51
|
HIV Rev Assembly on the Rev Response Element (RRE): A Structural Perspective. Viruses 2015; 7:3053-75. [PMID: 26075509 PMCID: PMC4488727 DOI: 10.3390/v7062760] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/05/2015] [Indexed: 01/18/2023] Open
Abstract
HIV-1 Rev is an ~13 kD accessory protein expressed during the early stage of virus replication. After translation, Rev enters the nucleus and binds the Rev response element (RRE), a ~350 nucleotide, highly structured element embedded in the env gene in unspliced and singly spliced viral RNA transcripts. Rev-RNA assemblies subsequently recruit Crm1 and other cellular proteins to form larger complexes that are exported from the nucleus. Once in the cytoplasm, the complexes dissociate and unspliced and singly-spliced viral RNAs are packaged into nascent virions or translated into viral structural proteins and enzymes, respectively. Rev binding to the RRE is a complex process, as multiple copies of the protein assemble on the RNA in a coordinated fashion via a series of Rev-Rev and Rev-RNA interactions. Our understanding of the nature of these interactions has been greatly advanced by recent studies using X-ray crystallography, small angle X-ray scattering (SAXS) and single particle electron microscopy as well as biochemical and genetic methodologies. These advances are discussed in detail in this review, along with perspectives on development of antiviral therapies targeting the HIV-1 RRE.
Collapse
|
52
|
Model-Free RNA Sequence and Structure Alignment Informed by SHAPE Probing Reveals a Conserved Alternate Secondary Structure for 16S rRNA. PLoS Comput Biol 2015; 11:e1004126. [PMID: 25992778 PMCID: PMC4438973 DOI: 10.1371/journal.pcbi.1004126] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 01/12/2015] [Indexed: 12/13/2022] Open
Abstract
Discovery and characterization of functional RNA structures remains challenging due to deficiencies in de novo secondary structure modeling. Here we describe a dynamic programming approach for model-free sequence comparison that incorporates high-throughput chemical probing data. Based on SHAPE probing data alone, ribosomal RNAs (rRNAs) from three diverse organisms--the eubacteria E. coli and C. difficile and the archeon H. volcanii--could be aligned with accuracies comparable to alignments based on actual sequence identity. When both base sequence identity and chemical probing reactivities were considered together, accuracies improved further. Derived sequence alignments and chemical probing data from protein-free RNAs were then used as pseudo-free energy constraints to model consensus secondary structures for the 16S and 23S rRNAs. There are critical differences between these experimentally-informed models and currently accepted models, including in the functionally important neck and decoding regions of the 16S rRNA. We infer that the 16S rRNA has evolved to undergo large-scale changes in base pairing as part of ribosome function. As high-quality RNA probing data become widely available, structurally-informed sequence alignment will become broadly useful for de novo motif and function discovery.
Collapse
|
53
|
Lavender CA, Gorelick RJ, Weeks KM. Structure-Based Alignment and Consensus Secondary Structures for Three HIV-Related RNA Genomes. PLoS Comput Biol 2015; 11:e1004230. [PMID: 25992893 PMCID: PMC4439019 DOI: 10.1371/journal.pcbi.1004230] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 03/08/2015] [Indexed: 11/30/2022] Open
Abstract
HIV and related primate lentiviruses possess single-stranded RNA genomes. Multiple regions of these genomes participate in critical steps in the viral replication cycle, and the functions of many RNA elements are dependent on the formation of defined structures. The structures of these elements are still not fully understood, and additional functional elements likely exist that have not been identified. In this work, we compared three full-length HIV-related viral genomes: HIV-1NL4-3, SIVcpz, and SIVmac (the latter two strains are progenitors for all HIV-1 and HIV-2 strains, respectively). Model-free RNA structure comparisons were performed using whole-genome structure information experimentally derived from nucleotide-resolution SHAPE reactivities. Consensus secondary structures were constructed for strongly correlated regions by taking into account both SHAPE probing structural data and nucleotide covariation information from structure-based alignments. In these consensus models, all known functional RNA elements were recapitulated with high accuracy. In addition, we identified multiple previously unannotated structural elements in the HIV-1 genome likely to function in translation, splicing and other replication cycle processes; these are compelling targets for future functional analyses. The structure-informed alignment strategy developed here will be broadly useful for efficient RNA motif discovery.
