51
|
Li Q, Liu G, Wei D, Guo J, Yuan G, Wu S. The spatiotemporal pattern of pure tone processing: A single-trial EEG-fMRI study. Neuroimage 2017; 187:184-191. [PMID: 29191479 DOI: 10.1016/j.neuroimage.2017.11.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/23/2017] [Accepted: 11/26/2017] [Indexed: 12/12/2022] Open
Abstract
Although considerable research has been published on pure tone processing, its spatiotemporal pattern is not well understood. Specifically, the link between neural activity in the auditory pathway measured by functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) markers of pure tone processing in the P1, N1, P2, and N4 components is not well established. In this study, we used single-trial EEG-fMRI as a multi-modal fusion approach to integrate concurrently acquired EEG and fMRI data, in order to understand the spatial and temporal aspects of the pure tone processing pathway. Data were recorded from 33 subjects who were presented with stochastically alternating pure tone sequences with two different frequencies: 200 and 6400 Hz. Brain network correlated with trial-to-trial variability of the task-discriminating EEG amplitude was identified. We found that neural responses responding to pure tone perception are spatially along the auditory pathway and temporally divided into three stages: (1) the early stage (P1), wherein activation occurs in the midbrain, which constitutes a part of the low level auditory pathway; (2) the middle stage (N1, P2), wherein correlates were found in areas associated with the posterodorsal auditory pathway, including the primary auditory cortex and the motor cortex; (3) the late stage (N4), wherein correlation was found in the motor cortex. This indicates that trial-by-trial variation in neural activity in the P1, N1, P2, and N4 components reflects the sequential engagement of low- and high-level parts of the auditory pathway for pure tone processing. Our results demonstrate that during simple pure tone listening tasks, regions associated with the auditory pathway transiently correlate with trial-to-trial variability of the EEG amplitude, and they do so on a millisecond timescale with a distinct temporal ordering.
Collapse
Affiliation(s)
- Qiang Li
- College of Electronic and Information Engineering, Southwest University, No. 2, TianSheng Street, Beibei, Chongqing 400715, China
| | - Guangyuan Liu
- College of Electronic and Information Engineering, Southwest University, No. 2, TianSheng Street, Beibei, Chongqing 400715, China.
| | - Dongtao Wei
- Department of Psychology, Southwest University, No. 2, TianSheng Street, Beibei, Chongqing 400715, China
| | - Jing Guo
- College of Electronic and Information Engineering, Southwest University, No. 2, TianSheng Street, Beibei, Chongqing 400715, China
| | - Guangjie Yuan
- College of Electronic and Information Engineering, Southwest University, No. 2, TianSheng Street, Beibei, Chongqing 400715, China
| | - Shifu Wu
- College of Electronic and Information Engineering, Southwest University, No. 2, TianSheng Street, Beibei, Chongqing 400715, China
| |
Collapse
|
52
|
Extensive Tonotopic Mapping across Auditory Cortex Is Recapitulated by Spectrally Directed Attention and Systematically Related to Cortical Myeloarchitecture. J Neurosci 2017; 37:12187-12201. [PMID: 29109238 PMCID: PMC5729191 DOI: 10.1523/jneurosci.1436-17.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 11/21/2022] Open
Abstract
Auditory selective attention is vital in natural soundscapes. But it is unclear how attentional focus on the primary dimension of auditory representation—acoustic frequency—might modulate basic auditory functional topography during active listening. In contrast to visual selective attention, which is supported by motor-mediated optimization of input across saccades and pupil dilation, the primate auditory system has fewer means of differentially sampling the world. This makes spectrally-directed endogenous attention a particularly crucial aspect of auditory attention. Using a novel functional paradigm combined with quantitative MRI, we establish in male and female listeners that human frequency-band-selective attention drives activation in both myeloarchitectonically estimated auditory core, and across the majority of tonotopically mapped nonprimary auditory cortex. The attentionally driven best-frequency maps show strong concordance with sensory-driven maps in the same subjects across much of the temporal plane, with poor concordance in areas outside traditional auditory cortex. There is significantly greater activation across most of auditory cortex when best frequency is attended, versus ignored; the same regions do not show this enhancement when attending to the least-preferred frequency band. Finally, the results demonstrate that there is spatial correspondence between the degree of myelination and the strength of the tonotopic signal across a number of regions in auditory cortex. Strong frequency preferences across tonotopically mapped auditory cortex spatially correlate with R1-estimated myeloarchitecture, indicating shared functional and anatomical organization that may underlie intrinsic auditory regionalization. SIGNIFICANCE STATEMENT Perception is an active process, especially sensitive to attentional state. Listeners direct auditory attention to track a violin's melody within an ensemble performance, or to follow a voice in a crowded cafe. Although diverse pathologies reduce quality of life by impacting such spectrally directed auditory attention, its neurobiological bases are unclear. We demonstrate that human primary and nonprimary auditory cortical activation is modulated by spectrally directed attention in a manner that recapitulates its tonotopic sensory organization. Further, the graded activation profiles evoked by single-frequency bands are correlated with attentionally driven activation when these bands are presented in complex soundscapes. Finally, we observe a strong concordance in the degree of cortical myelination and the strength of tonotopic activation across several auditory cortical regions.
