repeated sequence motifs containing glycine (G) and tryptophan (W). The motifs seem to be remarkably adaptive to amino acid substitutions and their sequences show non-contiguity. Our previous approach to the detection of GW domains, based on scoring their gross amino acid composition, allowed annotation of several novel proteins involved in gene silencing. The accumulation of new experimental data and more advanced applications revealed some deficiency of the algorithm in prediction selectivity. Additionally, W-motifs, though critical in gene regulation, have not yet been annotated in any available online resources. RESULTS We present an improved set of computational tools allowing efficient management and annotation of W-based motifs involved in gene silencing. The new prediction algorithms provide novel functionalities by annotation of the W-containing domains at the local sequence motif level rather than by overall compositional properties. This approach represents a significant improvement over the previous method in terms of prediction sensitivity and selectivity. Application of the algorithm allowed annotation of a comprehensive list of putative Argonaute-interacting proteins across eukaryotes. An in-depth characterization of the domains' properties indicates its intrinsic disordered character. In addition, we created a knowledge-based portal (whub) that provides access to tools and information on RNAi-related tryptophan-containing motifs. AVAILABILITY AND IMPLEMENTATION The web portal and tools are freely available at http://www.comgen.pl/whub. CONTACT wmk@amu.edu.pl SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Andrzej Zielezinski
- Laboratory of Computational Genomics-Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Wojciech M Karlowski
- Laboratory of Computational Genomics-Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| |
Collapse
|
82
|
Dombrovsky A, Reingold V, Antignus Y. Ipomovirus--an atypical genus in the family Potyviridae transmitted by whiteflies. PEST MANAGEMENT SCIENCE 2014; 70:1553-67. [PMID: 24464680 DOI: 10.1002/ps.3735] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/16/2014] [Indexed: 05/02/2023]
Abstract
Ipomoviruses (genus Ipomovirus) are whitefly-transmitted viruses assigned to the family Potyviridae. They are characterised by filamentous flexible particles and a positive-sense single-stranded RNA (+ssRNA) genome. The viral genome is translated into a polyprotein precursor, which is processed into mature proteins and a short overlapping open reading frame. The genus Ipomovirus contains four accepted species and one unapproved species, and two other tentative members have recently been characterised. Ipomoviruses cause serious economic losses in many important crops, including cassava, sweet potato, cucurbits, tomato and aubergine. These viruses are transmitted by whiteflies in a non-circulative, semi-persistent manner, the virions being retained on the external surface of the vectors' mouthparts for a few days or weeks. Comparison of the available complete genome sequences of different ipomoviruses revealed differences in their genome organisation and a considerable variation in their proteins and conserved motifs that may reflect functional differences. This review summarises the current knowledge of the members within the genus Ipomovirus, focusing on genome organisation, taxonomic classification and the mechanism by which they are transmitted.
Collapse
Affiliation(s)
- Aviv Dombrovsky
- Department of Plant Pathology, ARO, The Volcani Centre, Bet Dagan, Israel
| | | | | |
Collapse
|
83
|
Hedil M, Hassani-Mehraban A, Lohuis D, Kormelink R. Analysis of the A-U rich hairpin from the intergenic region of tospovirus S RNA as target and inducer of RNA silencing. PLoS One 2014; 9:e106027. [PMID: 25268120 PMCID: PMC4182118 DOI: 10.1371/journal.pone.0106027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/30/2014] [Indexed: 01/22/2023] Open
Abstract
Earlier work indicated that Tomato spotted wilt virus (TSWV) messenger transcripts, and not the (anti)genomic RNAs, are targeted by the RNA silencing machinery. Here, the predicted AU-rich hairpin (HP) structure encoded by the intergenic region (IGR) of the TSWV S RNA, and present at the 3' end of viral mRNAs, was analyzed as a target and inducer for RNA silencing. Virus-derived siRNAs (vsiRNAs) purified from virus infected plants were found to derive from all three genomic RNA segments but predominantly the ambisense M and S RNAs. Further profiling on the S RNA sequence revealed that vsiRNAs were found from almost the entire S RNA sequence, except the IGR from where hardly any vsiRNAs were found. Similar profiles were observed with the distantly related Tomato yellow ring tospovirus (TYRV). Dicer cleavage assays using Drosophila melanogaster (Dm) embryo extracts showed that synthetic transcripts of the IGR-HP region were recognized as substrate for Dicer. Transient agroinfiltration assays of a GFP-sensor construct containing the IGR-HP sequence at its 3' UTR (GFP-HP) did not show more rapid/strong silencing and profiling of the corresponding siRNAs, generated outside the context of a viral infection, still revealed relatively low levels of IGR-HP-derived siRNAs. These data support the idea that the IGR-HP is a weak inducer of RNA silencing and only plays a minor role in the amplification of a strong antiviral RNAi response.