Collapse
Affiliation(s)
- Christopher A. Lavender
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
54
|
Nicholson BL, White KA. Exploring the architecture of viral RNA genomes. Curr Opin Virol 2015; 12:66-74. [PMID: 25884487 DOI: 10.1016/j.coviro.2015.03.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 01/21/2023]
Abstract
The genomes of RNA viruses contain local structural elements and long-range interactions that control various steps in virus replication. While many individual RNA elements have been characterized, it remains less clear how the structure and activity of such elements are integrated and regulated within the complex context of complete viral genomes. Recent technical advances, particularly the development of high-throughput solution structure mapping methods, have made secondary structural analysis of entire viral RNA genomes feasible. As a consequence, whole-genome structural models have been deduced for a number of plus-strand RNA viruses and retroviruses and these structures have provided intriguing functional and evolutionary insights into global genome architecture.
Collapse
Affiliation(s)
- Beth L Nicholson
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - K Andrew White
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
55
|
Mueller N, Berkhout B, Das AT. HIV-1 splicing is controlled by local RNA structure and binding of splicing regulatory proteins at the major 5' splice site. J Gen Virol 2015; 96:1906-17. [PMID: 25779589 DOI: 10.1099/vir.0.000122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The 5' leader region of the human immunodeficiency virus 1 (HIV-1) RNA genome contains the major 5' splice site (ss) that is used in the production of the many spliced viral RNAs. This splice-donor (SD) region can fold into a stable stem-loop structure and the thermodynamic stability of this RNA hairpin influences splicing efficiency. In addition, splicing may be modulated by binding of splicing regulatory (SR) proteins, in particular SF2/ASF (SRSF1), SC35 (SRSF2), SRp40 (SRSF5) and SRp55 (SRSF6), to sequence elements in the SD region. The role of RNA structure and SR protein binding in splicing control was previously studied by functional analysis of mutant SD sequences. The interpretation of these studies was complicated by the fact that most mutations simultaneously affect both structure and sequence elements. We therefore tried to disentangle the contribution of these two variables by designing more precise SD region mutants with a single effect on either the sequence or the structure. The current analysis indicates that HIV-1 splicing at the major 5'ss is modulated by both the stability of the local RNA structure and the binding of splicing regulatory proteins.
Collapse
Affiliation(s)
- Nancy Mueller
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
56
|
Telwatte S, Hearps AC, Johnson A, Latham CF, Moore K, Agius P, Tachedjian M, Sonza S, Sluis-Cremer N, Harrigan PR, Tachedjian G. Silent mutations at codons 65 and 66 in reverse transcriptase alleviate indel formation and restore fitness in subtype B HIV-1 containing D67N and K70R drug resistance mutations. Nucleic Acids Res 2015; 43:3256-71. [PMID: 25765644 PMCID: PMC4381058 DOI: 10.1093/nar/gkv128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/06/2015] [Indexed: 01/03/2023] Open
Abstract
Resistance to combined antiretroviral therapy (cART) in HIV-1-infected individuals is typically due to nonsynonymous mutations that change the protein sequence; however, the selection of synonymous or ‘silent’ mutations in the HIV-1 genome with cART has been reported. These silent K65K and K66K mutations in the HIV-1 reverse transcriptase (RT) occur in over 35% of drug-experienced individuals and are highly associated with the thymidine analog mutations D67N and K70R, which confer decreased susceptibility to most nucleoside and nucleotide RT inhibitors. However, the basis for selection of these silent mutations under selective drug pressure is unknown. Using Illumina next-generation sequencing, we demonstrate that the D67N/K70R substitutions in HIV-1 RT increase indel frequency by 100-fold at RT codons 65–67, consequently impairing viral fitness. Introduction of either K65K or K66K into HIV-1 containing D67N/K70R reversed the error-prone DNA synthesis at codons 65–67 in RT and improved viral replication fitness, but did not impact RT inhibitor drug susceptibility. These data provide new mechanistic insights into the role of silent mutations selected during antiretroviral therapy and have broader implications for the relevance of silent mutations in the evolution and fitness of RNA viruses.
