51
|
Langers I, Renoux V, Reschner A, Touzé A, Coursaget P, Boniver J, Koch J, Delvenne P, Jacobs N. Natural killer and dendritic cells collaborate in the immune response induced by the vaccine against uterine cervical cancer. Eur J Immunol 2014; 44:3585-95. [PMID: 25229656 DOI: 10.1002/eji.201444594] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 08/14/2014] [Accepted: 09/11/2014] [Indexed: 11/09/2022]
Abstract
Virus-like particles (VLPs) of human papillomavirus (HPV) are used as a vaccine against HPV-induced cancer, and recently we have shown that these VLPs are able to activate natural killer (NK) cells. Since NK cells collaborate with dendritic cells (DCs) to induce an immune response against viral infections and tumors, we studied the impact of this crosstalk in the context of HPV vaccination. NK cells in the presence of HPV-VLPs enhanced DC-maturation as shown by an upregulation of CD86 and HLA-DR and an increased production of IL-12p70, but not of the immunosuppressive cytokine IL-10. This activation was bidirectional. Indeed, in the presence of HPV-VLPs, DCs further activated NK cells by inducing the upregulation of cell surface activation markers (CD69 and HLA-DR). The function of NK cells was also improved as shown by an increase in IFN-γ secretion and cytotoxic activity against an HPV(+) cell line. This crosstalk between NK cells and DCs needed CD40 interaction and IL-12p70 secretion, whereas NKG2D was not implicated. Our results provide insight into how VLPs interact with innate immune cells and how NK cells and DCs play a role in the immune response induced by this vaccine agent.
Collapse
Affiliation(s)
- Inge Langers
- Cellular and Molecular Immunology, GIGA-Research, University of Liège, Liège, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Tufa DM, Chatterjee D, Low HZ, Schmidt RE, Jacobs R. TNFR2 and IL-12 coactivation enables slanDCs to support NK-cell function via membrane-bound TNF-α. Eur J Immunol 2014; 44:3717-28. [PMID: 25229755 DOI: 10.1002/eji.201444676] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 08/21/2014] [Accepted: 09/11/2014] [Indexed: 01/13/2023]
Abstract
Human blood NK cells exert strong cytotoxicity against transformed cells and produce different cytokines and chemokines with an important role in modulating immune responses. However, the nature of NK-cell function depends on NK-cell interaction with other immune cells. One type of immune cells that communicate with NK cells are 6-sulfo LacNAc DCs (slanDCs), which comprise a major subpopulation of proinflammatory human blood DCs. In this study, we investigated the molecular mechanisms by which slanDCs interact with NK cells. Our in vitro studies demonstrate that LPS-stimulated slanDCs enhance activation and function of NK cells essentially via membrane-bound TNF-α (mTNF-α). LPS stimulation upregulates expression of mTNF-α in slanDCs, and surface TNF receptor 2 (TNFR2) is upregulated on NK cells after coincubation with slanDCs. IL-12 secreted by slanDCs increases surface expression of TNFR2 in NK cells. TNFR2 signaling in NK cells leads to activation of NF-kB, a transcription factor for cytokines such as GM-CSF. GM-CSF provided by NK cells is responsible for enhancing IL-12 secretion in slanDCs. In conclusion, TNFR2 and IL-12 signaling, which support one another, enables slanDCs to enhance NK-cell function through mTNF-α, thereby regulating immune responses.