Collapse
|
53
|
Toarmino CR, Yen CCC, Papoti D, Bock NA, Leopold DA, Miller CT, Silva AC. Functional magnetic resonance imaging of auditory cortical fields in awake marmosets. Neuroimage 2017; 162:86-92. [PMID: 28830766 DOI: 10.1016/j.neuroimage.2017.08.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/14/2017] [Accepted: 08/18/2017] [Indexed: 11/25/2022] Open
Abstract
The primate auditory cortex is organized into a network of anatomically and functionally distinct processing fields. Because of its tonotopic properties, the auditory core has been the main target of neurophysiological studies ranging from sensory encoding to perceptual decision-making. By comparison, the auditory belt has been less extensively studied, in part due to the fact that neurons in the belt areas prefer more complex stimuli and integrate over a wider frequency range than neurons in the core, which prefer pure tones of a single frequency. Complementary approaches, such as functional magnetic resonance imaging (fMRI), allow the anatomical identification of both the auditory core and belt and facilitate their functional characterization by rapidly testing a range of stimuli across multiple brain areas simultaneously that can be used to guide subsequent neural recordings. Bridging these technologies in primates will serve to further expand our understanding of primate audition. Here, we developed a novel preparation to test whether different areas of the auditory cortex could be identified using fMRI in common marmosets (Callithrix jacchus), a powerful model of the primate auditory system. We used two types of stimulation, band pass noise and pure tones, to parse apart the auditory core from surrounding secondary belt fields. In contrast to most auditory fMRI experiments in primates, we employed a continuous sampling paradigm to rapidly collect data with little deleterious effects. Here we found robust bilateral auditory cortex activation in two marmosets and unilateral activation in a third utilizing this preparation. Furthermore, we confirmed results previously reported in electrophysiology experiments, such as the tonotopic organization of the auditory core and regions activating preferentially to complex over simple stimuli. Overall, these data establish a key preparation for future research to investigate various functional properties of marmoset auditory cortex.
Collapse
Affiliation(s)
- Camille R Toarmino
- Cortical Systems and Behavior Laboratory, Department of Psychology and Neurosciences Graduate Program, The University of California at San Diego, La Jolla, CA, 92093-0109, USA
| | - Cecil C C Yen
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892-4478, USA
| | - Daniel Papoti
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892-4478, USA
| | - Nicholas A Bock
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - David A Leopold
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD, 20892-4400, USA
| | - Cory T Miller
- Cortical Systems and Behavior Laboratory, Department of Psychology and Neurosciences Graduate Program, The University of California at San Diego, La Jolla, CA, 92093-0109, USA
| | - Afonso C Silva
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892-4478, USA.