Collapse
Affiliation(s)
- Sushama Telwatte
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Anna C Hearps
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Adam Johnson
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Catherine F Latham
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Katie Moore
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Paul Agius
- Centre for Population Health, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Mary Tachedjian
- CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Secondo Sonza
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicolas Sluis-Cremer
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - P Richard Harrigan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z1Y6, Canada
| | - Gilda Tachedjian
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia Department of Infectious Diseases, Monash University, Melbourne, Victoria 3004, Australia Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
57
|
Retroviral vectors elevate coexpressed protein levels in trans through cap-dependent translation. Proc Natl Acad Sci U S A 2015; 112:3505-10. [PMID: 25737543 DOI: 10.1073/pnas.1420477112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Retroviruses cause immunodeficiency and cancer but also are used as vectors for the expression of heterologous genes. Nevertheless, optimal translation of introduced genes often is not achieved. Here we show that transfection into mammalian cells of lentiviral or gammaretroviral vectors, including those with specific shRNAs, increased expression of a cotransfected gene relative to standard plasmid vectors. Levels of most endogenous cellular proteins were unchanged. Transfer of lentiviral vector sequences into a standard plasmid conferred the ability to give increased expression of cotransfected genes (superinduction). Superinduction by the retroviral vector was not dependent on the cell type or species, the type of reporter gene, or the method of transfection. No differences were detected in the IFN, unfolded protein, or stress responses in the presence of retroviral vectors. RT-PCRs revealed that RNA levels of cotransfected genes were unchanged during superinduction, yet Western blotting, pulse labeling, and the use of bicistronic vectors showed increased cap-dependent translation of cointroduced genes. Expression of the mammalian target of rapamycin (mTOR) kinase target 4E-BP1, but not the mTOR inhibitor Torin 1, preferentially inhibited superinduction relative to basal protein expression. Furthermore, transcription of lentiviral vector sequences from a doxycycline-inducible promoter eliminated superinduction, consistent with a DNA-triggered event. Thus, retroviral DNA increased translation of cointroduced genes in trans by an mTOR-independent signaling mechanism. Our experiments have broad applications for the design of retroviral vectors for transfections, DNA vaccines, and gene therapy.
Collapse
|
58
|
A critical analysis of the cynomolgus macaque, Macaca fascicularis, as a model to test HIV-1/SIV vaccine efficacy. Vaccine 2014; 33:3073-83. [PMID: 25510387 DOI: 10.1016/j.vaccine.2014.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/26/2014] [Accepted: 12/03/2014] [Indexed: 02/07/2023]
Abstract
The use of a number of non-rhesus macaque species, but especially cynomolgus macaques as a model for HIV-1 vaccine development has increased in recent years. Cynomolgus macaques have been used in the United Kingdom, Europe, Canada and Australia as a model for HIV vaccine development for many years. Unlike rhesus macaques, cynomolgus macaques infected with SIV show a pattern of disease pathogenesis that more closely resembles that of human HIV-1 infection, exhibiting lower peak and set-point viral loads and slower progression to disease with more typical AIDS defining illnesses. Several advances have been made recently in the use of the cynomolgus macaque SIV challenge model that allow the demonstration of vaccine efficacy using attenuated viruses and vectors that are both viral and non-viral in origin. This review aims to probe the details of various vaccination trials carried out in cynomolgus macaques in the context of our modern understanding of the highly diverse immunogenetics of this species with a view to understanding the species-specific immune correlates of protection and the efficacy of vectors that have been used to design vaccines.
Collapse
|
59
|
Mueller N, van Bel N, Berkhout B, Das AT. HIV-1 splicing at the major splice donor site is restricted by RNA structure. Virology 2014; 468-470:609-620. [PMID: 25305540 DOI: 10.1016/j.virol.2014.09.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/11/2014] [Accepted: 09/19/2014] [Indexed: 11/29/2022]
Abstract
The 5' leader region of the HIV-1 RNA contains the major 5' splice site (ss) that is used in the production of all spliced viral RNAs. This splice-donor (SD) region can fold a stem-loop structure. We demonstrate that whereas stabilization of this SD hairpin reduces splicing efficiency, destabilization increases splicing. Both stabilization and destabilization reduce viral fitness. These results demonstrate that the stability of the SD hairpin can modulate the level of splicing, most likely by controlling the accessibility of the 5'ss for the splicing machinery. The natural stability of the SD hairpin restricts splicing and this stability seems to be fine-tuned to reach the optimal balance between unspliced and spliced RNAs for efficient virus replication. The 5'ss region of different HIV-1 isolates and the related SIVmac239 can fold a similar structure. This evolutionary conservation supports the importance of this structure in viral replication.
Collapse
Affiliation(s)
- Nancy Mueller
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands.
| | - Nikki van Bel
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands.
| | - Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands.
| |
Collapse
|
60
|
Pilkington GR, Purzycka KJ, Bear J, Le Grice SFJ, Felber BK. Gammaretrovirus mRNA expression is mediated by a novel, bipartite post-transcriptional regulatory element. Nucleic Acids Res 2014; 42:11092-106. [PMID: 25190459 PMCID: PMC4176177 DOI: 10.1093/nar/gku798] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Post-transcriptional regulatory mechanisms of several complex and simple retroviruses and retroelements have been elucidated, with the exception of the gammaretrovirus family. We found that, similar to the other retroviruses, gag gene expression of MuLV and XMRV depends on post-transcriptional regulation mediated via an RNA sequence overlapping the pro-pol open reading frame, termed the Post-Transcriptional Element (PTE). PTE function can be replaced by heterologous RNA export elements, e.g. CTE of simian type D retroviruses. Alternatively, Gag particle production is achieved using an RNA/codon optimized gag gene. PTE function is transferable and can replace HIV Rev-RRE-regulated expression of HIV gag. Analysis of PTE by SHAPE revealed a highly structured RNA comprising seven stem-loop structures, with the 5′ and 3′ stem-loops forming an essential bipartite signal. MuLV and XMRV PTE share 98% identity and have highly similar RNA structures, with changes mostly located to single-stranded regions. PTE identification strongly suggests that all retroviruses and retroelements share common strategies of post-transcriptional gene regulation to produce Gag. Expression depends on complex RNA structures embedded within retroviral mRNA, in coding regions or the 3′ untranslated region. These specific structures serve as recognition signals for either cellular or viral proteins.