Collapse
Affiliation(s)
- Dejene M Tufa
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | | | | | | | | |
Collapse
|
53
|
Brizić I, Lenac Roviš T, Krmpotić A, Jonjić S. MCMV avoidance of recognition and control by NK cells. Semin Immunopathol 2014; 36:641-50. [DOI: 10.1007/s00281-014-0441-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 07/15/2014] [Indexed: 01/27/2023]
|
54
|
Jost NH, Abel S, Hutzler M, Sparwasser T, Zimmermann A, Roers A, Müller W, Klopfleisch R, Hengel H, Westendorf AM, Buer J, Hansen W. Regulatory T cells and T‐cell‐derived IL‐10 interfere with effective anti‐cytomegalovirus immune response. Immunol Cell Biol 2014; 92:860-71. [DOI: 10.1038/icb.2014.62] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Nils H Jost
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg‐EssenEssenGermany
| | - Simone Abel
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg‐EssenEssenGermany
| | - Marina Hutzler
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg‐EssenEssenGermany
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCOREHannoverGermany
| | | | - Axel Roers
- Institute for Immunology, TU DresdenDresdenGermany
| | - Werner Müller
- Faculty of Life Sciences, University of ManchesterManchesterUK
| | | | - Hartmut Hengel
- Institute for Virology, University Medical Center Freiburg, Albert‐Ludwigs UniversityFreiburgGermany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg‐EssenEssenGermany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg‐EssenEssenGermany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg‐EssenEssenGermany
- Institute for Virology, University Medical Center Freiburg, Albert‐Ludwigs UniversityFreiburgGermany
| |
Collapse
|
55
|
Alexandre YO, Cocita CD, Ghilas S, Dalod M. Deciphering the role of DC subsets in MCMV infection to better understand immune protection against viral infections. Front Microbiol 2014; 5:378. [PMID: 25120535 PMCID: PMC4114203 DOI: 10.3389/fmicb.2014.00378] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/04/2014] [Indexed: 12/22/2022] Open
Abstract
Infection of mice with murine cytomegalovirus (MCMV) recapitulates many physiopathological characteristics of human CMV infection and enables studying the interactions between a virus and its natural host. Dendritic cells (DC) are mononuclear phagocytes linking innate and adaptive immunity which are both necessary for MCMV control. DC are critical for the induction of cellular immunity because they are uniquely efficient for the activation of naïve T cells during their first encounter with a pathogen. DC are equipped with a variety of innate immune recognition receptors (I2R2) allowing them to detect pathogens or infections and to engulf molecules, microorganisms or cellular debris. The combinatorial engagement of I2R2 during infections controls DC maturation and shapes their response in terms of cytokine production, activation of natural killer (NK) cells and functional polarization of T cells. Several DC subsets exist which express different arrays of I2R2 and are specialized in distinct functions. The study of MCMV infection helped deciphering the physiological roles of DC subsets and their molecular regulation. It allowed the identification and first in vivo studies of mouse plasmacytoid DC which produce high level of interferons-α/β early after infection. Despite its ability to infect DC and dampen their functions, MCMV induces very robust, efficient and long-lasting CD8 T cell responses. Their priming may rely on the unique ability of uninfected XCR1+ DC to cross-present engulfed viral antigens and thus to counter MCMV interference with antigen presentation. A balance appears to have been reached during co-evolution, allowing controlled replication of the virus for horizontal spread without pathological consequences for the immunocompetent host. We will discuss the role of the interplay between the virus and DC in setting this balance, and how advancing this knowledge further could help develop better vaccines against other intracellular infectious agents.
