51
|
Slaker M, Churchill L, Todd RP, Blacktop JM, Zuloaga DG, Raber J, Darling RA, Brown TE, Sorg BA. Removal of perineuronal nets in the medial prefrontal cortex impairs the acquisition and reconsolidation of a cocaine-induced conditioned place preference memory. J Neurosci 2015; 35:4190-202. [PMID: 25762666 PMCID: PMC4355195 DOI: 10.1523/jneurosci.3592-14.2015] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 01/23/2015] [Accepted: 01/28/2015] [Indexed: 12/29/2022] Open
Abstract
Pyramidal neurons in the medial prefrontal cortex (mPFC) critically contribute to cocaine-seeking behavior in humans and rodents. Activity of these neurons is significantly modulated by GABAergic, parvalbumin-containing, fast-spiking interneurons, the majority of which are enveloped by specialized structures of extracellular matrix called perineuronal nets (PNNs), which are integral to the maintenance of many types of plasticity. Using a conditioned place preference (CPP) procedure, we found that removal of PNNs primarily from the prelimbic region of the mPFC of adult, male, Sprague Dawley rats impaired the acquisition and reconsolidation of a cocaine-induced CPP memory. This impairment was accompanied by a decrease in the number of c-Fos-positive cells surrounded by PNNs. Following removal of PNNs, the frequency of inhibitory currents in mPFC pyramidal neurons was decreased; but following cocaine-induced CPP, both frequency and amplitude of inhibitory currents were decreased. Our findings suggest that cocaine-induced plasticity is impaired by removal of prelimbic mPFC PNNs and that PNNs may be a therapeutic target for disruption of cocaine CPP memories.
Collapse
Affiliation(s)
- Megan Slaker
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, Washington 98686
| | - Lynn Churchill
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington 99164
| | - Ryan P Todd
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, Washington 98686
| | - Jordan M Blacktop
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, Washington 98686
| | - Damian G Zuloaga
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon 97239
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon 97239, Departments of Neurology and Radiation Medicine, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon 97239, and
| | - Rebecca A Darling
- School of Pharmacy and Department of Neuroscience, University of Wyoming, Laramie, Wyoming 82071
| | - Travis E Brown
- School of Pharmacy and Department of Neuroscience, University of Wyoming, Laramie, Wyoming 82071
| | - Barbara A Sorg
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, Washington 98686,
| |
Collapse
|
52
|
Gause Ii TM, Sivak WN, Marra KG. The role of chondroitinase as an adjuvant to peripheral nerve repair. Cells Tissues Organs 2015; 200:59-68. [PMID: 25766067 DOI: 10.1159/000369449] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2014] [Indexed: 11/19/2022] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are potent inhibitors of neural regeneration in the peripheral nervous system. Following nerve injury, inhibitory CSPGs accumulate within the endoneurium and Schwann cell basal lamina of the distal nerve stump. The utilization of chondroitinase ABC (chABC) has led to a marked increase in the ability of injured axons to regenerate across gaps through the CSPG-laden extracellular matrix. Experimental models have repeatedly shown chABC to be capable of degrading the CSPGs that hinder neurite outgrowth. In this article, the characterization of CSPGs, their upregulation following peripheral nerve injury, and potential mechanisms behind their growth and inhibition are described. To date, the literature supports that the adjunct use of chABC may be beneficial to peripheral nerve repair in digesting inhibitory CSPGs. chABC has also shown some indication of synergism with other therapies, such as stem cell transplantation. Evidence supporting the use of chondroitinase as a treatment modality in nerve repair, either alone or in combination with other agents, is reviewed within. Finally, several shortcomings of chABC are addressed, notably its thermal stability and physiologic longevity - both hindering its widespread clinical adoption. Future studies are warranted in order to optimize the therapeutic benefits of the chondroitinase enzyme.
Collapse
|
53
|
Arbat-Plana A, Torres-Espín A, Navarro X, Udina E. Activity dependent therapies modulate the spinal changes that motoneurons suffer after a peripheral nerve injury. Exp Neurol 2014; 263:293-305. [PMID: 25448160 DOI: 10.1016/j.expneurol.2014.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 12/11/2022]
Abstract
Injury of a peripheral nerve not only leads to target denervation, but also induces massive stripping of spinal synapses on axotomized motoneurons, with disruption of spinal circuits. Even when regeneration is successful, unspecific reinnervation and the limited reconnection of the spinal circuits impair functional recovery. The aim of this study was to describe the changes that axotomized motoneurons suffer after peripheral nerve injury and how activity-dependent therapies and neurotrophic factors can modulate these events. We observed a marked decrease in glutamatergic synapses, with a maximum peak at two weeks post-axotomy, which was only partially reversed with time. This decrease was accompanied by an increase in gephyrin immunoreactivity and a disintegration of perineuronal nets (PNNs) surrounding the motoneurons. Direct application of neurotrophins at the proximal stump was not able to reverse these effects. In contrast, activity-dependent treatment, in the form of treadmill running, reduced the observed destructuring of perineuronal nets and the loss of glutamatergic synapses two weeks after injury. These changes were proportional to the intensity of the exercise protocol. Blockade of sensory inputs from the homolateral hindlimb also reduced PNN immunoreactivity around intact motoneurons, and in that case treadmill running did not reverse that loss, suggesting that the effects of exercise on motoneuron PNN depend on increased sensory activity. Preservation of motoneuron PNN and reduction of synaptic stripping by exercise could facilitate the maintenance of the spinal circuitry and benefit functional recovery after peripheral nerve injury.
Collapse
Affiliation(s)
- Ariadna Arbat-Plana
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Abel Torres-Espín
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Xavier Navarro
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Esther Udina
- Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| |
Collapse
|
54
|
Mueller A, Davis A, Carlson SS, Robinson FR. N-acetylgalactosamine positive perineuronal nets in the saccade-related-part of the cerebellar fastigial nucleus do not maintain saccade gain. PLoS One 2014; 9:e86154. [PMID: 24603437 PMCID: PMC3945643 DOI: 10.1371/journal.pone.0086154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 12/05/2013] [Indexed: 11/19/2022] Open
Abstract
Perineuronal nets (PNNs) accumulate around neurons near the end of developmental critical periods. PNNs are structures of the extracellular matrix which surround synaptic contacts and contain chondroitin sulfate proteoglycans. Previous studies suggest that the chondroitin sulfate chains of PNNs inhibit synaptic plasticity and thereby help end critical periods. PNNs surround a high proportion of neurons in the cerebellar nuclei. These PNNs form during approximately the same time that movements achieve normal accuracy. It is possible that PNNs in the cerebellar nuclei inhibit plasticity to maintain the synaptic organization that produces those accurate movements. We tested whether or not PNNs in a saccade-related part of the cerebellar nuclei maintain accurate saccade size by digesting a part of them in an adult monkey performing a task that changes saccade size (long term saccade adaptation). We use the enzyme Chondroitinase ABC to digest the glycosaminoglycan side chains of proteoglycans present in the majority of PNNs. We show that this manipulation does not result in faster, larger, or more persistent adaptation. Our result indicates that intact perineuronal nets around saccade-related neurons in the cerebellar nuclei are not important for maintaining long-term saccade gain.