| |
Collapse
|
54
|
Kaminska A, Delattre V, Laschet J, Dubois J, Labidurie M, Duval A, Manresa A, Magny JF, Hovhannisyan S, Mokhtari M, Ouss L, Boissel A, Hertz-Pannier L, Sintsov M, Minlebaev M, Khazipov R, Chiron C. Cortical Auditory-Evoked Responses in Preterm Neonates: Revisited by Spectral and Temporal Analyses. Cereb Cortex 2017; 28:3429-3444. [DOI: 10.1093/cercor/bhx206] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- A Kaminska
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
- Department of Clinical Neurophysiology, AP-HP, Necker-Enfants Malades Hospital, Paris, France
| | - V Delattre
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
- Neurospin, UNIACT, CEA, Gif sur Yvette, France
| | - J Laschet
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
| | - J Dubois
- INSERM U992, CEA/DRF/I2BM/Neurospin/UNICOG, Gif-sur-Yvette, France
- Paris Saclay University, Paris-Sud University, Gif-sur-Yvette, France
| | - M Labidurie
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
| | - A Duval
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
- Neurospin, UNIACT, CEA, Gif sur Yvette, France
| | - A Manresa
- Laboratory of Psychology and Neurosciences (LPN) (EA 47000), Rouen University, Rouen, France
| | - J -F Magny
- Neonatal Intensive Care Unit, AP-HP, Necker-Enfants Malades Hospital, Paris, France
| | - S Hovhannisyan
- Neonatal Intensive Care Unit, AP-HP, Necker-Enfants Malades Hospital, Paris, France
| | - M Mokhtari
- Neonatal Intensive Care Unit, AP-HP, Bicetre Hospital, Kremlin-Bicetre, France
| | - L Ouss
- Department of Pediatric Neurology, AP-HP, Necker-Enfants Malades Hospital, Paris, France
| | - A Boissel
- Laboratory of Psychology and Neurosciences (LPN) (EA 47000), Rouen University, Rouen, France
| | - L Hertz-Pannier
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
- Neurospin, UNIACT, CEA, Gif sur Yvette, France
| | - M Sintsov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - M Minlebaev
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
- INSERM U901/ INMED, Aix-Marseille University, Marseille, France
| | - R Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
- INSERM U901/ INMED, Aix-Marseille University, Marseille, France
| | - C Chiron
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
| |
Collapse
|
55
|
Abstract
The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior-lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain.
Collapse
|
56
|
Triarhou LC, Verina T. The musical centers of the brain: Vladimir E. Larionov (1857–1929) and the functional neuroanatomy of auditory perception. J Chem Neuroanat 2016; 77:143-160. [DOI: 10.1016/j.jchemneu.2016.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/12/2016] [Accepted: 06/12/2016] [Indexed: 10/21/2022]
|
57
|
Wallace MN, Cronin MJ, Bowtell RW, Scott IS, Palmer AR, Gowland PA. Histological Basis of Laminar MRI Patterns in High Resolution Images of Fixed Human Auditory Cortex. Front Neurosci 2016; 10:455. [PMID: 27774049 PMCID: PMC5054214 DOI: 10.3389/fnins.2016.00455] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/21/2016] [Indexed: 12/26/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) studies of the auditory region of the temporal lobe would benefit from the availability of image contrast that allowed direct identification of the primary auditory cortex, as this region cannot be accurately located using gyral landmarks alone. Previous work has suggested that the primary area can be identified in magnetic resonance (MR) images because of its relatively high myelin content. However, MR images are also affected by the iron content of the tissue and in this study we sought to confirm that different MR image contrasts did correlate with the myelin content in the gray matter and were not primarily affected by iron content as is the case in the primary visual and somatosensory areas. By imaging blocks of fixed post-mortem cortex in a 7 T scanner and then sectioning them for histological staining we sought to assess the relative contribution of myelin and iron to the gray matter contrast in the auditory region. Evaluating the image contrast in T2*-weighted images and quantitative R2* maps showed a reasonably high correlation between the myelin density of the gray matter and the intensity of the MR images. The correlation with T1-weighted phase sensitive inversion recovery (PSIR) images was better than with the previous two image types, and there were clearly differentiated borders between adjacent cortical areas in these images. A significant amount of iron was present in the auditory region, but did not seem to contribute to the laminar pattern of the cortical gray matter in MR images. Similar levels of iron were present in the gray and white matter and although iron was present in fibers within the gray matter, these fibers were fairly uniformly distributed across the cortex. Thus, we conclude that T1- and T2*-weighted imaging sequences do demonstrate the relatively high myelin levels that are characteristic of the deep layers in primary auditory cortex and allow it and some of the surrounding areas to be reliably distinguished.