Collapse
Affiliation(s)
- Yannick O Alexandre
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, UM2 Marseille, France ; Institut National de la Santé et de la Recherche Médicale, U1104 Marseille, France ; Centre National de la Recherche Scientifique, UMR7280 Marseille, France
| | - Clément D Cocita
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, UM2 Marseille, France ; Institut National de la Santé et de la Recherche Médicale, U1104 Marseille, France ; Centre National de la Recherche Scientifique, UMR7280 Marseille, France
| | - Sonia Ghilas
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, UM2 Marseille, France ; Institut National de la Santé et de la Recherche Médicale, U1104 Marseille, France ; Centre National de la Recherche Scientifique, UMR7280 Marseille, France
| | - Marc Dalod
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, UM2 Marseille, France ; Institut National de la Santé et de la Recherche Médicale, U1104 Marseille, France ; Centre National de la Recherche Scientifique, UMR7280 Marseille, France
| |
Collapse
|
56
|
Recent approaches and strategies in the generation of antihuman cytomegalovirus vaccines. Methods Mol Biol 2014; 1119:311-48. [PMID: 24639230 DOI: 10.1007/978-1-62703-788-4_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The development of prophylactic and to lesser extent therapeutic vaccines for the prevention of disease associated with human cytomegalovirus (HCMV) infections has received considerable attention from biomedical researchers and pharmaceutical companies over the previous 15 years, even though attempts to produce such vaccines have been described in the literature for over 40 years. Studies of the natural history of congenital HCMV infection and infection in allograft recipients have suggested that prophylaxis of disease associated with HCMV infection could be possible, particularly in hosts at risk for more severe disease secondary to the lack of preexisting immunity. Provided a substantial understanding of immune response to HCMV together with several animal models that faithfully recapitulate aspects of human infection and immunity, investigators seem well positioned to design and test candidate vaccines. Yet more recent studies of the role of a maternal immunity in the natural history of congenital HCMV infection, including the recognition that reinfection of previously immune women by genetically distinct strains of HCMV occur in populations with a high seroprevalence, have raised several questions about the nature of protective immunity in maternal populations. This finding coupled with observations that have documented a significant incidence of damaging congenital infections in offspring of women with immunity to HCMV prior to conception has suggested that vaccine development based on conventional paradigms of adaptive immunity to viral infections may be of limited value in the prevention of damaging congenital HCMV infections. Perhaps a more achievable goal will be prophylactic vaccines to modify HCMV associated disease in allograft transplant recipients. Although recent descriptions of the results from vaccine trials have been heralded as evidence of an emerging success in the quest for a HCMV vaccine, careful analyses of these studies have also revealed that major hurdles remain to be addressed by current strategies.
Collapse
|
57
|
Eberhardt MK, Barry PA. Pathogen manipulation of cIL-10 signaling pathways: opportunities for vaccine development? Curr Top Microbiol Immunol 2014; 380:93-128. [PMID: 25004815 DOI: 10.1007/978-3-662-43492-5_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Interleukin-10 (IL-10) is a tightly regulated, pleiotropic cytokine that has profound effects on all facets of the immune system, eliciting cell-type-specific responses within cells expressing the IL-10 receptor (IL-10R). It is considered a master immune regulator, and imbalances in IL-10 expression, resulting from either inherent or infectious etiologies, have far reaching clinical ramifications. Regarding infectious diseases, there has been accumulating recognition that many pathogens, particularly those that establish lifelong persistence, share a commonality of their natural histories: manipulation of IL-10-mediated signaling pathways. Multiple viral, bacterial, protozoal, and fungal pathogens appear to have evolved mechanisms to co-opt normal immune functions, including those involving IL-10R-mediated signaling, and immune effector pathways away from immune-mediated protection toward environments of immune evasion, suppression, and tolerance. As a result, pathogens can persist for the life of the infected host, many of whom possess otherwise competent immune systems. Because of pathogenic avoidance of immune clearance, persistent infections can exact incalculable physical and financial costs, and represent some of the most vexing challenges for improvements in human health. Enormous benefits could be gained by the development of efficient prevention and/or therapeutic strategies that block primary infection, or clear the infection. There are now precedents that indicate that modalities focusing on pathogen-mediated manipulation of IL-10 signaling may have clinical benefit.