Collapse
Affiliation(s)
- Marcio Hedil
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Afshin Hassani-Mehraban
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Dick Lohuis
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
84
|
Karran RA, Sanfaçon H. Tomato ringspot virus coat protein binds to ARGONAUTE 1 and suppresses the translation repression of a reporter gene. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:933-43. [PMID: 24804809 DOI: 10.1094/mpmi-04-14-0099-r] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
RNA silencing regulates plant gene expression and antiviral defenses and functions by cleaving target RNAs or repressing translation. As a counter defense, many plant viruses encode suppressor proteins that sequester small RNAs or inactivate Argonaute (AGO) proteins. All known plant virus silencing suppressor activities eventually inhibit the degradation of target mRNAs. Using a transiently expressed green fluorescent protein (GFP) reporter gene, we show that Tomato ringspot virus (ToRSV) coat protein (CP) is a suppressor of RNA silencing that enhances GFP expression but does not prevent the degradation of the GFP mRNA or the accumulation of GFP small interfering RNAs (siRNAs). Coexpression of the CP with GFP resulted in increased association of residual GFP mRNAs with polysome fractions and reduced association of GFP siRNAs with monosome fractions. AGO1 was co-immunoprecipitated with the CP and CP expression destabilized AGO1. A WG motif within the CP was critical for the enhanced GFP expression, AGO1 interaction, and AGO1 destabilization, suggesting that the ToRSV CP acts as an AGO-hook protein and competes for AGO binding with a plant cellular GW/WG protein involved in translation repression.
Collapse
|
85
|
Nakahara KS, Masuta C. Interaction between viral RNA silencing suppressors and host factors in plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:88-95. [PMID: 24875766 DOI: 10.1016/j.pbi.2014.05.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/24/2014] [Accepted: 05/01/2014] [Indexed: 05/18/2023]
Abstract
To elucidate events in the molecular arms race between the host and pathogen in evaluating plant immunity, a zigzag model is useful for uncovering aspects common to different host-pathogen interactions. By analogy of the steps in virus-host interactions with the steps in the standard zigzag model outlined in recent papers, we may regard RNA silencing as pattern-triggered immunity (PTI) against viruses, RNA silencing suppressors (RSSs) as effectors to overcome host RNA silencing and resistance gene (R-gene)-mediated defense as effector-triggered immunity (ETI) recognizing RSSs as avirulence proteins. However, because the standard zigzag model does not fully apply to some unique aspects in the interactions between a plant host and virus, we here defined a model especially designed for viruses. Although we simplified the phenomena involved in the virus-host interactions in the model, certain specific interactive steps can be explained by integrating additional host factors into the model. These host factors are thought to play an important role in maintaining the efficacy of the various steps in the main pathway of defense against viruses in this model for virus-plant interactions. For example, we propose candidates that may interact with viral RSSs to induce the resistance response.
