51
|
Nomaguchi M, Adachi A. HIV-1 Vpr and G2 cell cycle arrest. Future Microbiol 2011; 6:375-8. [PMID: 21526938 DOI: 10.2217/fmb.11.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evaluation of: Belzile J-P, Abrahamyan LG, Gerard FCA et al.: Formation of mobile chromatin-associated nuclear foci containing HIV-1 Vpr and VPRBP is critical for the induction of G2 cell cycle arrest. PLoS Pathog. 6(9), E1001080 (2010). All primate immunodeficiency viruses encode a unique set of accessory proteins to optimize their replication in hosts. In general, these proteins appear to be multifunctional for virus replication. Viral protein R (Vpr), one of the accessory proteins, has also been reported to exhibit distinct activities, but its exact role in the viral life cycle is still unclear and controversial. However, of particular note, Vpr-mediated G2 cell cycle arrest is conserved among primate immunodeficiency viruses. Belzile et al. have characterized and analyzed in detail the punctuate structures on the DNA of host cells formed by HIV-1 Vpr (Vpr nuclear foci). They demonstrate, mainly by confocal immunofluorescence analysis, that highly mobile chromatin-associated Vpr nuclear foci are critical for induction of the G2 cell cycle arrest.
Collapse
Affiliation(s)
- Masako Nomaguchi
- Department of Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima, Japan
| | | |
Collapse
|
52
|
Ong EBB, Watanabe N, Saito A, Futamura Y, Abd El Galil KH, Koito A, Najimudin N, Osada H. Vipirinin, a coumarin-based HIV-1 Vpr inhibitor, interacts with a hydrophobic region of VPR. J Biol Chem 2011; 286:14049-56. [PMID: 21357691 PMCID: PMC3077605 DOI: 10.1074/jbc.m110.185397] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 02/27/2011] [Indexed: 11/06/2022] Open
Abstract
The human immunodeficiency virus 1 (HIV-1) viral protein R (Vpr) is an accessory protein that has been shown to have multiple roles in HIV-1 pathogenesis. By screening chemical libraries in the RIKEN Natural Products Depository, we identified a 3-phenyl coumarin-based compound that inhibited the cell cycle arrest activity of Vpr in yeast and Vpr-dependent viral infection of human macrophages. We determined its minimal pharmacophore through a structure-activity relationship study and produced more potent derivatives. We detected direct binding, and by assaying a panel of Vpr mutants, we found the hydrophobic region about residues Glu-25 and Gln-65 to be potentially involved in the binding of the inhibitor. Our findings exposed a targeting site on Vpr and delineated a convenient approach to explore other targeting sites on the protein using small molecule inhibitors as bioprobes.
Collapse
Affiliation(s)
- Eugene Boon Beng Ong
- From the Chemical Biology Core Facility, Chemical Biology Department, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- the School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia, and
| | - Nobumoto Watanabe
- From the Chemical Biology Core Facility, Chemical Biology Department, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- the School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia, and
| | - Akiko Saito
- From the Chemical Biology Core Facility, Chemical Biology Department, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Yushi Futamura
- From the Chemical Biology Core Facility, Chemical Biology Department, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Khaled Hussein Abd El Galil
- the Department of Retrovirology and Self-Defense, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Atsushi Koito
- the Department of Retrovirology and Self-Defense, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Nazalan Najimudin
- the School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia, and
| | - Hiroyuki Osada
- From the Chemical Biology Core Facility, Chemical Biology Department, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- the School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia, and
| |
Collapse
|