Collapse
Affiliation(s)
- Meghan K Eberhardt
- Center for Comparative Medicine, University of California, Davis, CA, 95616, USA
| | | |
Collapse
|
58
|
Thom JT, Walton SM, Torti N, Oxenius A. Salivary gland resident APCs are Flt3L- and CCR2-independent macrophage-like cells incapable of cross-presentation. Eur J Immunol 2013; 44:706-14. [DOI: 10.1002/eji.201343992] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/11/2013] [Accepted: 11/22/2013] [Indexed: 12/23/2022]
Affiliation(s)
- Jenny T. Thom
- Institute of Microbiology; ETH Zurich; Zurich Switzerland
| | | | - Nicole Torti
- Institute of Microbiology; ETH Zurich; Zurich Switzerland
| | | |
Collapse
|
59
|
Richter K, Perriard G, Behrendt R, Schwendener RA, Sexl V, Dunn R, Kamanaka M, Flavell RA, Roers A, Oxenius A. Macrophage and T cell produced IL-10 promotes viral chronicity. PLoS Pathog 2013; 9:e1003735. [PMID: 24244162 PMCID: PMC3820745 DOI: 10.1371/journal.ppat.1003735] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 09/13/2013] [Indexed: 01/12/2023] Open
Abstract
Chronic viral infections lead to CD8+ T cell exhaustion, characterized by impaired cytokine secretion. Presence of the immune-regulatory cytokine IL-10 promotes chronicity of Lymphocytic Choriomeningitis Virus (LCMV) Clone 13 infection, while absence of IL-10/IL-10R signaling early during infection results in viral clearance and higher percentages and numbers of antiviral, cytokine producing T cells. IL-10 is produced by several cell types during LCMV infection but it is currently unclear which cellular sources are responsible for induction of viral chronicity. Here, we demonstrate that although dendritic cells produce IL-10 and overall IL-10 mRNA levels decrease significantly in absence of CD11c+ cells, absence of IL-10 produced by CD11c+ cells failed to improve the LCMV-specific T cell response and control of LCMV infection. Similarly, NK cell specific IL-10 deficiency had no positive impact on the LCMV-specific T cell response or viral control, even though high percentages of NK cells produced IL-10 at early time points after infection. Interestingly, we found markedly improved T cell responses and clearance of normally chronic LCMV Clone 13 infection when either myeloid cells or T cells lacked IL-10 production and mice depleted of monocytes/macrophages or CD4+ T cells exhibited reduced overall levels of IL-10 mRNA. These data suggest that the decision whether LCMV infection becomes chronic or can be cleared critically depends on early CD4+ T cell and monocyte/macrophage produced IL-10. Chronic viral infections like Hepatitis B and C Virus (HBV and HCV) and Human Immunodeficiency Virus (HIV) in humans affect more than 500 million people worldwide. While a robust T cell response is a hallmark of many acute infections one hurdle inhibiting the clearance of chronic viral infections is that the immune-suppressive cytokine IL-10 modulates the virus-host balance towards induction of T cell dysfunction. IL-10 is produced by several cell types during chronic Lymphocytic Choriomeningitis Virus (LCMV) infection but it is currently unclear which cellular sources are responsible to promote viral chronicity. Here, we demonstrate that T cell responses improved markedly, and that normally chronic LCMV Clone 13 infection could be cleared when either myeloid cells or T cells lacked IL-10 production. Furthermore, mice depleted of monocytes/macrophages or CD4+ T cells exhibited reduced overall levels of IL-10 mRNA. These data suggest that the decision whether LCMV infection becomes chronic or can be cleared critically depends on CD4+ T cell and monocyte/macrophage produced IL-10 early during the establishment of viral chronicity.
Collapse
Affiliation(s)
| | | | - Rayk Behrendt
- Institute of Immunology, Technical University of Dresden, Dresden, Germany
| | - Reto A. Schwendener
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna,Vienna, Austria
| | - Robert Dunn
- Biogen Idec, San Diego, California, United States of America
| | - Masahito Kamanaka
- Department of Immunobiology and Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Richard A. Flavell
- Department of Immunobiology and Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Axel Roers
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
60
|
Vacchelli E, Vitale I, Eggermont A, Fridman WH, Fučíková J, Cremer I, Galon J, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2013; 2:e25771. [PMID: 24286020 PMCID: PMC3841205 DOI: 10.4161/onci.25771] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 12/26/2022] Open
Abstract
Dendritic cells (DCs) occupy a privileged position at the interface between innate and adaptive immunity, orchestrating a large panel of responses to both physiological and pathological cues. In particular, whereas the presentation of antigens by immature DCs generally results in the development of immunological tolerance, mature DCs are capable of priming robust, and hence therapeutically relevant, adaptive immune responses. In line with this notion, functional defects in the DC compartment have been shown to etiologically contribute to pathological conditions including (but perhaps not limited to) infectious diseases, allergic and autoimmune disorders, graft rejection and cancer. Thus, the possibility of harnessing the elevated immunological potential of DCs for anticancer therapy has attracted considerable interest from both researchers and clinicians over the last decade. Alongside, several methods have been developed not only to isolate DCs from cancer patients, expand them, load them with tumor-associated antigens and hence generate highly immunogenic clinical grade infusion products, but also to directly target DCs in vivo. This intense experimental effort has culminated in 2010 with the approval by the US FDA of a DC-based preparation (sipuleucel-T, Provenge®) for the treatment of asymptomatic or minimally symptomatic metastatic castration-refractory prostate cancer. As an update to the latest Trial Watch dealing with this exciting field of research (October 2012), here we summarize recent advances in DC-based anticancer regimens, covering both high-impact studies that have been published during the last 13 mo and clinical trials that have been launched in the same period to assess the antineoplastic potential of this variant of cellular immunotherapy.