Collapse
Affiliation(s)
- Adrienne Mueller
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Adam Davis
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Steven S. Carlson
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - Farrel R. Robinson
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
55
|
Foster NL, Mellott JG, Schofield BR. Perineuronal nets and GABAergic cells in the inferior colliculus of guinea pigs. Front Neuroanat 2014; 7:53. [PMID: 24409124 PMCID: PMC3884149 DOI: 10.3389/fnana.2013.00053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/22/2013] [Indexed: 12/24/2022] Open
Abstract
Perineuronal nets (PNs) are aggregates of extracellular matrix that have been associated with neuronal plasticity, critical periods, fast-spiking cells and protection from oxidative stress. Although PNs have been reported in the auditory system in several species, there is disagreement about the distribution of PNs within the inferior colliculus (IC), an important auditory hub in the midbrain. Furthermore, PNs in many brain areas are preferentially associated with GABAergic cells, but whether such an association exists in the IC has not been addressed. We used Wisteria floribunda agglutinin staining and immunohistochemistry in guinea pigs to examine PNs within the IC. PNs are present in all IC subdivisions and are densest in the central portions of the IC. Throughout the IC, PNs are preferentially associated with GABAergic cells. Not all GABAergic cells are surrounded by PNs, so the presence of PNs can be used to subdivide IC GABAergic cells into “netted” and “non-netted” categories. Finally, PNs in the IC, like those in other brain areas, display molecular heterogeneity that suggests a multitude of functions.
Collapse
Affiliation(s)
- Nichole L Foster
- School of Biomedical Sciences, Kent State University Kent, OH, USA ; Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University Rootstown, OH, USA
| | - Jeffrey G Mellott
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University Rootstown, OH, USA
| | - Brett R Schofield
- School of Biomedical Sciences, Kent State University Kent, OH, USA ; Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University Rootstown, OH, USA
| |
Collapse
|
56
|
Nishiyama H. Learning-Induced Structural Plasticity in the Cerebellum. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 117:1-19. [DOI: 10.1016/b978-0-12-420247-4.00001-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
57
|
Tsilibary E, Tzinia A, Radenovic L, Stamenkovic V, Lebitko T, Mucha M, Pawlak R, Frischknecht R, Kaczmarek L. Neural ECM proteases in learning and synaptic plasticity. PROGRESS IN BRAIN RESEARCH 2014; 214:135-57. [PMID: 25410356 DOI: 10.1016/b978-0-444-63486-3.00006-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent studies implicate extracellular proteases in synaptic plasticity, learning, and memory. The data are especially strong for such serine proteases as thrombin, tissue plasminogen activator, neurotrypsin, and neuropsin as well as matrix metalloproteinases, MMP-9 in particular. The role of those enzymes in the aforementioned phenomena is supported by the experimental results on the expression patterns (at the gene expression and protein and enzymatic activity levels) and functional studies, including knockout mice, specific inhibitors, etc. Counterintuitively, the studies have shown that the extracellular proteolysis is not responsible mainly for an overall degradation of the extracellular matrix (ECM) and loosening perisynaptic structures, but rather allows for releasing signaling molecules from the ECM, transsynaptic proteins, and latent form of growth factors. Notably, there are also indications implying those enzymes in the major neuropsychiatric disorders, probably by contributing to synaptic aberrations underlying such diseases as schizophrenia, bipolar, autism spectrum disorders, and drug addiction.
Collapse
Affiliation(s)
- Effie Tsilibary
- Institute of Biosciences and Applications, NCSR "Demokritos", Athens, Greece
| | - Athina Tzinia
- Institute of Biosciences and Applications, NCSR "Demokritos", Athens, Greece
| | - Lidija Radenovic
- Center for Laser Microscopy, Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Vera Stamenkovic
- Center for Laser Microscopy, Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Tomasz Lebitko
- Department of Molecular and Cellular Neurobiology, Nencki Institute, Warsaw, Poland
| | | | | | - Renato Frischknecht
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Leszek Kaczmarek
- Department of Molecular and Cellular Neurobiology, Nencki Institute, Warsaw, Poland.
| |
Collapse
|
58
|
Chen XR, Liao SJ, Ye LX, Gong Q, Ding Q, Zeng JS, Yu J. Neuroprotective effect of chondroitinase ABC on primary and secondary brain injury after stroke in hypertensive rats. Brain Res 2013; 1543:324-33. [PMID: 24326094 DOI: 10.1016/j.brainres.2013.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 11/22/2013] [Accepted: 12/01/2013] [Indexed: 02/06/2023]
Abstract
Focal cerebral infarction causes secondary damage in the ipsilateral ventroposterior thalamic nucleus (VPN). Chondroitin sulfate proteoglycans (CSPGs) are a family of putative inhibitory components, and its degradation by chondroitinase ABC (ChABC) promotes post-injury neurogenesis. This study investigated the role of ChABC in the primary and secondary injury post stroke in hypertension. Renovascular hypertensive Sprague-Dawley rats underwent middle cerebral artery occlusion (MCAO), and were subjected to continuous intra-infarct infusion of ChABC (0.12 U/d for 7 days) 24 h later. Neurological function was evaluated by a modified neurologic severity score. Neurons were counted in the peri-infarct region and the ipsilateral VPN 8 and 14 days after MCAO by Nissl staining and NeuN labeling. The expressions of CSPGs, growth-associated protein-43 (GAP-43) and synaptophysin (SYN) were detected with immunofluorescence or Western blotting. The intra-infarct infusion of ChABC, by degrading accumulated CSPGs, rescued neuronal loss and increased the levels of GAP-43 and SYN in both the ipsilateral cortex and VPN, indicating enhancd neuron survival as well as augmented axonal growth and synaptic plasticity, eventually improving overall neurological function. The study demonstrated that intra-infarct ChABC infusion could salvage the brain from both primary and secondary injury by the intervention on the neuroinhibitory environment post focal cerebral infarction.
Collapse
Affiliation(s)
- Xin-ran Chen
- Department of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department, National Key Discipline, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Song-jie Liao
- Department of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department, National Key Discipline, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lan-xiang Ye
- Department of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department, National Key Discipline, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Qiong Gong
- Department of Neurology, the Second People's Hospital of Guangdong Province, Guangzhou 510000, China
| | - Qiao Ding
- Department of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department, National Key Discipline, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jin-sheng Zeng
- Department of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department, National Key Discipline, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jian Yu
- Department of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department, National Key Discipline, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
59
|
Silva NA, Sousa N, Reis RL, Salgado AJ. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 2013; 114:25-57. [PMID: 24269804 DOI: 10.1016/j.pneurobio.2013.11.002] [Citation(s) in RCA: 555] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 11/12/2013] [Accepted: 11/12/2013] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder that affects thousands of individuals each year. Over the past decades an enormous progress has been made in our understanding of the molecular and cellular events generated by SCI, providing insights into crucial mechanisms that contribute to tissue damage and regenerative failure of injured neurons. Current treatment options for SCI include the use of high dose methylprednisolone, surgical interventions to stabilize and decompress the spinal cord, and rehabilitative care. Nonetheless, SCI is still a harmful condition for which there is yet no cure. Cellular, molecular, rehabilitative training and combinatorial therapies have shown promising results in animal models. Nevertheless, work remains to be done to ascertain whether any of these therapies can safely improve patient's condition after human SCI. This review provides an extensive overview of SCI research, as well as its clinical component. It starts covering areas from physiology and anatomy of the spinal cord, neuropathology of the SCI, current clinical options, neuronal plasticity after SCI, animal models and techniques to assess recovery, focusing the subsequent discussion on a variety of promising neuroprotective, cell-based and combinatorial therapeutic approaches that have recently moved, or are close, to clinical testing.
Collapse
Affiliation(s)
- Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Caldas das Taipas, Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
60
|
Soleman S, Filippov MA, Dityatev A, Fawcett JW. Targeting the neural extracellular matrix in neurological disorders. Neuroscience 2013; 253:194-213. [PMID: 24012743 DOI: 10.1016/j.neuroscience.2013.08.050] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/06/2013] [Accepted: 08/26/2013] [Indexed: 01/15/2023]
Abstract
The extracellular matrix (ECM) is known to regulate important processes in neuronal cell development, activity and growth. It is associated with the structural stabilization of neuronal processes and synaptic contacts during the maturation of the central nervous system. The remodeling of the ECM during both development and after central nervous system injury has been shown to affect neuronal guidance, synaptic plasticity and their regenerative responses. Particular interest has focused on the inhibitory role of chondroitin sulfate proteoglycans (CSPGs) and their formation into dense lattice-like structures, termed perineuronal nets (PNNs), which enwrap sub-populations of neurons and restrict plasticity. Recent studies in mammalian systems have implicated CSPGs and PNNs in regulating and restricting structural plasticity. The enzymatic degradation of CSPGs or destabilization of PNNs has been shown to enhance neuronal activity and plasticity after central nervous system injury. This review focuses on the role of the ECM, CSPGs and PNNs; and how developmental and pharmacological manipulation of these structures have enhanced neuronal plasticity and aided functional recovery in regeneration, stroke, and amblyopia. In addition to CSPGs, this review also points to the functions and potential therapeutic value of these and several other key ECM molecules in epileptogenesis and dementia.