Collapse
Affiliation(s)
- Guy R Pilkington
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Katarzyna J Purzycka
- RT Biochemistry Section, Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Stuart F J Le Grice
- RT Biochemistry Section, Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
61
|
Siegfried NA, Busan S, Rice GM, Nelson JA, Weeks KM. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat Methods 2014; 11:959-65. [PMID: 25028896 PMCID: PMC4259394 DOI: 10.1038/nmeth.3029] [Citation(s) in RCA: 434] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/08/2014] [Indexed: 12/14/2022]
Abstract
Many biological processes are RNA-mediated, but higher-order structures for most RNAs are unknown, which makes it difficult to understand how RNA structure governs function. Here we describe selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) that makes possible de novo and large-scale identification of RNA functional motifs. Sites of 2'-hydroxyl acylation by SHAPE are encoded as noncomplementary nucleotides during cDNA synthesis, as measured by massively parallel sequencing. SHAPE-MaP-guided modeling identified greater than 90% of accepted base pairs in complex RNAs of known structure, and we used it to define a new model for the HIV-1 RNA genome. The HIV-1 model contains all known structured motifs and previously unknown elements, including experimentally validated pseudoknots. SHAPE-MaP yields accurate and high-resolution secondary-structure models, enables analysis of low-abundance RNAs, disentangles sequence polymorphisms in single experiments and will ultimately democratize RNA-structure analysis.
Collapse
Affiliation(s)
- Nathan A. Siegfried
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290
| | - Steven Busan
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290
| | - Greggory M. Rice
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290
| | - Julie A.E. Nelson
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290
| |
Collapse
|
62
|
Sánchez-Luque FJ, Stich M, Manrubia S, Briones C, Berzal-Herranz A. Efficient HIV-1 inhibition by a 16 nt-long RNA aptamer designed by combining in vitro selection and in silico optimisation strategies. Sci Rep 2014; 4:6242. [PMID: 25175101 PMCID: PMC4150108 DOI: 10.1038/srep06242] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/04/2014] [Indexed: 02/08/2023] Open
Abstract
The human immunodeficiency virus type-1 (HIV-1) genome contains multiple, highly conserved structural RNA domains that play key roles in essential viral processes. Interference with the function of these RNA domains either by disrupting their structures or by blocking their interaction with viral or cellular factors may seriously compromise HIV-1 viability. RNA aptamers are amongst the most promising synthetic molecules able to interact with structural domains of viral genomes. However, aptamer shortening up to their minimal active domain is usually necessary for scaling up production, what requires very time-consuming, trial-and-error approaches. Here we report on the in vitro selection of 64 nt-long specific aptamers against the complete 5′-untranslated region of HIV-1 genome, which inhibit more than 75% of HIV-1 production in a human cell line. The analysis of the selected sequences and structures allowed for the identification of a highly conserved 16 nt-long stem-loop motif containing a common 8 nt-long apical loop. Based on this result, an in silico designed 16 nt-long RNA aptamer, termed RNApt16, was synthesized, with sequence 5′-CCCCGGCAAGGAGGGG-3′. The HIV-1 inhibition efficiency of such an aptamer was close to 85%, thus constituting the shortest RNA molecule so far described that efficiently interferes with HIV-1 replication.