Collapse
Affiliation(s)
- Erika Vacchelli
- Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Golden-Mason L, Rosen HR. Natural killer cells: multifaceted players with key roles in hepatitis C immunity. Immunol Rev 2013; 255:68-81. [PMID: 23947348 PMCID: PMC3765000 DOI: 10.1111/imr.12090] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/08/2013] [Accepted: 05/14/2013] [Indexed: 12/11/2022]
Abstract
Natural killer cells (NKs) are involved in every stage of hepatitis C viral (HCV) infection, from protection against HCV acquisition and resolution in the acute phase to treatment-induced clearance. In addition to their direct antiviral actions, NKs are involved in the induction and priming of appropriate downstream T-cell responses. In the setting of chronic HCV, overall NK cell levels are decreased, subset distribution is altered, and changes in NK receptor (NKR) expression have been demonstrated, although the contribution of individual NKRs to viral clearance or persistence remains to be clarified. Enhanced NK cell cytotoxicity accompanied by insufficient interferon-γ production may promote liver damage in the setting of chronic infection. Treatment-induced clearance is associated with activation of NK cells, and it will be of interest to monitor NK cell responses to triple therapy. Activated NK cells also have anti-fibrotic properties, and the same hepatic NK cell populations that are actively involved in control of HCV may also be involved in control of HCV-associated liver damage. We still have much to learn, in particular: how do liver-derived NKs influence the outcome of HCV infection? Do NK receptors recognize HCV-specific components? And, are HCV-specific memory NK populations generated?
Collapse
Affiliation(s)
- Lucy Golden-Mason
- Division of Gastroenterology and Hepatology, Hepatitis C Center, Department of Medicine, University of Colorado Denver (UCD), Aurora, CO, USA
| | | |
Collapse
|
62
|
Jeitziner SM, Walton SM, Torti N, Oxenius A. Adoptive transfer of cytomegalovirus-specific effector CD4+ T cells provides antiviral protection from murine CMV infection. Eur J Immunol 2013; 43:2886-95. [PMID: 23921569 DOI: 10.1002/eji.201343690] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/25/2013] [Accepted: 08/01/2013] [Indexed: 01/06/2023]
Abstract
Cytomegalovirus (CMV) infects a majority of the human population and establishes a life-long persistence. CMV infection is usually asymptomatic but the virus carries pathogenic potential and causes severe disease in immunocompromised individuals. T-cell-mediated immunity plays an essential role in control of CMV infection and adoptive transfer of CMV-specific CD8(+) T cells restores viral immunity in immunosuppressed patients but a role for CD4(+) T cells remains elusive. Here, we analyzed in adoptive transfer studies the features and antiviral functions of virus-specific CD4(+) T cells during primary murine CMV (MCMV) infection. MCMV-specific CD4(+) T cells expanded upon MCMV infection and displayed an effector phenotype and function. Adoptive transfer of in vivo activated MCMV-specific CD4(+) T cells to immune-compromised mice was protective during pathogenic MCMV infection and IFN-γ was a crucial mediator of this protective capacity. Moreover, co-transfer of low doses of both MCMV-specific CD4(+) T cells and CD8(+) T cells synergized in control of lytic viral replication in immune-compromised mice. Our data reveal a pivotal antiviral role for virus-specific CD4(+) T cells in protection from pathogenic CMV infection and provide evidence for their antiviral therapeutic potential.