Collapse
Affiliation(s)
- S Soleman
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
61
|
Carulli D, Foscarin S, Faralli A, Pajaj E, Rossi F. Modulation of semaphorin3A in perineuronal nets during structural plasticity in the adult cerebellum. Mol Cell Neurosci 2013; 57:10-22. [PMID: 23999154 DOI: 10.1016/j.mcn.2013.08.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/05/2013] [Accepted: 08/24/2013] [Indexed: 02/02/2023] Open
Abstract
In the adult central nervous system (CNS) subsets of neurons are enwrapped by densely organized extracellular matrix structures, called perineuronal nets (PNNs). PNNs are formed at the end of critical periods and contribute to synapse stabilization. Enzymatic degradation of PNNs or genetic deletion of specific PNN components leads to the prolongation of the plasticity period. PNNs consist of extracellular matrix molecules, including chondroitin sulfate proteoglycans, hyaluronan, tenascins and link proteins. It has been recently shown that the chemorepulsive axon guidance protein semaphorin3A (Sema3A) is also a constituent of PNNs, binding with high affinity to the sugar chains of chondroitin sulfate proteoglycans. To elucidate whether the expression of Sema3A is modified in parallel with structural plasticity in the adult CNS, we examined Sema3A expression in the deep cerebellar nuclei of the adult mouse in a number of conditions associated with structural reorganization of the local connectivity. We found that Sema3A in PNNs is reduced during enhanced neuritic remodeling, in both physiological and injury-induced conditions. Moreover, we provide evidence that Sema3A is tightly associated with Purkinje axons and their terminals and its amount in the PNNs is related to Purkinje cell innervation of DCN neurons, but not to glutamatergic inputs. On the whole these data suggest that Sema3A may contribute to the growth-inhibitory properties of PNNs and Purkinje neurons may directly control their specific connection pattern through the release and capture of this guidance cue in the specialized ECM that surrounds their terminals.
Collapse
Affiliation(s)
- Daniela Carulli
- Department of Neuroscience, Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy; Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Turin, Italy.
| | | | | | | | | |
Collapse
|
62
|
Yi JH, Katagiri Y, Susarla B, Figge D, Symes AJ, Geller HM. Alterations in sulfated chondroitin glycosaminoglycans following controlled cortical impact injury in mice. J Comp Neurol 2013; 520:3295-313. [PMID: 22628090 DOI: 10.1002/cne.23156] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) play a pivotal role in many neuronal growth mechanisms including axon guidance and the modulation of repair processes following injury to the spinal cord or brain. Many actions of CSPGs in the central nervous system (CNS) are governed by the specific sulfation pattern on the glycosaminoglycan (GAG) chains attached to CSPG core proteins. To elucidate the role of CSPGs and sulfated GAG chains following traumatic brain injury (TBI), controlled cortical impact injury of mild to moderate severity was performed over the left sensory motor cortex in mice. Using immunoblotting and immunostaining, we found that TBI resulted in an increase in the CSPGs neurocan and NG2 expression in a tight band surrounding the injury core, which overlapped with the presence of 4-sulfated CS GAGs but not with 6-sulfated GAGs. This increase was observed as early as 7 days post injury (dpi), and persisted for up to 28 dpi. Labeling with markers against microglia/macrophages, NG2+ cells, fibroblasts, and astrocytes showed that these cells were all localized in the area, suggesting multiple origins of chondroitin-4-sulfate increase. TBI also caused a decrease in the expression of aggrecan and phosphacan in the pericontusional cortex with a concomitant reduction in the number of perineuronal nets. In summary, we describe a dual response in CSPGs whereby they may be actively involved in complex repair processes following TBI.
Collapse
Affiliation(s)
- Jae-Hyuk Yi
- Developmental Neurobiology Section, Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
63
|
Basille-Dugay M, Hamza MM, Tassery C, Parent B, Raoult E, Bénard M, Raisman-Vozari R, Vaudry D, Burel DC. Spatio-temporal characterization of the pleiotrophinergic system in mouse cerebellum: evidence for its key role during ontogenesis. Exp Neurol 2013; 247:537-51. [PMID: 23454176 DOI: 10.1016/j.expneurol.2013.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/20/2012] [Accepted: 02/08/2013] [Indexed: 12/29/2022]
Abstract
The development of the central nervous system requires an appropriate micro-environment that is conditioned by a combination of various extracellular components. Most of the known signaling factors, such as neurotransmitters or neuropeptides, are soluble and diffuse into the extracellular matrix. However, other secreted molecules like proteoglycans or glycosaminoglycans anchor in the extracellular matrix to influence cerebral ontogenesis. As such, pleiotrophin (PTN), which binds the proteoglycans syndecan-3 (SDC3) and protein tyrosine phosphatase zeta (PTPζ), has been described as a pro-migratory and a pro-differentiating secreted cytokine on cortical neurons. In rat cerebellum, PTN is highly expressed during the first postnatal week, suggesting that this cytokine could participate to the development of the cerebellar cortex. According to this hypothesis, our spatio-temporal cartography of PTN, PTPζ and SDC3 indicated that, in mouse, the PTNergic system was present in the cerebellum at least from the first postnatal day (P0). Until P12, PTN was mainly expressed by granule cell precursors and located in the extracellular matrix, while SDC3 was expressed by Purkinje cells, Golgi cells and granule cell precursors, and PTPζ was present on Purkinje cells and Bergmann fibers. In vitro studies confirmed the presence of SDC3 on immature granule cells and demonstrated that PTN could stimulate directly their velocity in culture. In contrast, subarachnoidal injection of PTN in the cerebellum significantly reduced the rate of migration of granule cells, exacerbated their apoptosis and induced an atrophy of the Purkinje cell dendritic tree. Since differentiated granule cells did not express SDC3 or PTPζ, the PTN effect observed on migration and apoptosis may be indirectly mediated by Purkinje and/or Bergmann cells. From P21 to adulthood, the distribution of PTN, SDC3 and PTPζ changed and their expression dramatically decreased even if they were still detectable. PTN and SDC3 immunolabeling was restricted around Purkinje cell bodies and Golgi cells, whereas PTPζ was located around interneurons. These data suggested that, in the cerebellum of adult mice, PTN participates to the perineuronal nets that control neuronal plasticity. To conclude, the present work represents the first spatio-temporal characterization of the PTNergic system in the mouse cerebellum and indicates that PTN may contribute to cerebellum ontogenesis during the postnatal development as well as to neuronal plasticity at adulthood.