Collapse
Affiliation(s)
- Francisco J Sánchez-Luque
- 1] Department of Molecular Biology. Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), PTS Granada. Avda. del Conocimiento s/n, Armilla (Granada 18016, Spain) [2]
| | - Michael Stich
- 1] Department of Molecular Evolution. Centro de Astrobiología (CAB-CSIC/INTA). Carretera Torrejón a Ajalvir km 4, Torrejón de Ardoz (Madrid 28850, Spain) [2]
| | - Susanna Manrubia
- Department of Molecular Evolution. Centro de Astrobiología (CAB-CSIC/INTA). Carretera Torrejón a Ajalvir km 4, Torrejón de Ardoz (Madrid 28850, Spain)
| | - Carlos Briones
- 1] Department of Molecular Evolution. Centro de Astrobiología (CAB-CSIC/INTA). Carretera Torrejón a Ajalvir km 4, Torrejón de Ardoz (Madrid 28850, Spain) [2] Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Spain
| | - Alfredo Berzal-Herranz
- Department of Molecular Biology. Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), PTS Granada. Avda. del Conocimiento s/n, Armilla (Granada 18016, Spain)
| |
Collapse
|
63
|
Bai Y, Tambe A, Zhou K, Doudna JA. RNA-guided assembly of Rev-RRE nuclear export complexes. eLife 2014; 3:e03656. [PMID: 25163983 PMCID: PMC4142337 DOI: 10.7554/elife.03656] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/05/2014] [Indexed: 11/13/2022] Open
Abstract
HIV replication requires nuclear export of unspliced and singly spliced viral transcripts. Although a unique RNA structure has been proposed for the Rev-response element (RRE) responsible for viral mRNA export, how it recruits multiple HIV Rev proteins to form an export complex has been unclear. We show here that initial binding of Rev to the RRE triggers RNA tertiary structural changes, enabling further Rev binding and the rapid formation of a viral export complex. Analysis of the Rev-RRE assembly pathway using SHAPE-Seq and small-angle X-ray scattering (SAXS) reveals two major steps of Rev-RRE complex formation, beginning with rapid Rev binding to a pre-organized region presenting multiple Rev binding sites. This step induces long-range remodeling of the RNA to expose a cryptic Rev binding site, enabling rapid assembly of additional Rev proteins into the RNA export complex. This kinetic pathway may help maintain the balance between viral replication and maturation.DOI: http://dx.doi.org/10.7554/eLife.03656.001.
Collapse
Affiliation(s)
- Yun Bai
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Akshay Tambe
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Kaihong Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States Department of Chemistry, University of California, Berkeley, Berkeley, United States Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
64
|
Infectious hypodermal and hematopoietic necrosis virus from Brazil: Sequencing, comparative analysis and PCR detection. Virus Res 2014; 189:136-46. [DOI: 10.1016/j.virusres.2014.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/07/2014] [Accepted: 05/11/2014] [Indexed: 12/11/2022]
|
65
|
Pachulska-Wieczorek K, Stefaniak AK, Purzycka KJ. Similarities and differences in the nucleic acid chaperone activity of HIV-2 and HIV-1 nucleocapsid proteins in vitro. Retrovirology 2014; 11:54. [PMID: 24992971 PMCID: PMC4227088 DOI: 10.1186/1742-4690-11-54] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/23/2014] [Indexed: 01/22/2023] Open
Abstract
Background The nucleocapsid domain of Gag and mature nucleocapsid protein (NC) act as nucleic acid chaperones and facilitate folding of nucleic acids at critical steps of retroviral replication cycle. The basic N-terminus of HIV-1 NC protein was shown most important for the chaperone activity. The HIV-2 NC (NCp8) and HIV-1 NC (NCp7) proteins possess two highly conserved zinc fingers, flanked by basic residues. However, the NCp8 N-terminal domain is significantly shorter and contains less positively charged residues. This study characterizes previously unknown, nucleic acid chaperone activity of the HIV-2 NC protein. Results We have comparatively investigated the in vitro nucleic acid chaperone properties of the HIV-2 and HIV-1 NC proteins. Using substrates derived from the HIV-1 and HIV-2 genomes, we determined the ability of both proteins to chaperone nucleic acid aggregation, annealing and strand exchange in duplex structures. Both NC proteins displayed comparable, high annealing activity of HIV-1 TAR DNA and its complementary nucleic acid. Interesting differences between the two NC proteins were discovered when longer HIV substrates, particularly those derived from the HIV-2 genome, were used in chaperone assays. In contrast to NCp7, NCp8 weakly facilitates annealing of HIV-2 TAR RNA to its complementary TAR (−) DNA. NCp8 is also unable to efficiently stimulate tRNALys3 annealing to its respective HIV-2 PBS motif. Using truncated NCp8 peptide, we demonstrated that despite the fact that the N-terminus of NCp8 differs from that of NCp7, this domain is essential for NCp8 activity. Conclusion Our data demonstrate that the HIV-2 NC protein displays reduced nucleic acid chaperone activity compared to that of HIV-1 NC. We found that NCp8 activity is limited by substrate length and stability to a greater degree than that of NCp7. This is especially interesting in light of the fact that the HIV-2 5′UTR is more structured than that of HIV-1. The reduced chaperone activity observed with NCp8 may influence the efficiency of reverse transcription and other key steps of the HIV-2 replication cycle.