Collapse
|
63
|
The immunobiology of prostanoid receptor signaling in connecting innate and adaptive immunity. BIOMED RESEARCH INTERNATIONAL 2013; 2013:683405. [PMID: 24024207 PMCID: PMC3762073 DOI: 10.1155/2013/683405] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/08/2013] [Accepted: 07/21/2013] [Indexed: 12/20/2022]
Abstract
Prostanoids, including prostaglandins (PGs), thromboxanes (TXs), and prostacyclins, are synthesized from arachidonic acid (AA) by the action of Cyclooxygenase (COX) enzymes. They are bioactive inflammatory lipid mediators that play a key role in immunity and immunopathology. Prostanoids exert their effects on immune and inflammatory cells by binding to membrane receptors that are widely expressed throughout the immune system and act at multiple levels in innate and adaptive immunity. The immunoregulatory role of prostanoids results from their ability to regulate cell-cell interaction, antigen presentation, cytokine production, cytokine receptor expression, differentiation, survival, apoptosis, cell-surface molecule levels, and cell migration in both autocrine and paracrine manners. By acting on immune cells of both systems, prostanoids and their receptors have great impact on immune regulation and play a pivotal role in connecting innate and adaptive immunity. This paper focuses on the immunobiology of prostanoid receptor signaling because of their potential clinical relevance for various disorders including inflammation, autoimmunity, and tumorigenesis. We mainly discuss the effects of major COX metabolites, PGD2, PGE2, their signaling during dendritic cell (DC)-natural killer (NK) reciprocal crosstalk, DC-T cell interaction, and subsequent consequences on determining crucial aspects of innate and adaptive immunity in normal and pathological settings.
Collapse
|
64
|
Vaccination against a virus-encoded cytokine significantly restricts viral challenge. J Virol 2013; 87:11323-31. [PMID: 23946461 DOI: 10.1128/jvi.01925-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Identification of immune correlates of protection for viral vaccines is complicated by multiple factors, but there is general consensus on the importance of antibodies that neutralize viral attachment to susceptible cells. Development of new viral vaccines has mostly followed this neutralizing antibody paradigm, but as a recent clinical trial of human cytomegalovirus (HCMV) vaccination demonstrated, this singular approach can yield limited protective efficacy. Since HCMV devotes >50% of its coding capacity to proteins that modulate host immunity, it is hypothesized that expansion of vaccine targets to include this part of the viral proteome will disrupt viral natural history. HCMV and rhesus cytomegalovirus (RhCMV) each encode an ortholog to the cellular interleukin-10 (cIL-10) cytokine: cmvIL-10 and rhcmvIL10, respectively. Despite extensive sequence divergence from their host's cIL-10, each viral IL-10 retains nearly identical functionality to cIL-10. Uninfected rhesus macaques were immunized with engineered, nonfunctional rhcmvIL-10 variants, which were constructed by site-directed mutagenesis to abolish binding to the cIL-10 receptor. Vaccinees developed antibodies that neutralized rhcmvIL-10 function with no cross-neutralization of cIL-10. Following subcutaneous RhCMV challenge, the vaccinees exhibited both reduced RhCMV replication locally at the inoculation site and systemically and significantly reduced RhCMV shedding in bodily fluids compared to controls. Attenuation of RhCMV infection by rhcmvIL-10 vaccination argues that neutralization of viral immunomodulation may be a new vaccine paradigm for HCMV by expanding potential vaccine targets.