Collapse
Affiliation(s)
- Magali Basille-Dugay
- Institut National de Santé et de Recherche Médicale (Inserm), U982, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Starkey ML, Bartus K, Barritt AW, Bradbury EJ. Chondroitinase ABC promotes compensatory sprouting of the intact corticospinal tract and recovery of forelimb function following unilateral pyramidotomy in adult mice. Eur J Neurosci 2012; 36:3665-78. [PMID: 23061434 DOI: 10.1111/ejn.12017] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 08/26/2012] [Accepted: 09/12/2012] [Indexed: 12/11/2022]
Abstract
Chondroitin sulphate proteoglycans (CSPGs) are extracellular matrix molecules whose inhibitory activity is attenuated by the enzyme chondroitinase ABC (ChABC). Here we assess whether CSPG degradation can promote compensatory sprouting of the intact corticospinal tract (CST) following unilateral injury and restore function to the denervated forelimb. Adult C57BL/6 mice underwent unilateral pyramidotomy and treatment with either ChABC or a vehicle control. Significant impairments in forepaw symmetry were observed following pyramidotomy, with injured mice preferentially using their intact paw during spontaneous vertical exploration of a cylinder. No recovery on this task was observed in vehicle-treated mice. However, ChABC-treated mice showed a marked recovery of function, with forelimb symmetry fully restored by 5 weeks post-injury. Functional recovery was associated with robust sprouting of the uninjured CST, with numerous axons observed crossing the midline in the brainstem and spinal cord and terminating in denervated grey matter. CST fibres in the denervated side of the spinal cord following ChABC treatment were closely associated with the synaptic marker vGlut1. Immunohistochemical assessment of chondroitin-4-sulphate revealed that CSPGs were heavily digested around lamina X, alongside midline crossing axons and in grey matter regions where sprouting axons and reduced peri-neuronal net staining was observed. Thus, we demonstrate that CSPG degradation promotes midline crossing and reinnervation of denervated target regions by intact CST axons and leads to restored function in the denervated forepaw. Enhancing compensatory sprouting using ChABC provides a route to restore function that could be applied to disorders such as spinal cord injury and stroke.
Collapse
Affiliation(s)
- Michelle L Starkey
- Regeneration Group, King's College London, Wolfson Centre for Age-Related Diseases, Hodgkin Building, Guy's Campus, London Bridge, London, SE1 IUL, UK
| | | | | | | |
Collapse
|
65
|
McKillop WM, Dragan M, Schedl A, Brown A. Conditional Sox9 ablation reduces chondroitin sulfate proteoglycan levels and improves motor function following spinal cord injury. Glia 2012; 61:164-77. [PMID: 23027386 DOI: 10.1002/glia.22424] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/31/2012] [Indexed: 11/12/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) found in perineuronal nets and in the glial scar after spinal cord injury have been shown to inhibit axonal growth and plasticity. Since we have previously identified SOX9 as a transcription factor that upregulates the expression of a battery of genes associated with glial scar formation in primary astrocyte cultures, we predicted that conditional Sox9 ablation would result in reduced CSPG expression after spinal cord injury and that this would lead to increased neuroplasticity and improved locomotor recovery. Control and Sox9 conditional knock-out mice were subject to a 70 kdyne contusion spinal cord injury at thoracic level 9. One week after injury, Sox9 conditional knock-out mice expressed reduced levels of CSPG biosynthetic enzymes (Xt-1 and C4st), CSPG core proteins (brevican, neurocan, and aggrecan), collagens 2a1 and 4a1, and Gfap, a marker of astrocyte activation, in the injured spinal cord compared with controls. These changes in gene expression were accompanied by improved hind limb function and locomotor recovery as evaluated by the Basso Mouse Scale (BMS) and rodent activity boxes. Histological assessments confirmed reduced CSPG deposition and collagenous scarring at the lesion of Sox9 conditional knock-out mice, and demonstrated increased neurofilament-positive fibers in the lesion penumbra and increased serotonin immunoreactivity caudal to the site of injury. These results suggest that SOX9 inhibition is a potential strategy for the treatment of SCI.
Collapse
Affiliation(s)
- William M McKillop
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
66
|
Abstract
Axon regeneration is a medically relevant process that can repair damaged neurons. This review describes current progress in understanding axon regeneration in the model organism Caenorhabditis elegans. Factors that regulate axon regeneration in C. elegans have broadly similar roles in vertebrate neurons. This means that using C. elegans as a tool to leverage discovery is a legitimate strategy for identifying conserved mechanisms of axon regeneration.
Collapse
Affiliation(s)
- Rachid El Bejjani
- Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
67
|
McRae PA, Porter BE. The perineuronal net component of the extracellular matrix in plasticity and epilepsy. Neurochem Int 2012; 61:963-72. [PMID: 22954428 DOI: 10.1016/j.neuint.2012.08.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 12/20/2022]
Abstract
During development the extracellular matrix (ECM) of the central nervous system (CNS) facilitates proliferation, migration, and synaptogenesis. In the mature nervous system due to changes in the ECM it provides structural stability and impedes proliferation, migration, and synaptogensis. The perineuronal net (PN) is a specialized ECM structure found primarily surrounding inhibitory interneurons where it forms a mesh-like structure around points of synaptic contact. The PN organizes the extracellular space by binding multiple components of the ECM and bringing them into close proximity to the cell membrane, forming dense aggregates surrounding synapses. The PN is expressed late in postnatal development when the nervous system is in the final stages of maturation and the critical periods are closing. Once fully expressed the PN envelopes synapses and leads to decreased plasticity and increases synaptic stability in the CNS. Disruptions in the PN have been studied in a number of disease states including epilepsy. Epilepsy is one of the most common neurologic disorders characterized by excessive neuronal activity which results in recurrent spontaneous seizures. A shift in the delicate balance between excitation and inhibition is believed to be one of the underlying mechanisms in the development of epilepsy. During epileptogenesis, the brain undergoes numerous changes including synaptic rearrangement and axonal sprouting, which require structural plasticity. Because of the PNs location around inhibitory cells and its role in limiting plasticity, the PN is an important candidate for altering the progression of epilepsy. In this review, an overview of the ECM and PN in the CNS will be presented with special emphasis on potential roles in epileptogenesis.
Collapse
Affiliation(s)
- Paulette A McRae
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | | |
Collapse
|
68
|
Intracerebral chondroitinase ABC and heparan sulfate proteoglycan glypican improve outcome from chronic stroke in rats. Proc Natl Acad Sci U S A 2012; 109:9155-60. [PMID: 22615373 DOI: 10.1073/pnas.1205697109] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Physical and chemical constraints imposed by the periinfarct glial scar may contribute to the limited clinical improvement often observed after ischemic brain injury. To investigate the role of some of these mediators in outcome from cerebral ischemia, we treated rats with the growth-inhibitory chondroitin sulfate proteoglycan neurocan, the growth-stimulating heparan sulfate proteoglycan glypican, or the chondroitin sulfate proteoglycan-degrading enzyme chondroitinase ABC. Neurocan, glypican, or chondroitinase ABC was infused directly into the infarct cavity for 7 d, beginning 7 d after middle cerebral artery occlusion. Glypican and chondroitinase ABC reduced glial fibrillary acidic protein immunoreactivity and increased microtubule-associated protein-2 immunoreactivity in the periinfarct region, and glypican- and chondroitinase ABC-treated rats showed behavioral improvement compared with neurocan- or saline-treated rats. Glypican and chondroitinase ABC also increased neurite extension in cortical neuron cultures. Glypican increased fibroblast growth factor-2 expression and chondroitinase ABC increased brain-derived neurotrophic factor expression in these cultures, whereas no such effects were seen following neurocan treatment. Thus, treatment with glypican or enzymatic disruption of neurocan with chondroitinase ABC improves gross anatomical, histological, and functional outcome in the chronic phase of experimental stroke in rats. Changes in growth factor expression and neuritogenesis may help to mediate these effects.
Collapse
|
69
|
Wang D, Fawcett J. The perineuronal net and the control of CNS plasticity. Cell Tissue Res 2012; 349:147-60. [PMID: 22437874 DOI: 10.1007/s00441-012-1375-y] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
Abstract
Perineuronal nets (PNNs) are reticular structures that surround the cell body of many neurones, and extend along their dendrites. They are considered to be a specialized extracellular matrix in the central nervous system (CNS). PNN formation is first detected relatively late in development, as the mature synaptic circuitry of the CNS is established and stabilized. Its unique distribution in different CNS regions, the timing of its establishment, and the changes it undergoes after injury all point toward diverse and important functions that it may be performing. The involvement of PNNs in neuronal plasticity has been extensively studied over recent years, with developmental, behavioural, and functional correlations. In this review, we will first briefly detail the structure and organization of PNNs, before focusing our discussion on their unique roles in neuronal development and plasticity. The PNN is an important regulator of CNS plasticity, both during development and into adulthood. Production of critical PNN components is often triggered by appropriate sensory experiences during early postnatal development. PNN deposition around neurones helps to stabilize the established neuronal connections, and to restrict the plastic changes due to future experiences within the CNS. Disruption of PNNs can reactivate plasticity in many CNSs, allowing activity-dependent changes to once again modify neuronal connections. The mechanisms through which PNNs restrict CNS plasticity remain unclear, although recent advances promise to shed additional light on this important subject.