Collapse
Affiliation(s)
- Kenji S Nakahara
- Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| | - Chikara Masuta
- Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
86
|
van Mierlo JT, Overheul GJ, Obadia B, van Cleef KWR, Webster CL, Saleh MC, Obbard DJ, van Rij RP. Novel Drosophila viruses encode host-specific suppressors of RNAi. PLoS Pathog 2014; 10:e1004256. [PMID: 25032815 PMCID: PMC4102588 DOI: 10.1371/journal.ppat.1004256] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/03/2014] [Indexed: 12/24/2022] Open
Abstract
The ongoing conflict between viruses and their hosts can drive the co-evolution between host immune genes and viral suppressors of immunity. It has been suggested that an evolutionary ‘arms race’ may occur between rapidly evolving components of the antiviral RNAi pathway of Drosophila and viral genes that antagonize it. We have recently shown that viral protein 1 (VP1) of Drosophila melanogaster Nora virus (DmelNV) suppresses Argonaute-2 (AGO2)-mediated target RNA cleavage (slicer activity) to antagonize antiviral RNAi. Here we show that viral AGO2 antagonists of divergent Nora-like viruses can have host specific activities. We have identified novel Nora-like viruses in wild-caught populations of D. immigrans (DimmNV) and D. subobscura (DsubNV) that are 36% and 26% divergent from DmelNV at the amino acid level. We show that DimmNV and DsubNV VP1 are unable to suppress RNAi in D. melanogaster S2 cells, whereas DmelNV VP1 potently suppresses RNAi in this host species. Moreover, we show that the RNAi suppressor activity of DimmNV VP1 is restricted to its natural host species, D. immigrans. Specifically, we find that DimmNV VP1 interacts with D. immigrans AGO2, but not with D. melanogaster AGO2, and that it suppresses slicer activity in embryo lysates from D. immigrans, but not in lysates from D. melanogaster. This species-specific interaction is reflected in the ability of DimmNV VP1 to enhance RNA production by a recombinant Sindbis virus in a host-specific manner. Our results emphasize the importance of analyzing viral RNAi suppressor activity in the relevant host species. We suggest that rapid co-evolution between RNA viruses and their hosts may result in host species-specific activities of RNAi suppressor proteins, and therefore that viral RNAi suppressors could be host-specificity factors. Viruses and their hosts can engage in an evolutionary arms race. Viruses may select for hosts with more effective immune responses, whereas the immune response of the host may select for viruses that evade the immune system. These viral counter-defenses may in turn drive adaptations in host immune genes. A potential outcome of this perpetual cycle is that the interaction between virus and host becomes more specific. In insects, the host antiviral RNAi machinery exerts strong evolutionary pressure that has led to the evolution of viral proteins that can antagonize the RNAi response. We have identified novel viruses that infect different fruit fly species and we show that the RNAi suppressor proteins of these viruses can be specific to their host. Furthermore, we show that these proteins can enhance virus replication in a host-specific manner. These results are in line with the hypothesis that virus-host co-evolution shapes the genomes of both virus and host. Moreover, our results suggest that RNAi suppressor proteins have the potential to determine host specificity of viruses.
Collapse
Affiliation(s)
- Joël T. van Mierlo
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Gijs J. Overheul
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Benjamin Obadia
- Institut Pasteur, Viruses and RNA interference Unit and Centre National de la Recherche Scientifique, UMR 3569, Paris, France
| | - Koen W. R. van Cleef
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Claire L. Webster
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria-Carla Saleh
- Institut Pasteur, Viruses and RNA interference Unit and Centre National de la Recherche Scientifique, UMR 3569, Paris, France
| | - Darren J. Obbard
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (DJO); (RPvR)
| | - Ronald P. van Rij
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- * E-mail: (DJO); (RPvR)
| |
Collapse
|
87
|
de Ronde D, Butterbach P, Kormelink R. Dominant resistance against plant viruses. FRONTIERS IN PLANT SCIENCE 2014; 5:307. [PMID: 25018765 PMCID: PMC4073217 DOI: 10.3389/fpls.2014.00307] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/10/2014] [Indexed: 05/17/2023]
Abstract
To establish a successful infection plant viruses have to overcome a defense system composed of several layers. This review will overview the various strategies plants employ to combat viral infections with main emphasis on the current status of single dominant resistance (R) genes identified against plant viruses and the corresponding avirulence (Avr) genes identified so far. The most common models to explain the mode of action of dominant R genes will be presented. Finally, in brief the hypersensitive response (HR) and extreme resistance (ER), and the functional and structural similarity of R genes to sensors of innate immunity in mammalian cell systems will be described.
Collapse
Affiliation(s)
- Dryas de Ronde
- Laboratory of Virology, Department of Plant Sciences, Wageningen University Wageningen, Netherlands
| | - Patrick Butterbach
- Laboratory of Virology, Department of Plant Sciences, Wageningen University Wageningen, Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University Wageningen, Netherlands
| |
Collapse
|
88
|
Wu WQ, Fan HY, Jiang N, Wang Y, Zhang ZY, Zhang YL, Wang XB, Li DW, Yu JL, Han CG. Infection of Beet necrotic yellow vein virus with RNA4-encoded P31 specifically up-regulates pathogenesis-related protein 10 in Nicotiana benthamiana. Virol J 2014; 11:118. [PMID: 24961274 PMCID: PMC4078943 DOI: 10.1186/1743-422x-11-118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/09/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Beet necrotic yellow vein virus (BNYVV) is the infectious agent of sugar beet rhizomania, which consists of four or five plus-sense RNAs. RNA4 of BNYVV is not essential for virus propagation in Nicotiana benthamiana but has a major effect on symptom expression. Early reports showed that RNA4-encoded P31 was associated with severe symptoms, such as curling and dwarfing, in N. benthamiana. RESULTS We discovered that the pathogenesis-related protein 10 (PR-10) gene can be up-regulated in BNYVV-infected N. benthamiana in the presence of RNA4 and that it had a close link with symptom development. Our frame-shift, deletion and substitution analysis showed that only the entire P31 could induce PR-10 up-regulation during BNYVV infection and that all the tryptophans and six cysteines (C174, C183, C186, C190, C197 and C199) in the cysteine-rich P31 had significant effects on PR-10 expression. However, P31 could not interact directly with PR-10 in yeast. CONCLUSIONS Our data demonstrated that only integrated P31 specifically induced PR-10 transcription, which coincided closely with the appearance of severe symptoms in BNYVV-infected N. benthamiana, although they could not interact directly with each other in yeast.