Collapse
|
65
|
Ertelt JM, Buyukbasaran EZ, Jiang TT, Rowe JH, Xin L, Way SS. B7-1/B7-2 blockade overrides the activation of protective CD8 T cells stimulated in the absence of Foxp3+ regulatory T cells. J Leukoc Biol 2013; 94:367-76. [PMID: 23744647 DOI: 10.1189/jlb.0313118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although T cell activation has been classically described to require distinct, positive stimulation signals that include B7-1 (CD80) and B7-2 (CD86) costimulation, overriding suppression signals that avert immune-mediated host injury are equally important. How these opposing stimulation and suppression signals work together remains incompletely defined. Our recent studies demonstrate that CD8 Teff activation in response to cognate peptide stimulation is actively suppressed by the Foxp3(+) subset of CD4 cells, called Tregs. Here, we show that the elimination of Treg suppression does not bypass the requirement for positive B7-1/B7-2 costimulation. The expansion, IFN-γ cytokine production, cytolytic, and protective features of antigen-specific CD8 T cells stimulated with purified cognate peptide in Treg-ablated mice were each neutralized effectively by CTLA-4-Ig that blocks B7-1/B7-2. In turn, given the efficiency whereby CTLA-4-Ig overrides the effects of Treg ablation, the role of Foxp3(+) cell-intrinsic CTLA-4 in mitigating CD8 Teff activation was also investigated. With the use of mixed chimera mice that contain CTLA-4-deficient Tregs exclusively after the ablation of WT Foxp3(+) cells, a critical role for Treg CTLA-4 in suppressing the expansion, cytokine production, cytotoxicity, and protective features of peptide-stimulated CD8 T cells is revealed. Thus, the activation of protective CD8 T cells requires positive B7-1/B7-2 costimulation even when suppression by Tregs and in particular, Treg-intrinsic CTLA-4 is circumvented.
Collapse
Affiliation(s)
- James M Ertelt
- Division of Infectious Diseases, 3333 Burnet Ave., MLC 7017, Cincinnati, OH 45229, USA.
| | | | | | | | | | | |
Collapse
|
66
|
Walton S, Mandaric S, Oxenius A. CD4 T cell responses in latent and chronic viral infections. Front Immunol 2013; 4:105. [PMID: 23717308 PMCID: PMC3651995 DOI: 10.3389/fimmu.2013.00105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/22/2013] [Indexed: 12/24/2022] Open
Abstract
The spectrum of tasks which is fulfilled by CD4 T cells in the setting of viral infections is large, ranging from support of CD8 T cells and humoral immunity to exertion of direct antiviral effector functions. While our knowledge about the differentiation pathways, plasticity, and memory of CD4 T cell responses upon acute infections or immunizations has significantly increased during the past years, much less is still known about CD4 T cell differentiation and their beneficial or pathological functions during persistent viral infections. In this review we summarize current knowledge about the differentiation, direct or indirect antiviral effector functions, and the regulation of virus-specific CD4 T cells in the setting of persistent latent or active chronic viral infections with a particular emphasis on herpes virus infections for the former and chronic lymphocytic choriomeningitis virus infection for the latter.
Collapse
Affiliation(s)
- Senta Walton
- Department of Microbiology and Immunology, School of Pathology and Laboratory Medicine, University of Western Australia Nedlands, WA, Australia
| | | | | |
Collapse
|
67
|
Batalla EI, Pino Martínez AM, Poncini CV, Duffy T, Schijman AG, González Cappa SM, Alba Soto CD. Impairment in natural killer cells editing of immature dendritic cells by infection with a virulent Trypanosoma cruzi population. J Innate Immun 2013; 5:494-504. [PMID: 23689360 DOI: 10.1159/000350242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 02/26/2013] [Indexed: 11/19/2022] Open
Abstract
Early interactions between natural killer (NK) and dendritic cells (DC) shape the immune response at the frontier of innate and adaptive immunity. Activated NK cells participate in maturation or deletion of DCs that remain immature. We previously demonstrated that infection with a high virulence (HV) population of the protozoan parasite Trypanosoma cruzi downmodulates DC maturation and T-cell activation capacity. Here, we evaluated the role of NK cells in regulating the maturation level of DCs. Shortly after infection with HV T. cruzi, DCs in poor maturation status begin to accumulate in mouse spleen. Although infection induces NK cell cytotoxicity and cytokine production, NK cells from mice infected with HV T. cruzi exhibit reduced ability to lyse and fail to induce maturation of bone marrow-derived immature DCs (iDCs). NK-mediated lysis of iDCs is restored by in vitro blockade of the IL-10 receptor during NK-DC interaction or when NK cells are obtained from T. cruzi-infected IL-10 knockout mice. These results suggest that infection with a virulent T. cruzi strain alters NK cell-mediated regulation of the adaptive immune response induced by DCs. This regulatory circuit where IL-10 appears to participate might lead to parasite persistence but can also limit the induction of a vigorous tissue-damaging T-cell response.