Collapse
Affiliation(s)
- Difei Wang
- Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge CB2 0PY, UK
| | | |
Collapse
|
70
|
Foscarin S, Rossi F, Carulli D. Influence of the environment on adult CNS plasticity and repair. Cell Tissue Res 2011; 349:161-7. [PMID: 22143260 DOI: 10.1007/s00441-011-1293-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 11/18/2011] [Indexed: 01/17/2023]
Abstract
During developmental critical periods, external stimuli are crucial for information processing, acquisition of new functions or functional recovery after CNS damage. These phenomena depend on the capability of neurons to modify their functional properties and/or their connections, generally defined as "plasticity". Although plasticity decreases after the closure of critical periods, the adult CNS retains significant capabilities for structural remodelling and functional adaptation. At the molecular level, structural modifications of neural circuits depend on the balance between intrinsic growth properties of the involved neurons and growth-regulatory cues of the extracellular milieu. Interestingly, experience acts on this balance, so as to create permissive conditions for neuritic remodelling. Here, we present an overview of recent findings concerning the effects of experience on cellular and molecular processes responsible for producing structural plasticity of neural networks or functional recovery after an insult to the adult CNS (e.g. traumatic injury, ischemia or neurodegenerative disease). Understanding experience-dependent mechanisms is crucial for the development of tailored rehabilitative strategies, which can be exploited alone or in combination with specific therapeutic interventions to improve neural repair after damage.
Collapse
Affiliation(s)
- Simona Foscarin
- Department of Neuroscience, Neuroscience Institute of Turin, University of Turin, Turin, Italy
| | | | | |
Collapse
|
71
|
Kwok JC, Dick G, Wang D, Fawcett JW. Extracellular matrix and perineuronal nets in CNS repair. Dev Neurobiol 2011; 71:1073-89. [DOI: 10.1002/dneu.20974] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
72
|
Bartus K, James ND, Bosch KD, Bradbury EJ. Chondroitin sulphate proteoglycans: key modulators of spinal cord and brain plasticity. Exp Neurol 2011; 235:5-17. [PMID: 21871887 DOI: 10.1016/j.expneurol.2011.08.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 07/15/2011] [Accepted: 08/08/2011] [Indexed: 01/08/2023]
Abstract
Chondroitin sulphate proteoglycans (CSPGs) are a family of inhibitory extracellular matrix molecules that are highly expressed during development, where they are involved in processes of pathfinding and guidance. CSPGs are present at lower levels in the mature CNS, but are highly concentrated in perineuronal nets where they play an important role in maintaining stability and restricting plasticity. Whilst important for maintaining stable connections, this can have an adverse effect following insult to the CNS, restricting the capacity for repair, where enhanced synapse formation leading to new connections could be functionally beneficial. CSPGs are also highly expressed at CNS injury sites, where they can restrict anatomical plasticity by inhibiting sprouting and reorganisation, curbing the extent to which spared systems may compensate for the loss function of injured pathways. Modification of CSPGs, usually involving enzymatic degradation of glycosaminoglycan chains from the CSPG molecule, has received much attention as a potential strategy for promoting repair following spinal cord and brain injury. Pre-clinical studies in animal models have demonstrated a number of reparative effects of CSPG modification, which are often associated with functional recovery. Here we discuss the potential of CSPG modification to stimulate restorative plasticity after injury, reviewing evidence from studies in the brain, the spinal cord and the periphery.
Collapse
Affiliation(s)
- K Bartus
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London Bridge, SE1 1UL, UK.
| | | | | | | |
Collapse
|
73
|
Combining chondroitinase ABC and growth factors promotes the integration of murine retinal progenitor cells transplanted into Rho(-/-) mice. Mol Vis 2011; 17:1759-70. [PMID: 21750603 PMCID: PMC3133841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 06/24/2011] [Indexed: 10/25/2022] Open
Abstract
PURPOSE The aim of this study is to investigate the synergistic effect of chondroitinase ABC and growth factors in the integration of murine retinal progenitor cells (mRPCs) transplanted into Rho(-/-) mice. METHODS mRPCs from P1 green fluorescent protein-transgenic mice were isolated and expanded for transplantation. All mRPCs of 20 passages or less were transplanted into the subretinal space of B6 mice together with chondroitinase ABC, and into Rho(-/-) mice combined with chondroitinase ABC, N-[N-(3, 5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), and insulin growth factor (IGF)-1. Cell counts were used to examine the migration and survival rate of mRPCs in B6 mice. Immunohistochemistry was used to evaluate the differentiation and integration of mRPCs in B6 and Rho(-/-) mice. RESULTS Our results show that substantial numbers of mRPCs migrated and survived in the retina when transplanted with chondroitinase ABC into B6 and Rho(-/-) mice. Chondroitinase ABC disrupted the glial scar around the mRPCs in the subretinal space. Only a few mRPCs expressed recoverin in B6 mice. More mRPCs expressed rhodopsin, recoverin, and synaptophysin after transplantation into Rho(-/-) mice when combined with chondroitinase ABC and growth factors. CONCLUSIONS The synergistic effect of chondroitinase ABC and growth factors facilitates the anatomic integration of mRPCs transplanted into Rho(-/-) mice.
Collapse
|
74
|
Composition–structure–property (Zn2+ and Ca2+ ion release) evaluation of Si–Na–Ca–Zn–Ce glasses: Potential components for nerve guidance conduits. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2010.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
75
|
Bradbury EJ, Carter LM. Manipulating the glial scar: chondroitinase ABC as a therapy for spinal cord injury. Brain Res Bull 2011; 84:306-16. [PMID: 20620201 DOI: 10.1016/j.brainresbull.2010.06.015] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 06/25/2010] [Accepted: 06/30/2010] [Indexed: 12/30/2022]
Abstract
Chondroitin sulphate proteoglycans (CSPGs) are potent inhibitors of growth in the adult CNS. Use of the enzyme chondroitinase ABC (ChABC) as a strategy to reduce CSPG inhibition in experimental models of spinal cord injury has led to observations of a remarkable capacity for repair. Here we review the evidence that treatment with ChABC, either as an individual therapy or in combination with other strategies, can have multiple beneficial effects on promoting repair following spinal cord injury. These include promoting regeneration of injured axons, plasticity of uninjured pathways and neuroprotection of injured projection neurons. More importantly, ChABC therapy has been demonstrated to promote significant recovery of function to spinal injured animals. Thus, there is robust pre-clinical evidence demonstrating beneficial effects of ChABC treatment following spinal cord injury. Furthermore, these effects have been replicated in a number of different injury models, with independent confirmation by different laboratories, providing an important validation of ChABC as a promising therapeutic strategy. We discuss putative mechanisms underlying ChABC-mediated repair as well as potential issues and considerations in translating ChABC treatment into a clinical therapy for spinal cord injury.