Collapse
Affiliation(s)
- Wen-Qi Wu
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Hui-Yan Fan
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Ning Jiang
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Ying Wang
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zong-Ying Zhang
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Yong-Liang Zhang
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xian-Bing Wang
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Da-Wei Li
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Jia-Lin Yu
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Cheng-Gui Han
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
89
|
Zhuo T, Li YY, Xiang HY, Wu ZY, Wang XB, Wang Y, Zhang YL, Li DW, Yu JL, Han CG. Amino acid sequence motifs essential for P0-mediated suppression of RNA silencing in an isolate of potato leafroll virus from Inner Mongolia. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:515-27. [PMID: 24450775 DOI: 10.1094/mpmi-08-13-0231-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Polerovirus P0 suppressors of host gene silencing contain a consensus F-box-like motif with Leu/Pro (L/P) requirements for suppressor activity. The Inner Mongolian Potato leafroll virus (PLRV) P0 protein (P0(PL-IM)) has an unusual F-box-like motif that contains a Trp/Gly (W/G) sequence and an additional GW/WG-like motif (G139/W140/G141) that is lacking in other P0 proteins. We used Agrobacterium infiltration-mediated RNA silencing assays to establish that P0(PL-IM) has a strong suppressor activity. Mutagenesis experiments demonstrated that the P0(PL-IM) F-box-like motif encompasses amino acids 76-LPRHLHYECLEWGLLCG THP-95, and that the suppressor activity is abolished by L76A, W87A, or G88A substitution. The suppressor activity is also weakened substantially by mutations within the G139/W140/G141 region and is eliminated by a mutation (F220R) in a C-terminal conserved sequence of P0(PL-IM). As has been observed with other P0 proteins, P0(PL-IM) suppression is correlated with reduced accumulation of the host AGO1-silencing complex protein. However, P0(PL-IM) fails to bind SKP1, which functions in a proteasome pathway that may be involved in AGO1 degradation. These results suggest that P0(PL-IM) may suppress RNA silencing by using an alternative pathway to target AGO1 for degradation. Our results help improve our understanding of the molecular mechanisms involved in PLRV infection.
Collapse
|
90
|
Okano Y, Senshu H, Hashimoto M, Neriya Y, Netsu O, Minato N, Yoshida T, Maejima K, Oshima K, Komatsu K, Yamaji Y, Namba S. In Planta Recognition of a Double-Stranded RNA Synthesis Protein Complex by a Potexviral RNA Silencing Suppressor. THE PLANT CELL 2014; 26:2168-2183. [PMID: 24879427 PMCID: PMC4079376 DOI: 10.1105/tpc.113.120535] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 04/23/2014] [Accepted: 05/09/2014] [Indexed: 05/22/2023]
Abstract
RNA silencing plays an important antiviral role in plants and invertebrates. To counteract antiviral RNA silencing, most plant viruses have evolved viral suppressors of RNA silencing (VSRs). TRIPLE GENE BLOCK PROTEIN1 (TGBp1) of potexviruses is a well-characterized VSR, but the detailed mechanism by which it suppresses RNA silencing remains unclear. We demonstrate that transgenic expression of TGBp1 of plantago asiatica mosaic virus (PlAMV) induced developmental abnormalities in Arabidopsis thaliana similar to those observed in mutants of SUPPRESSOR OF GENE SILENCING3 (SGS3) and RNA-DEPENDENT RNA POLYMERASE6 (RDR6) required for the trans-acting small interfering RNA synthesis pathway. PlAMV-TGBp1 inhibits SGS3/RDR6-dependent double-stranded RNA synthesis in the trans-acting small interfering RNA pathway. TGBp1 interacts with SGS3 and RDR6 and coaggregates with SGS3/RDR6 bodies, which are normally dispersed in the cytoplasm. In addition, TGBp1 forms homooligomers, whose formation coincides with TGBp1 aggregation with SGS3/RDR6 bodies. These results reveal the detailed molecular function of TGBp1 as a VSR and shed new light on the SGS3/RDR6-dependent double-stranded RNA synthesis pathway as another general target of VSRs.