Collapse
|
66
|
Kim EY, Lorenzo-Redondo R, Little SJ, Chung YS, Phalora PK, Maljkovic Berry I, Archer J, Penugonda S, Fischer W, Richman DD, Bhattacharya T, Malim MH, Wolinsky SM. Human APOBEC3 induced mutation of human immunodeficiency virus type-1 contributes to adaptation and evolution in natural infection. PLoS Pathog 2014; 10:e1004281. [PMID: 25080100 PMCID: PMC4117599 DOI: 10.1371/journal.ppat.1004281] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/13/2014] [Indexed: 11/18/2022] Open
Abstract
Human APOBEC3 proteins are cytidine deaminases that contribute broadly to innate immunity through the control of exogenous retrovirus replication and endogenous retroelement retrotransposition. As an intrinsic antiretroviral defense mechanism, APOBEC3 proteins induce extensive guanosine-to-adenosine (G-to-A) mutagenesis and inhibit synthesis of nascent human immunodeficiency virus-type 1 (HIV-1) cDNA. Human APOBEC3 proteins have additionally been proposed to induce infrequent, potentially non-lethal G-to-A mutations that make subtle contributions to sequence diversification of the viral genome and adaptation though acquisition of beneficial mutations. Using single-cycle HIV-1 infections in culture and highly parallel DNA sequencing, we defined trinucleotide contexts of the edited sites for APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H. We then compared these APOBEC3 editing contexts with the patterns of G-to-A mutations in HIV-1 DNA in cells obtained sequentially from ten patients with primary HIV-1 infection. Viral substitutions were highest in the preferred trinucleotide contexts of the edited sites for the APOBEC3 deaminases. Consistent with the effects of immune selection, amino acid changes accumulated at the APOBEC3 editing contexts located within human leukocyte antigen (HLA)-appropriate epitopes that are known or predicted to enable peptide binding. Thus, APOBEC3 activity may induce mutations that influence the genetic diversity and adaptation of the HIV-1 population in natural infection.
Collapse
Affiliation(s)
- Eun-Young Kim
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Ramon Lorenzo-Redondo
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Susan J. Little
- Division of Infectious Diseases, University of California San Diego, San Diego, California, United States of America
| | - Yoon-Seok Chung
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Prabhjeet K. Phalora
- Department of Infectious Diseases, King's College London, Guy's Hospital, London, United Kingdom
| | - Irina Maljkovic Berry
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - John Archer
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Sudhir Penugonda
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Will Fischer
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Douglas D. Richman
- Division of Infectious Diseases, University of California San Diego, San Diego, California, United States of America
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
| | - Tanmoy Bhattacharya
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Michael H. Malim
- Department of Infectious Diseases, King's College London, Guy's Hospital, London, United Kingdom
| | - Steven M. Wolinsky
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
67
|
Eichhorn CD, Al-Hashimi HM. Structural dynamics of a single-stranded RNA-helix junction using NMR. RNA (NEW YORK, N.Y.) 2014; 20:782-91. [PMID: 24742933 PMCID: PMC4024633 DOI: 10.1261/rna.043711.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Many regulatory RNAs contain long single strands (ssRNA) that adjoin secondary structural elements. Here, we use NMR spectroscopy to study the dynamic properties of a 12-nucleotide (nt) ssRNA tail derived from the prequeuosine riboswitch linked to the 3' end of a 48-nt hairpin. Analysis of chemical shifts, NOE connectivity, (13)C spin relaxation, and residual dipolar coupling data suggests that the first two residues (A25 and U26) in the ssRNA tail stack onto the adjacent helix and assume an ordered conformation. The following U26-A27 step marks the beginning of an A6-tract and forms an acute pivot point for substantial motions within the tail, which increase toward the terminal end. Despite substantial internal motions, the ssRNA tail adopts, on average, an A-form helical conformation that is coaxial with the helix. Our results reveal a surprising degree of structural and dynamic complexity at the ssRNA-helix junction, which involves a fine balance between order and disorder that may facilitate efficient pseudoknot formation on ligand recognition.