Collapse
Affiliation(s)
- Mark N Wallace
- Medical Research Council Institute of Hearing Research, University of Nottingham Nottingham, UK
| | - Matthew J Cronin
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham Nottingham, UK
| | - Richard W Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham Nottingham, UK
| | - Ian S Scott
- Neuropathology Laboratory, Nottingham University Hospitals NHS Trust, Queen's Medical Centre Nottingham, UK
| | - Alan R Palmer
- Medical Research Council Institute of Hearing Research, University of Nottingham Nottingham, UK
| | - Penny A Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham Nottingham, UK
| |
Collapse
|
58
|
Striem-Amit E, Almeida J, Belledonne M, Chen Q, Fang Y, Han Z, Caramazza A, Bi Y. Topographical functional connectivity patterns exist in the congenitally, prelingually deaf. Sci Rep 2016; 6:29375. [PMID: 27427158 PMCID: PMC4947901 DOI: 10.1038/srep29375] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/10/2016] [Indexed: 12/26/2022] Open
Abstract
Congenital deafness causes large changes in the auditory cortex structure and function, such that without early childhood cochlear-implant, profoundly deaf children do not develop intact, high-level, auditory functions. But how is auditory cortex organization affected by congenital, prelingual, and long standing deafness? Does the large-scale topographical organization of the auditory cortex develop in people deaf from birth? And is it retained despite cross-modal plasticity? We identified, using fMRI, topographic tonotopy-based functional connectivity (FC) structure in humans in the core auditory cortex, its extending tonotopic gradients in the belt and even beyond that. These regions show similar FC structure in the congenitally deaf throughout the auditory cortex, including in the language areas. The topographic FC pattern can be identified reliably in the vast majority of the deaf, at the single subject level, despite the absence of hearing-aid use and poor oral language skills. These findings suggest that large-scale tonotopic-based FC does not require sensory experience to develop, and is retained despite life-long auditory deprivation and cross-modal plasticity. Furthermore, as the topographic FC is retained to varying degrees among the deaf subjects, it may serve to predict the potential for auditory rehabilitation using cochlear implants in individual subjects.
Collapse
Affiliation(s)
- Ella Striem-Amit
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA
| | - Jorge Almeida
- Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra 3001-802, Portugal.,Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra 3001-802, Portugal
| | - Mario Belledonne
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA
| | - Quanjing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yuxing Fang
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Zaizhu Han
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Alfonso Caramazza
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA.,Center for Mind/Brain Sciences, University of Trento, 38068, Rovereto, Italy
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
59
|
Abstract
One of the fundamental properties of the mammalian brain is that sensory regions of cortex are formed of multiple, functionally specialized cortical field maps (CFMs). Each CFM comprises two orthogonal topographical representations, reflecting two essential aspects of sensory space. In auditory cortex, auditory field maps (AFMs) are defined by the combination of tonotopic gradients, representing the spectral aspects of sound (i.e., tones), with orthogonal periodotopic gradients, representing the temporal aspects of sound (i.e., period or temporal envelope). Converging evidence from cytoarchitectural and neuroimaging measurements underlies the definition of 11 AFMs across core and belt regions of human auditory cortex, with likely homology to those of macaque. On a macrostructural level, AFMs are grouped into cloverleaf clusters, an organizational structure also seen in visual cortex. Future research can now use these AFMs to investigate specific stages of auditory processing, key for understanding behaviors such as speech perception and multimodal sensory integration.
Collapse
Affiliation(s)
- Alyssa A Brewer
- Department of Cognitive Sciences and Center for Hearing Research, University of California, Irvine, California 92697; ,
| | - Brian Barton
- Department of Cognitive Sciences and Center for Hearing Research, University of California, Irvine, California 92697; ,
| |
Collapse
|
60
|
A. Moss R. A Theory on the Singular Function of the Hippocampus: Facilitating the Binding of New Circuits of Cortical Columns. AIMS Neurosci 2016. [DOI: 10.3934/neuroscience.2016.3.264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|