Collapse
Affiliation(s)
- Yukari Okano
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroko Senshu
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masayoshi Hashimoto
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yutaro Neriya
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Osamu Netsu
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nami Minato
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tetsuya Yoshida
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kensaku Maejima
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kenro Oshima
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ken Komatsu
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
91
|
Li F, Huang C, Li Z, Zhou X. Suppression of RNA silencing by a plant DNA virus satellite requires a host calmodulin-like protein to repress RDR6 expression. PLoS Pathog 2014; 10:e1003921. [PMID: 24516387 PMCID: PMC3916407 DOI: 10.1371/journal.ppat.1003921] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/24/2013] [Indexed: 11/19/2022] Open
Abstract
In plants, RNA silencing plays a key role in antiviral defense. To counteract host defense, plant viruses encode viral suppressors of RNA silencing (VSRs) that target different effector molecules in the RNA silencing pathway. Evidence has shown that plants also encode endogenous suppressors of RNA silencing (ESRs) that function in proper regulation of RNA silencing. The possibility that these cellular proteins can be subverted by viruses to thwart host defense is intriguing but has not been fully explored. Here we report that the Nicotiana benthamiana calmodulin-like protein Nbrgs-CaM is required for the functions of the VSR βC1, the sole protein encoded by the DNA satellite associated with the geminivirus Tomato yellow leaf curl China virus (TYLCCNV). Nbrgs-CaM expression is up-regulated by the βC1. Transgenic plants over-expressing Nbrgs-CaM displayed developmental abnormities reminiscent of βC1-associated morphological alterations. Nbrgs-CaM suppressed RNA silencing in an Agrobacterium infiltration assay and, when over-expressed, blocked TYLCCNV-induced gene silencing. Genetic evidence showed that Nbrgs-CaM mediated the βC1 functions in silencing suppression and symptom modulation, and was required for efficient virus infection. Moreover, the tobacco and tomato orthologs of Nbrgs-CaM also possessed ESR activity, and were induced by betasatellite to promote virus infection in these Solanaceae hosts. We further demonstrated that βC1-induced Nbrgs-CaM suppressed the production of secondary siRNAs, likely through repressing RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) expression. RDR6-deficient N. benthamiana plants were defective in antiviral response and were hypersensitive to TYLCCNV infection. More significantly, TYLCCNV could overcome host range restrictions to infect Arabidopsis thaliana when the plants carried a RDR6 mutation. These findings demonstrate a distinct mechanism of VSR for suppressing PTGS through usurpation of a host ESR, and highlight an essential role for RDR6 in RNA silencing defense response against geminivirus infection.
Collapse
Affiliation(s)
- Fangfang Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Changjun Huang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
92
|
de Ronde D, Pasquier A, Ying S, Butterbach P, Lohuis D, Kormelink R. Analysis of Tomato spotted wilt virus NSs protein indicates the importance of the N-terminal domain for avirulence and RNA silencing suppression. MOLECULAR PLANT PATHOLOGY 2014; 15:185-95. [PMID: 24103150 PMCID: PMC6638762 DOI: 10.1111/mpp.12082] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Recently, Tomato spotted wilt virus (TSWV) nonstructural protein NSs has been identified unambiguously as an avirulence (Avr) determinant for Tomato spotted wilt (Tsw)-based resistance. The observation that NSs from two natural resistance-breaking isolates had lost RNA silencing suppressor (RSS) activity and Avr suggested a link between the two functions. To test this, a large set of NSs mutants was generated by alanine substitutions in NSs from resistance-inducing wild-type strains (NSs(RI) ), amino acid reversions in NSs from resistance-breaking strains (NSs(RB)), domain deletions and swapping. Testing these mutants for their ability to suppress green fluorescent protein (GFP) silencing and to trigger a Tsw-mediated hypersensitive response (HR) revealed that the two functions can be separated. Changes in the N-terminal domain were found to be detrimental for both activities and indicated the importance of this domain, additionally supported by domain swapping between NSs(RI) and NSs(RB). Swapping domains between the closely related Tospovirus Groundnut ringspot virus (GRSV) NSs and TSWV NSs(RI) showed that Avr functionality could not simply be transferred between species. Although deletion of the C-terminal domain rendered NSs completely dysfunctional, only a few single-amino-acid mutations in the C-terminus affected both functions. Mutation of a GW/WG motif (position 17/18) rendered NSs completely dysfunctional for RSS and Avr activity, and indicated a putative interaction between NSs and Argonaute 1 (AGO1), and its importance in TSWV virulence and viral counter defence against RNA interference.