Collapse
Affiliation(s)
- Elizabeth J Bradbury
- King's College London, Neurorestoration Group, Wolfson Centre for Age-Related Diseases, Guy's Campus, London, United Kingdom.
| | | |
Collapse
|
76
|
Foscarin S, Ponchione D, Pajaj E, Leto K, Gawlak M, Wilczynski GM, Rossi F, Carulli D. Experience-dependent plasticity and modulation of growth regulatory molecules at central synapses. PLoS One 2011; 6:e16666. [PMID: 21304956 PMCID: PMC3031615 DOI: 10.1371/journal.pone.0016666] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 01/10/2011] [Indexed: 12/29/2022] Open
Abstract
Structural remodeling or repair of neural circuits depends on the balance between intrinsic neuronal properties and regulatory cues present in the surrounding microenvironment. These processes are also influenced by experience, but it is still unclear how external stimuli modulate growth-regulatory mechanisms in the central nervous system. We asked whether environmental stimulation promotes neuronal plasticity by modifying the expression of growth-inhibitory molecules, specifically those of the extracellular matrix. We examined the effects of an enriched environment on neuritic remodeling and modulation of perineuronal nets in the deep cerebellar nuclei of adult mice. Perineuronal nets are meshworks of extracellular matrix that enwrap the neuronal perikaryon and restrict plasticity in the adult CNS. We found that exposure to an enriched environment induces significant morphological changes of Purkinje and precerebellar axon terminals in the cerebellar nuclei, accompanied by a conspicuous reduction of perineuronal nets. In the animals reared in an enriched environment, cerebellar nuclear neurons show decreased expression of mRNAs coding for key matrix components (as shown by real time PCR experiments), and enhanced activity of matrix degrading enzymes (matrix metalloproteinases 2 and 9), which was assessed by in situ zymography. Accordingly, we found that in mutant mice lacking a crucial perineuronal net component, cartilage link protein 1, perineuronal nets around cerebellar neurons are disrupted and plasticity of Purkinje cell terminal is enhanced. Moreover, all the effects of environmental stimulation are amplified if the afferent Purkinje axons are endowed with enhanced intrinsic growth capabilities, induced by overexpression of GAP-43. Our observations show that the maintenance and growth-inhibitory function of perineuronal nets are regulated by a dynamic interplay between pre- and postsynaptic neurons. External stimuli act on this interaction and shift the balance between synthesis and removal of matrix components in order to facilitate neuritic growth by locally dampening the activity of inhibitory cues.
Collapse
Affiliation(s)
- Simona Foscarin
- Neuroscience Institute of Turin (NIT), Department of Neuroscience, University of Turin, Turin, Italy
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Orbassano, Turin, Italy
| | - Danilo Ponchione
- Neuroscience Institute of Turin (NIT), Department of Neuroscience, University of Turin, Turin, Italy
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Orbassano, Turin, Italy
| | - Ermira Pajaj
- Neuroscience Institute of Turin (NIT), Department of Neuroscience, University of Turin, Turin, Italy
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Orbassano, Turin, Italy
| | - Ketty Leto
- Neuroscience Institute of Turin (NIT), Department of Neuroscience, University of Turin, Turin, Italy
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Orbassano, Turin, Italy
| | - Maciej Gawlak
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Grzegorz M. Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Ferdinando Rossi
- Neuroscience Institute of Turin (NIT), Department of Neuroscience, University of Turin, Turin, Italy
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Orbassano, Turin, Italy
- * E-mail:
| | - Daniela Carulli
- Neuroscience Institute of Turin (NIT), Department of Neuroscience, University of Turin, Turin, Italy
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Orbassano, Turin, Italy
| |
Collapse
|
77
|
Kwok JC, Tan CL, Wang D, Heller J, Fawcett JW. Chondroitin Sulfates in Axon Regeneration and Plasticity. TRENDS GLYCOSCI GLYC 2011. [DOI: 10.4052/tigg.23.201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jessica C.F. Kwok
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, United Kingdom
| | - Chin Lik Tan
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, United Kingdom
| | - Difei Wang
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, United Kingdom
| | - Janosch Heller
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, United Kingdom
| | - James W. Fawcett
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, United Kingdom
| |
Collapse
|
78
|
Harris NG, Mironova YA, Hovda DA, Sutton RL. Chondroitinase ABC enhances pericontusion axonal sprouting but does not confer robust improvements in behavioral recovery. J Neurotrauma 2010; 27:1971-82. [PMID: 20809786 DOI: 10.1089/neu.2010.1470] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) results in enduring functional deficits. Strategies aimed at promoting plasticity within the injured brain may aid in enhancing functional outcome. We have previously shown that spontaneous pericontusional axon sprouting occurs within 7-14 days after controlled cortical impact injury in the adult rat, but ultimately fails due to an increasingly growth-inhibitory environment. We therefore sought to determine whether acute infusion of chondroitinase ABC into the site of the cortical contusion, to further reduce pericontusional growth-inhibitory chondroitin sulfate proteoglycans (CSPGs), would enhance and prolong the sprouting response. We also wanted to determine if chondroitinase-enhanced sprouting would ameliorate the behavioral deficits in forelimb function that occur in this model. Acute chondroitinase infusion decreased intact CSPGs and significantly increased pericontusional cortical grey and white matter growth-associated protein 43 (GAP43)-positive axon sprouting at 7 days post-injury. A return of intact CSPGs at later time points likely contributed to the absence of persistently increased levels of axon sprouting by 14-21 days post-injury. There was no overall benefit on forelimb function during the time of maximal sprouting or at any subsequent times in three of four behavioral outcome measures. However, there was a chondroitinase-induced improvement in recovery from unskilled limb use deficits on the staircase forelimb reaching test toward sham-injured values at 28 days, which was not achieved by the vehicle-treated rats, indicating that there is some minor functional benefit of the increased sprouting induced by chondroitinase treatment. The current results, together with data from spinal cord injury models after chondroitinase intervention, suggest that a combinatorial approach with the addition of neurotrophins and rehabilitation would result in more robust axon sprouting and consequently improve behavioral outcome.
Collapse
Affiliation(s)
- Neil G Harris
- The University of California-Los Angeles (UCLA) Brain Injury Research Center, Los Angeles, California 90095-7039, USA.
| | | | | | | |
Collapse
|
79
|
Gundelfinger ED, Frischknecht R, Choquet D, Heine M. Converting juvenile into adult plasticity: a role for the brain’s extracellular matrix. Eur J Neurosci 2010; 31:2156-65. [DOI: 10.1111/j.1460-9568.2010.07253.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
80
|
Tom VJ, Kadakia R, Santi L, Houlé JD. Administration of chondroitinase ABC rostral or caudal to a spinal cord injury site promotes anatomical but not functional plasticity. J Neurotrauma 2010; 26:2323-33. [PMID: 19659409 DOI: 10.1089/neu.2009.1047] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Growth-inhibitory chondroitin sulfate proteoglycans (CSPG) are a primary target for therapeutic strategies after spinal cord injury because of their contribution to the inhibitory nature of glial scar tissue, a major barrier to successful axonal regeneration. Chondroitinase ABC (ChABC) digestion of CSPGs promotes axonal regeneration beyond a lesion site with subsequent functional improvement. ChABC also has been shown to promote sprouting of spared fibers but it is not clear if functional recovery results from such plasticity. Here we sought to better understand the roles rostral or caudal sprouting may play in ChABC-mediated functional improvement. To achieve this, ChABC or vehicle was injected rostral or caudal to a unilateral C5 injury. When injected rostral to a hemisection, ChABC promoted significant sprouting of 5HT+ fibers into dorsal and ventral horns. When ChABC was injected into tissue caudal to a hemisection, no additional sprouting was observed. When injected caudal to a hemicontusion injury, ChABC promoted sprouting of 5HT+ fibers into the ventral horn but not the dorsal horn. None of this sprouting resulted in a change in the synaptic component synapsin, nor did it impact performance in behavioral tests assessing motor function. These data suggest that ChABC-mediated sprouting of spared fibers does not necessarily translate into functional recovery.