Collapse
Affiliation(s)
- Catherine D. Eichhorn
- Chemical Biology Doctoral Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Hashim M. Al-Hashimi
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
- Corresponding authorE-mail
| |
Collapse
|
68
|
Grohman JK, Gorelick RJ, Kottegoda S, Allbritton NL, Rein A, Weeks KM. An immature retroviral RNA genome resembles a kinetically trapped intermediate state. J Virol 2014; 88:6061-8. [PMID: 24623442 PMCID: PMC4093898 DOI: 10.1128/jvi.03277-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/09/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Retroviral virions initially assemble in an immature form that differs from that of the mature infectious particle. The RNA genomes in both immature and infectious particles are dimers, and interactions between the RNA dimer and the viral Gag protein ensure selective packaging into nascent immature virions. We used high-sensitivity selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) to obtain nucleotide-resolution structural information from scarce, femtomole quantities of Moloney murine leukemia virus (MuLV) RNA inside authentic virions and from viral RNA extracted from immature (protease-minus) virions. Our secondary structure model of the dimerization and packaging domain indicated that a stable intermolecular duplex known as PAL2, previously shown to be present in mature infectious MuLV particles, was sequestered in an alternate stem-loop structure inside immature virions. The intermediate state corresponded closely to a late-folding intermediate that we detected in time-resolved studies of the free MuLV RNA, suggesting that the immature RNA structure reflects trapping of the intermediate folding state by interactions in the immature virion. We propose models for the RNA-protein interactions that trap the RNA in the immature state and for the conformational rearrangement that occurs during maturation of virion particles. IMPORTANCE The structure of the RNA genome in mature retroviruses has been studied extensively, whereas very little was known about the RNA structure in immature virions. The immature RNA structure is important because it is the form initially selected for packaging in new virions and may have other roles. This lack of information was due to the difficulty of isolating sufficient viral RNA for study. In this work, we apply a high-sensitivity and nucleotide-resolution approach to examine the structure of the dimerization and packaging domain of Moloney murine leukemia virus. We find that the genomic RNA is packaged in a high-energy state, suggesting that interactions within the virion hold or capture the RNA before it reaches its most stable state. This new structural information makes it possible to propose models for the conformational changes in the RNA genome that accompany retroviral maturation.
Collapse
Affiliation(s)
- Jacob K. Grohman
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Sumith Kottegoda
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina, USA
| | - Alan Rein
- HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
69
|
van Hemert F, van der Kuyl AC, Berkhout B. On the nucleotide composition and structure of retroviral RNA genomes. Virus Res 2014; 193:16-23. [PMID: 24675274 DOI: 10.1016/j.virusres.2014.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 01/01/2023]
Abstract
Retroviral RNA genomes display a rich variety in their nucleotide composition. For instance, the single-stranded RNA genome of human T cell leukemia virus (HTLV-1) is C-rich and G-poor and that of the human immunodeficiency virus (HIV-1) is A-rich and C-poor. Animal retroviruses add further variation to this unexplained, but many times remarkable virus-specific property. We previously described that the nucleotide bias is even more extreme in the unpaired regions of the structured HIV-1 RNA genome, which has been probed by SHAPE technology. We now document that the same trend is apparent for the MFold-predicted RNA structure of HIV-1 RNA and subsequently investigated the predicted structures of the RNA genomes of other retroviruses. We conclude that all virus-specific signatures are enhanced for the unpaired nucleotides in the RNA genome. Consequently, the differences in nucleotide count between the diverse human and animal retroviruses are further exposed in the single stranded genome regions. We used a skew analysis to visualize these striking differences in nucleotide usage. Evolutionary events responsible for these nucleotide signatures will be discussed.
Collapse
Affiliation(s)
- Formijn van Hemert
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Antoinette C van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands.
| |
Collapse
|
70
|
Kolomiets IN, Zarudnaya MI, Potyahaylo AL, Hovorun DM. Structural insight into HIV-1 reverse transcription initiation in MAL-like templates (CRF01_AE, subtype G and CRF02_AG). J Biomol Struct Dyn 2014; 33:418-33. [DOI: 10.1080/07391102.2014.884938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
71
|
Natural single-nucleotide polymorphisms in the 3' region of the HIV-1 pol gene modulate viral replication ability. J Virol 2014; 88:4145-60. [PMID: 24478432 DOI: 10.1128/jvi.01859-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED We previously showed that prototype macaque-tropic human immunodeficiency virus type 1 (HIV-1) acquired nonsynonymous growth-enhancing mutations within a narrow genomic region during the adaptation process in macaque cells. These adaptive mutations were clustered in the 3' region of the pol gene, encoding a small portion of the C-terminal domain of integrase (IN). Mutations in HIV-1 IN have been reported to have pleiotropic effects on both the early and late phases in viral replication. cis-acting functions in the IN-coding sequence for viral gene expression have also been reported. We here demonstrated that the adaptive mutations promoted viral growth by increasing virion production with no positive effects on the early replication phase. Synonymous codon alterations in one of the adaptive mutations influenced virion production levels, which suggested nucleotide-dependent regulation. Indeed, when the single-nucleotide natural polymorphisms observed in the 3' regions of 196 HIV-1/simian immunodeficiency virus (SIVcpz) pol genes (nucleotides [nt] 4895 to 4929 for HIV-1 NL4-3) were introduced into macaque- and human-tropic HIV-1 clones, more than half exhibited altered replication potentials. Moreover, single-nucleotide mutations caused parallel increases or decreases in the expression levels of viral late proteins and viral replication potentials. We also showed that the overall expression profiles of viral mRNAs were markedly changed by single-nucleotide mutations. These results demonstrate that the 3' region of the HIV-1 pol gene (nt 4895 to 4929) can alter viral replication potential by modulating the expression pattern of viral mRNAs in a nucleotide-dependent manner. IMPORTANCE Viruses have the plasticity to adapt themselves under various constraints. HIV-1 can mutate and evolve in growth-restrictive cells by acquiring adaptive changes in its genome. We have previously identified some growth-enhancing mutations in a narrow region of the IN-coding sequence, in which a number of cis-acting elements are located. We now focus on the virological significance of this pol gene region and the mechanistic basis underlying its effects on viral replication. We have found several naturally occurring synonymous mutations within this region that alter viral replication potentials. The effects caused by these natural single-nucleotide polymorphisms are linked to the definite expression patterns of viral mRNAs. We show here that the nucleotide sequence of the pol gene (nucleotides 4895 to 4929 for HIV-1 NL4-3) plays an important role in HIV-1 replication by modulating viral gene expression.