Collapse
Affiliation(s)
- Dryas de Ronde
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | | | | | | | | | | |
Collapse
|
93
|
Ramesh SV, Ratnaparkhe MB, Kumawat G, Gupta GK, Husain SM. Plant miRNAome and antiviral resistance: a retrospective view and prospective challenges. Virus Genes 2014; 48:1-14. [PMID: 24445902 DOI: 10.1007/s11262-014-1038-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/12/2014] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are small regulatory RNAs that play a defining role in post-transcriptional gene silencing of eukaryotes by either mRNA cleavage or translational inhibition. Plant miRNAs have been implicated in innumerable growth and developmental processes that extend beyond their ability to respond to biotic and abiotic stresses. Active in an organism's immune defence response, host miRNAs display a propensity to target viral genomes. During viral invasion, these virus-targeting miRNAs can be identified by their altered expression. All the while, pathogenic viruses, as a result of their long-term interaction with plants, have been evolving viral suppressors of RNA silencing (VSRs), as well as viral-encoded miRNAs as a counter-defence strategy. However, the gene silencing attribute of miRNAs has been ingeniously manipulated to down-regulate the expression of any gene of interest, including VSRs, in artificial miRNA (amiRNA)-based transgenics. Since we currently have a better understanding of the intricacies of miRNA-mediated gene regulation in plant-virus interactions, the majority of miRNAs manipulated to confer antiviral resistance to date are in plants. This review will share the insights gained from the studies of plant-virus combat and from the endeavour to manipulate miRNAs, including prospective challenges in the context of the evolutionary dynamics of the viral genome. Next generation sequencing technologies and bioinformatics analysis will further delineate the molecular details of host-virus interactions. The need for appropriate environmental risk assessment principles specific to amiRNA-based virus resistance is also discussed.
Collapse
Affiliation(s)
- Shunmugiah Veluchamy Ramesh
- Directorate of Soybean Research, Indian Council of Agricultural Research (ICAR), Khandwa Road, Indore, 452001, Madhya Pradesh, India,
| | | | | | | | | |
Collapse
|
94
|
Pasin F, Kulasekaran S, Natale P, Simón-Mateo C, García JA. Rapid fluorescent reporter quantification by leaf disc analysis and its application in plant-virus studies. PLANT METHODS 2014; 10:22. [PMID: 25053970 PMCID: PMC4105834 DOI: 10.1186/1746-4811-10-22] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/02/2014] [Indexed: 05/12/2023]
Abstract
BACKGROUND Fluorescent proteins are extraordinary tools for biology studies due to their versatility; they are used extensively to improve comprehension of plant-microbe interactions. The viral infection process can easily be tracked and imaged in a plant with fluorescent protein-tagged viruses. In plants, fluorescent protein genes are among the most commonly used reporters in transient RNA silencing and heterologous protein expression assays. Fluorescence intensity is used to quantify fluorescent protein accumulation by image analysis or spectroscopy of protein extracts; however, these methods might not be suitable for medium- to large-scale comparisons. RESULTS We report that laser scanners, used routinely in proteomic studies, are suitable for quantitative imaging of plant leaves that express different fluorescent protein pairs. We developed a microtiter plate fluorescence spectroscopy method for direct quantitative comparison of fluorescent protein accumulation in intact leaf discs. We used this technique to measure a fluorescent reporter in a transient RNA silencing suppression assay, and also to monitor early amplification dynamics of a fluorescent protein-labeled potyvirus. CONCLUSIONS Laser scanners allow dual-color fluorescence imaging of leaf samples, which might not be acquired in standard stereomicroscope devices. Fluorescence microtiter plate analysis of intact leaf discs can be used for rapid, accurate quantitative comparison of fluorescent protein accumulation.
Collapse
Affiliation(s)
- Fabio Pasin
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Satish Kulasekaran
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Paolo Natale
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Carmen Simón-Mateo
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | | |
Collapse
|
95
|
Abstract
Argonaute proteins interact with small RNAs and facilitate small RNA-guided gene-silencing processes. Small RNAs guide Argonaute proteins to distinct target sites on mRNAs where Argonaute proteins interact with members of the GW182 protein family (also known as GW proteins). In subsequent steps, GW182 proteins mediate the downstream steps of gene silencing. The present mini-review summarizes and discusses our current knowledge of the molecular basis of Argonaute-GW182 protein interactions.