Collapse
Affiliation(s)
- Estela I Batalla
- Facultad de Medicina, Instituto de Investigaciones en Microbiología y Parasitología Médica-IMPAM, UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
68
|
Pembroke TPI, Gallimore AM, Godkin A. Rapid innate control of antigen abrogates adaptive immunity. Immunology 2013. [PMID: 23198899 DOI: 10.1111/imm.12048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Natural killer (NK) cells provide an immediate first line of defence against viral infections. Memory responses, maintained by CD4(+) T cells, require exposure to viral antigen and provide long-term protection against future infections. It is known that NK cells can promote the development of the adaptive response through cytokine production and cross-talk with antigen-presenting cells. In this paper however, we summarize a series of recent publications, in mouse models and for the first time in man, with the unifying message that rapid viral antigen control by the innate immune system limits antigen exposure to CD4(+) cells thereby abrogating the development of a memory response. We discuss the significant implication of these studies on viral treatment strategies and immunization models.
Collapse
Affiliation(s)
- Thomas P I Pembroke
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK.
| | | | | |
Collapse
|
69
|
Miletić A, Krmpotić A, Jonjić S. The evolutionary arms race between NK cells and viruses: who gets the short end of the stick? Eur J Immunol 2013; 43:867-77. [PMID: 23440773 DOI: 10.1002/eji.201243101] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 02/11/2013] [Accepted: 02/21/2013] [Indexed: 01/17/2023]
Abstract
NK cells are innate lymphocytes that play a key role in the control of various viral infections. Recent studies indicate that NK cells may acquire some features of adaptive immune cells, including the formation of long-lived memory cells. A large and growing body of data indicates that NK cells regulate the adaptive immune response as well. The function and the activation status of NK cells are tightly regulated by signals induced by a broad range of inhibitory and activating cell surface receptors and cytokines released by other immune cells. Here, we review the function of mouse NK-cell receptors involved in virus control and in the regulation of the adaptive immune response. In addition, we discuss viral strategies used to evade NK-cell-mediated control during infection. Finally, the role of several activating Ly49 receptors specific for mouse cytomegalovirus (MCMV), as well as some controversial issues in the field, will be discussed.
Collapse
Affiliation(s)
- Antonija Miletić
- Department of Histology and Embryology, Faculty of Medicine, Rijeka, Croatia
| | | | | |
Collapse
|
70
|
Tan SY, Wu PB, Zhang G, Luo HS, Ye HL. Association between interleukin-10-819 promoter polymorphism and susceptibility to Crohn's disease: A meta-analysis. Shijie Huaren Xiaohua Zazhi 2012; 20:3603-3608. [DOI: 10.11569/wcjd.v20.i35.3603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the association between interleukin-10 (IL-10) 819T/C polymorphism and Crohn's disease susceptibility.
METHODS: A systematic search of electronic databases such as CBM, CNKI, PubMed, Elsevier and EMbase was performed to retrieve relevant studies. Pooled odds ratios (ORs) with 95% confidence intervals (95% CI) were calculated using the RevMan 5.1.4 software, and publication bias was tested by Egger's regression test and Begg's test.
RESULTS: A total of 11 studies involving 1670 patients with Crohn's disease and 3312 healthy controls were identified. The results of meta-analyses showed no significant association between IL-10 819T/C polymorphism and susceptibility to Crohn's disease (for T/T vs C/C: OR = 0.90, 95% CI: 0.70 to 1.17; T/C vs C/C: OR = 0.84, 95% CI: 0.56 to 1.27; for dominant inheritance model: OR = 0.97, 95% CI 0.86 to 1.10; for recessive inheritance model: OR = 0.90, 95% CI: 0.71 to 1.14).
CONCLUSION: Current evidence strongly suggests that there is no significant association between IL-10 819T/C polymorphism and susceptibility to Crohn's disease.
Collapse
|