Collapse
Affiliation(s)
- Veronica J Tom
- Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
81
|
Pantazopoulos H, Woo TUW, Lim MP, Lange N, Berretta S. Extracellular matrix-glial abnormalities in the amygdala and entorhinal cortex of subjects diagnosed with schizophrenia. ACTA ACUST UNITED AC 2010; 67:155-66. [PMID: 20124115 DOI: 10.1001/archgenpsychiatry.2009.196] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CONTEXT Chondroitin sulfate proteoglycans (CSPGs), a main component of the brain extracellular matrix, regulate developmental and adult neural functions that are highly relevant to the pathogenesis of schizophrenia. Such functions, together with marked expression of CSPGs in astrocytes within the normal human amygdala and evidence of a disruption of astrocytic functions in this disease, point to involvement of CSPG-glial interactions in schizophrenia. HYPOTHESIS Chondroitin sulfate proteoglycan-related abnormalities involve glial cells and extracellular matrix pericellular aggregates (perineuronal nets) in the amygdala and entorhinal cortex of subjects with schizophrenia. DESIGN Postmortem case-control study. SETTING The Translational Neuroscience Laboratory at McLean Hospital, Harvard Medical School. Specimens were obtained from the Harvard Brain Tissue Resource Center at McLean Hospital. PARTICIPANTS Two separate cohorts of healthy control (n = 15; n = 10) and schizophrenic (n = 11; n = 10) subjects and a cohort of subjects with bipolar disorder (n = 11). INTERVENTIONS Quantitative, immunocytological, and histological postmortem investigations. MAIN OUTCOME MEASURES Numerical densities of CSPG-positive glial cells and perineuronal nets, glial fibrillary acidic protein-positive astrocytes, and total numbers of parvalbumin-positive neurons in the deep amygdala nuclei and entorhinal cortex. RESULTS In schizophrenia, massive increases in CSPG-positive glial cells were detected in the deep amygdala nuclei (419%-1162%) and entorhinal cortex (layer II; 480%-1560%). Perineuronal nets were reduced in the lateral nucleus of the amygdala and lateral entorhinal cortex (layer II). Numerical densities of glial fibrillary acidic protein-positive glial cells and total numbers of parvalbumin-positive neurons were unaltered. Changes in CSPG-positive elements were negligible in subjects with bipolar disorder. CONCLUSIONS Marked changes in functionally relevant molecules in schizophrenia point to a pivotal role for extracellular matrix-glial interactions in the pathogenesis of this disease. Disruption of these interactions, unsuspected thus far, may represent a unifying factor contributing to disturbances of neuronal migration, synaptic connectivity, and GABAergic, glutamatergic, and dopaminergic neurotransmission in schizophrenia. The lack of CSPG abnormalities in bipolar disorder points to a distinctive aspect of the pathophysiology of schizophrenia in key medial temporal lobe regions.
Collapse
Affiliation(s)
- Harry Pantazopoulos
- Translational Neuroscience Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | | | | | | | | |
Collapse
|
82
|
Morita S, Oohira A, Miyata S. Activity-dependent remodeling of chondroitin sulfate proteoglycans extracellular matrix in the hypothalamo-neurohypophysial system. Neuroscience 2010; 166:1068-82. [PMID: 20109532 DOI: 10.1016/j.neuroscience.2010.01.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 11/18/2022]
Abstract
The hypothalamo-neurohypophysial system (HNS) consisting of arginine vasopressin (AVP) and oxytocin (OXT) magnocellular neurons shows the structural plasticity including the rearrangement of synapses, dendrites, and neurovascular contacts during chronic physiological stimulation. In this study, we examined the remodeling of chondroitin sulfate proteoglycans (CSPGs), main extracellular matrix (ECM), in the HNS after salt loading known as a chronic stimulation to cause the structural plasticity. In the supraoptic nucleus (SON), confocal microscopic observation revealed that the immunoreactivity of 6B4 proteoglycans (PG) was observed mainly at AVP-positive magnocellular neurons but that of neurocan was seen chiefly at OXT-positive magnocellular neurons. The immunoreactivity of phosphacan and aggrecan was seen at both AVP- and OXT-positive magnocellular neurons. Electron microscopic observation further showed that the immunoreactivity of phosphacan and neurocan was observed at astrocytic processes to surround somata, dendrites, and terminals, but not synaptic junctions. In the neurohypophysis (NH), the immunoreactivity of phosphacan, 6B4 PGs, and neurocan was observed at AVP-positive magnocellular terminals, but the reactivity of Wisteria floribunda agglutinin lectin was seen at OXT-positive ones. The immunoreactivity of versican was found at microvessel and that of aggrecan was not detected in the NH. Quantitative morphometrical analysis showed that the chronic physiological stimulation by 7-day salt loading decreased the level of 6B4 PGs in the SON and the level of phosphacan, 6B4 PGs, and neurocan in the NH. These results suggest that the extracellular microenvironment of CSPGs is different between AVP and OXT magnocellular neurons and activity-dependent remodeling of CSPGs could be involved in the structural plasticity of the HNS.
Collapse
Affiliation(s)
- S Morita
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan
| | | | | |
Collapse
|
83
|
Comparative screening of glial cell types reveals extracellular matrix that inhibits retinal axon growth in a chondroitinase ABC-resistant fashion. Glia 2009; 57:1420-38. [DOI: 10.1002/glia.20860] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
84
|
de Luca A, Vassallo S, Benitez-Temino B, Menichetti G, Rossi F, Buffo A. Distinct modes of neuritic growth in purkinje neurons at different developmental stages: axonal morphogenesis and cellular regulatory mechanisms. PLoS One 2009; 4:e6848. [PMID: 19718257 PMCID: PMC2729392 DOI: 10.1371/journal.pone.0006848] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 07/15/2009] [Indexed: 11/19/2022] Open
Abstract
Background During development, neurons modify their axon growth mode switching from an elongating phase, in which the main axon stem reaches the target territory through growth cone-driven extension, to an arborising phase, when the terminal arbour is formed to establish synaptic connections. To investigate the relative contribution of cell-autonomous factors and environmental signals in the control of these distinct axon growth patterns, we examined the neuritogenesis of Purkinje neurons in cerebellar cultures prepared at elongating (embryonic day 17) or arborising (postnatal day zero) stages of Purkinje axon maturation. Methodology/Principal Findings When placed in vitro, Purkinje cells of both ages undergo an initial phase of neurite elongation followed by the development of terminal ramifications. Nevertheless, elongation of the main axon stem prevails in embryonic Purkinje axons, and many of these neurons are totally unable to form terminal branches. On the contrary, all postnatal neurites switch to arbour growth within a few days in culture and spread extensive terminal trees. Regardless of their elongating or arborising pattern, defined growth features (e.g. growth rate and tree extension) of embryonic Purkinje axons remain distinct from those of postnatal neurites. Thus, Purkinje neurons of different ages are endowed with intrinsic stage-specific competence for neuritic growth. Such competence, however, can be modified by environmental cues. Indeed, while exposure to the postnatal environment stimulates the growth of embryonic axons without modifying their phenotype, contact-mediated signals derived from granule cells specifically induce arborising growth and modulate the dynamics of neuritic elongation. Conclusions/Significance Cultured Purkinje cells recapitulate an intrinsically coded neuritogenic program, involving initial navigation of the axon towards the target field and subsequent expansion of the terminal arborisation. The execution of this program is regulated by environmental signals that modify the growth competence of Purkinje cells, so to adapt their endogenous properties to the different phases of neuritic morphogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Ferdinando Rossi
- Department of Neuroscience, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
- Rita Levi-Montalcini Center for Brain Repair, National Institute of Neuroscience, Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
- * E-mail:
| |
Collapse
|
85
|
Muir D. The potentiation of peripheral nerve sheaths in regeneration and repair. Exp Neurol 2009; 223:102-11. [PMID: 19505459 DOI: 10.1016/j.expneurol.2009.05.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 05/29/2009] [Accepted: 05/30/2009] [Indexed: 01/09/2023]
Abstract
Traumatic injury to the nervous system often results in life changing loss of neurological function. Spontaneous neural regeneration occurs rarely and the outcome of therapeutic intervention is most often unacceptable. An intensive effort is underway to improve methods and technologies for nervous system repair. To date, the most success has been attained in the outcomes of peripheral nerve restoration. The importance of the peripheral nerve sheaths in successful nerve regeneration has been long recognized. In particular, Schwann cells and their basal laminae play a central role in axon development, maintenance, physiology, and response to injury. The endoneurial basal lamina is rich in components that promote axonal growth. It is now evident that the bioactivities of these components are counterbalanced by various factors that impede axonal growth. The growth-promoting potential of peripheral nerve is realized in the degenerative processes that occur distal to a lesion. This potentiation involves precise spatiotemporal alterations in the balance of antagonistic regulators of axonal growth. Experimental alteration of nerve sheath composition can also potentiate nerve and improve key features of nerve regeneration. For instance, enzymatic degradation of inhibitory chondroitin sulfate proteoglycan mimics endogenous processes that potentiate degenerated nerve and improves the outcome of direct nerve repair and grafting in animal models. This review provides a perspective of the essential role that peripheral nerve sheaths play in regulating axonal regeneration and focuses on discoveries leading to the inception and development of novel therapies for nerve repair.