Collapse
|
96
|
Ponia SS, Arora S, Kumar B, Banerjea AC. Arginine rich short linear motif of HIV-1 regulatory proteins inhibits dicer dependent RNA interference. Retrovirology 2013; 10:97. [PMID: 24025624 PMCID: PMC3848888 DOI: 10.1186/1742-4690-10-97] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 08/09/2013] [Indexed: 12/29/2022] Open
Abstract
Background Arginine Rich Motif (ARM) of HIV-1 Tat and Rev are extensively studied linear motifs (LMs). They are already established as an inefficient bipartite nuclear localisation signal (NLS). The unusual passive diffusion of HIV-1 NLS tagged reporter proteins across the nucleus is due to an unknown competing functionality of ARM. Recent findings about the role of retroviral proteins as a suppressor of RNA interference (RNAi) involving their basic residues hint an interesting answer to this alternate functionality. The present work explores the role of HIV-1 ARM as a uniquely evolved viral motif to combat Dicer dependent RNAi. Results We show that RNA binding ARM of both HIV-1 Tat and Rev is a LM with a pattern RXXRRXRRR unique to viruses. Extending the in silico results to wet lab, we proved both HIV-1 Tat and Rev can suppress Dicer dependent RNA silencing process involving ARM. We show, HIV-1 Tat and Rev and their corresponding ARM can bind the RISC loading complex (RLC) components TRBP and PACT confirming ARM as an independent RNAi suppression motif. Enhancement of RNAi in infection scenario through enoxacin increases HIV-1 replication as indicated by p24 levels. Except Dicer, all other cytoplasmic RNAi components enhance HIV-1 replication, indicating crucial role of Dicer independent (Ago2 dependent) RNAi pathway in HIV-1 infection. Sequence and structural analysis of endo/exo-microRNA precursors known to be regulated in HIV-1 infection highlights differential features of microRNA biogenesis. One such set of miRNA is viral TAR encoded HIV-1-miR-TAR-5p (Tar1) and HIV-1-miR-TAR-3p (Tar2) that are known to be present throughout the HIV-1 life cycle. Our qPCR results showed that enoxacin increases Tar2 miRNA level which is interesting as Tar2 precursor shows Ago2 dependent processing features. Conclusions We establish HIV-1 ARM as a novel viral motif evolved to target the Dicer dependent RNAi pathway. The conservation of such motif in other viral proteins possibly explains the potent suppression of Dicer dependent RNAi. Our model argues that HIV-1 suppress the processing of siRNAs through inhibition of Dicer while at the same time manipulates the RNAi machinery to process miRNA involved in HIV-1 replication from Dicer independent pathways.
Collapse
Affiliation(s)
- Sanket Singh Ponia
- Virology Lab II, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | | | | | | |
Collapse
|
97
|
Peláez P, Sanchez F. Small RNAs in plant defense responses during viral and bacterial interactions: similarities and differences. FRONTIERS IN PLANT SCIENCE 2013; 4:343. [PMID: 24046772 PMCID: PMC3763480 DOI: 10.3389/fpls.2013.00343] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/14/2013] [Indexed: 05/20/2023]
Abstract
Small non-coding RNAs constitute an important class of gene expression regulators that control different biological processes in most eukaryotes. In plants, several small RNA (sRNA) silencing pathways have evolved to produce a wide range of small RNAs with specialized functions. Evidence for the diverse mode of action of the small RNA pathways has been highlighted during plant-microbe interactions. Host sRNAs and small RNA silencing pathways have been recognized as essential components of plant immunity. One way plants respond and defend against pathogen infections is through the small RNA silencing immune system. To deal with plant defense responses, pathogens have evolved sophisticated mechanisms to avoid and counterattack this defense strategy. The relevance of the small RNA-mediated plant defense responses during viral infections has been well-established. Recent evidence points out its importance also during plant-bacteria interactions. Herein, this review discusses recent findings, similarities and differences about the small RNA-mediated arms race between plants and these two groups of microbes, including the small RNA silencing pathway components that contribute to plant immune responses, the pathogen-responsive endogenous sRNAs and the pathogen-delivered effector proteins.