Collapse
|
72
|
Burrill CP, Westesson O, Schulte MB, Strings VR, Segal M, Andino R. Global RNA structure analysis of poliovirus identifies a conserved RNA structure involved in viral replication and infectivity. J Virol 2013; 87:11670-83. [PMID: 23966409 PMCID: PMC3807356 DOI: 10.1128/jvi.01560-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/15/2013] [Indexed: 01/06/2023] Open
Abstract
The genomes of RNA viruses often contain RNA structures that are crucial for translation and RNA replication and may play additional, uncharacterized roles during the viral replication cycle. For the picornavirus family member poliovirus, a number of functional RNA structures have been identified, but much of its genome, especially the open reading frame, has remained uncharacterized. We have now generated a global RNA structure map of the poliovirus genome using a chemical probing approach that interrogates RNA structure with single-nucleotide resolution. In combination with orthogonal evolutionary analyses, we uncover several conserved RNA structures in the open reading frame of the viral genome. To validate the ability of our global analyses to identify functionally important RNA structures, we further characterized one of the newly identified structures, located in the region encoding the RNA-dependent RNA polymerase, 3D(pol), by site-directed mutagenesis. Our results reveal that the structure is required for viral replication and infectivity, since synonymous mutants are defective in these processes. Furthermore, these defects can be partially suppressed by mutations in the viral protein 3C(pro), which suggests the existence of a novel functional interaction between an RNA structure in the 3D(pol)-coding region and the viral protein(s) 3C(pro) and/or its precursor 3CD(pro).
Collapse
Affiliation(s)
- Cecily P. Burrill
- Tetrad Graduate Program, University of California, San Francisco, California, USA
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA
| | - Oscar Westesson
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Michael B. Schulte
- Tetrad Graduate Program, University of California, San Francisco, California, USA
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA
| | - Vanessa R. Strings
- Tetrad Graduate Program, University of California, San Francisco, California, USA
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA
| | - Mark Segal
- Department of Epidemiology & Biostatistics, University of California, San Francisco, California, USA
| | - Raul Andino
- Department of Microbiology & Immunology, University of California, San Francisco, California, USA
| |
Collapse
|
73
|
Abstract
Intrapatient evolution of human immunodeficiency virus type 1 (HIV-1) is driven by the adaptive immune system resulting in rapid change of HIV-1 proteins. When cytotoxic CD8(+) T cells or neutralizing antibodies target a new epitope, the virus often escapes via nonsynonymous mutations that impair recognition. Synonymous mutations do not affect this interplay and are often assumed to be neutral. We test this assumption by tracking synonymous mutations in longitudinal intrapatient data from the C2-V5 part of the env gene. We find that most synonymous variants are lost even though they often reach high frequencies in the viral population, suggesting a cost to the virus. Using published data from SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) assays, we find that synonymous mutations that disrupt base pairs in RNA stems flanking the variable loops of gp120 are more likely to be lost than other synonymous changes: these RNA hairpins might be important for HIV-1. Computational modeling indicates that, to be consistent with the data, a large fraction of synonymous mutations in this genomic region need to be deleterious with a cost on the order of 0.002 per day. This weak selection against synonymous substitutions does not result in a strong pattern of conservation in cross-sectional data but slows down the rate of evolution considerably. Our findings are consistent with the notion that large-scale patterns of RNA structure are functionally relevant, whereas the precise base pairing pattern is not.
Collapse
|