Collapse
Affiliation(s)
| | - Federico Sanchez
- *Correspondence: Federico Sanchez, Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, 62210 Cuernavaca, Morelos, México e-mail:
| |
Collapse
|
98
|
Aqil M, Naqvi AR, Bano AS, Jameel S. The HIV-1 Nef protein binds argonaute-2 and functions as a viral suppressor of RNA interference. PLoS One 2013; 8:e74472. [PMID: 24023945 PMCID: PMC3762824 DOI: 10.1371/journal.pone.0074472] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 08/01/2013] [Indexed: 11/21/2022] Open
Abstract
The HIV-1 accessory protein Nef is an important virulence factor. It associates with cellular membranes and modulates the endocytic machinery and signaling pathways. Nef also increases the proliferation of multivesicular bodies (MVBs), which are sites for virus assembly and budding in macrophages. The RNA interference (RNAi) pathway proteins Ago2 and GW182 localize to MVBs, suggesting these to be sites for assembly and turnover of the miRNA-induced silencing complex (miRISC). While RNAi affects HIV replication, it is not clear if the virus encodes a suppressor activity to overcome this innate host response. Here we show that Nef colocalizes with MVBs and binds Ago2 through two highly conserved Glycine-Tryptophan (GW) motifs, mutations in which abolish Nef binding to Ago2 and reduce virus yield and infectivity. Nef also inhibits the slicing activity of Ago2 and disturbs the sorting of GW182 into exosomes resulting in the suppression of miRNA-induced silencing. Thus, besides its other activities, the HIV-1 Nef protein is also proposed to function as a viral suppressor of RNAi (VSR).
Collapse
Affiliation(s)
- Madeeha Aqil
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Afsar Raza Naqvi
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Aalia Shahr Bano
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Shahid Jameel
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
99
|
Guo W, Liew JY, Yuan YA. Structural insights into the arms race between host and virus along RNA silencing pathways inArabidopsis thaliana. Biol Rev Camb Philos Soc 2013; 89:337-55. [DOI: 10.1111/brv.12057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 06/29/2013] [Accepted: 07/30/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Wei Guo
- Department of Biological Sciences and Centre for Bioimaging Sciences; National University of Singapore; Singapore 117543 Singapore
| | - Jia Yee Liew
- Department of Biological Sciences and Centre for Bioimaging Sciences; National University of Singapore; Singapore 117543 Singapore
| | - Y. Adam Yuan
- Department of Biological Sciences and Centre for Bioimaging Sciences; National University of Singapore; Singapore 117543 Singapore
- Mechanobiology Institute; National University of Singapore; Singapore 117411 Singapore
- National University of Singapore (Suzhou) Research Institute; Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
100
|
Cañizares MC, Lozano-Durán R, Canto T, Bejarano ER, Bisaro DM, Navas-Castillo J, Moriones E. Effects of the crinivirus coat protein-interacting plant protein SAHH on post-transcriptional RNA silencing and its suppression. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1004-15. [PMID: 23697374 DOI: 10.1094/mpmi-02-13-0037-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In plants, post-transcriptional gene silencing (PTGS) is a sequence-specific mechanism of RNA degradation induced by double-stranded RNA (dsRNA), which is processed into small interfering RNAs (siRNAs). siRNAs are methylated and, thereby, stabilized by the activity of the S-adenosylmethionine-dependent RNA methyltransferase HEN1. PTGS is amplified by host-encoded RNA-dependent RNA polymerases (RDR), which generate dsRNA that is processed into secondary siRNAs. To counteract this RNA silencing-mediated response of the host, plant viruses express proteins with silencing suppression activity. Here, we report that the coat protein (CP) of crinivirus (family Closteroviridae, genus Crinivirus) Tomato chlorosis virus, a known suppressor of silencing, interacts with S-adenosylhomocysteine hydrolase (SAHH), a plant protein essential for sustaining the methyl cycle and S-adenosylmethionine-dependent methyltransferase activity. Our results show that, by contributing to an increased accumulation of secondary siRNAs generated by the action of RDR6, SAHH enhances local RNA silencing. Although downregulation of SAHH prevents local silencing, it enhances the spread of systemic silencing. Our results also show that SAHH is important in the suppression of local RNA silencing not only by the crinivirus Tomato chlorosis virus CP but also by the multifunctional helper component-proteinase of the potyvirus Potato virus Y.
Collapse
Affiliation(s)
- M Carmen Cañizares
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas IHSM-UMA-CSIC, Estación Experimental La Mayora, Málaga, Spain
| | | | | | | | | | | | | |
Collapse
|