Collapse
Affiliation(s)
- David Muir
- Department of Pediatrics, Neurology Division, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, USA.
| |
Collapse
|
86
|
Nakamura M, Nakano K, Morita S, Nakashima T, Oohira A, Miyata S. Expression of chondroitin sulfate proteoglycans in barrel field of mouse and rat somatosensory cortex. Brain Res 2009; 1252:117-29. [DOI: 10.1016/j.brainres.2008.11.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 11/04/2008] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
|
87
|
Gianola S, de Castro F, Rossi F. Anosmin-1 stimulates outgrowth and branching of developing Purkinje axons. Neuroscience 2008; 158:570-84. [PMID: 19013504 DOI: 10.1016/j.neuroscience.2008.10.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 10/12/2008] [Accepted: 10/15/2008] [Indexed: 11/19/2022]
Abstract
During development, Purkinje axons elongate along precise trajectories and acquire stereotypic branching patterns to innervate targets in the deep nuclei and cerebellar cortex. These processes are accomplished through cell-intrinsic mechanisms, whose operation is regulated by environmental signaling cues. Here, we show that Anosmin-1, the protein defective in the X-linked form of Kallmann syndrome, is one among such cues. Anosmin-1, that stimulates axon elongation and branching in the olfactory system, is expressed by Purkinje cells and deep nuclear neurons of the rat cerebellum during the ontogenetic period when Purkinje axons acquire their mature pattern. These neurons also express the putative Anosmin-1 receptor, fibroblast growth factor receptor 1. Application of Anosmin-1 to dissociated cultures of embryonic (embryonic day 17, E17) or postnatal (postnatal day 0, P0) rat cerebellar cells enhances neuritic elongation and exerts a strong promoting action on the budding of collateral branches and on the extension of terminal arbors. Opposite effects are observed when neutralizing anti-Anosmin-1 antibodies are applied to the same cultures. Comparable results are obtained by administering the protein or the blocking antibodies to organotypic cultures of postnatal (P0) rat cerebellum. In P10 cerebellar slices, Anosmin-1 does not enhance the spontaneous regenerative capabilities of severed Purkinje axons, but promotes the terminal outgrowth of injured neurites into embryonic neocortical explants apposed to the axotomy site. Although Anosmin-1 is unable to change the overall intrinsic growth competence of Purkinje cells, it exerts a powerful stimulatory action on the budding and extension of collateral branches and terminal plexus, contributing to the patterning of Purkinje axons.
Collapse
Affiliation(s)
- S Gianola
- Department of Neuroscience and "Rita Levi Montalcini Centre for Brain Repair," Section of Physiology, National Institute of Neuroscience, University of Turin, Corso Raffaello, 30, I-10125 Turin, Italy
| | | | | |
Collapse
|
88
|
Ishii M, Maeda N. Oversulfated chondroitin sulfate plays critical roles in the neuronal migration in the cerebral cortex. J Biol Chem 2008; 283:32610-20. [PMID: 18819920 DOI: 10.1074/jbc.m806331200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chondroitin sulfate (CS) proteoglycans bind with various proteins through CS chains in a CS structure-dependent manner, in which oversulfated structures, such as iB (IdoA(2-O-sulfate)alpha1-3GalNAc(4-O-sulfate)), D (GlcA(2-O-sulfate)beta1-3GalNAc(6-O-sulfate)), and E (GlcAbeta1-3GalNAc(4,6-O-disulfate)) units constitute the critical functional module. In this study, we examined the expression and function of three CS sulfotransferases in the developing neocortex: uronyl 2-O-sulfotransferase (UST), N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (4,6-ST) and dermatan 4-O-sulfotransferase-1 (D4-ST), which are responsible for the synthesis of oversulfated structures. The CS chains of the neocortex of mouse embryos contained significant amounts of D and E units that are generated by UST and 4,6-ST, respectively. UST and 4,6-ST mRNAs were expressed in the ventricular and subventricular zones, and their expression increased during late embryonic development. In utero electroporation experiments indicated that knockdown of UST and 4,6-ST resulted in the disturbed migration of cortical neurons. The neurons electroporated with the short hairpin RNA constructs of UST and 4,6-ST accumulated in the lower intermediate zone and in the subventricular zone, showing a multipolar morphology. The cDNA constructs of UST and 4,6-ST rescued the defects caused by the RNA interference, and the neurons were able to migrate radially. On the other hand, knockdown of D4-ST, which is involved in the biosynthesis of the iB unit, caused no migratory defects. These results revealed that specific oversulfated structures in CS chains play critical roles in the migration of neuronal precursors during cortical development.
Collapse
Affiliation(s)
- Maki Ishii
- Department of Developmental Neuroscience, Tokyo Metropolitan Institute for Neuroscience, Musashidai, Fuchu, Tokyo 183-8526, Japan
| | | |
Collapse
|
89
|
Plastic responses to spinal cord injury. Behav Brain Res 2008; 192:114-23. [DOI: 10.1016/j.bbr.2008.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 12/26/2022]
|
90
|
Sato Y, Nakanishi K, Hayakawa M, Kakizawa H, Saito A, Kuroda Y, Ida M, Tokita Y, Aono S, Matsui F, Kojima S, Oohira A. Reduction of brain injury in neonatal hypoxic-ischemic rats by intracerebroventricular injection of neural stem/progenitor cells together with chondroitinase ABC. Reprod Sci 2008; 15:613-20. [PMID: 18579850 DOI: 10.1177/1933719108317299] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Perinatal hypoxia-ischemia (HI) remains a critical issue. Cell transplantation therapy could be a potent treatment for many neurodegenerative diseases, but limited works on this kind of therapy have been reported for perinatal HI. In this study, the therapeutic effect of transplantation with neural stem/ progenitor cells (NSPCs) and chondrotinase ABC (ChABC) in a neonatal HI rat model is evaluated. Histological studies showed that the unaffected area of the brain in animals treated with NSPCs together with ChABC was significantly larger than that in the animals treated with vehicle or NSPCs alone. The wet weight of the brain that received the combined treatment was also significantly higher than those of the vehicle and their individual treatments. These results indicate that intracerebroventricular injection of NSPCs with ChABC reduces brain injury in a rat neonatal HI model.
Collapse
Affiliation(s)
- Yoshiaki Sato
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Ishii M, Maeda N. Spatiotemporal expression of chondroitin sulfate sulfotransferases in the postnatal developing mouse cerebellum. Glycobiology 2008; 18:602-14. [PMID: 18480156 DOI: 10.1093/glycob/cwn040] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chondroitin sulfate (CS) proteoglycans are major components of the cell surface and the extracellular matrix in the developing brain and bind to various proteins via CS chains in a CS structure-dependent manner. This study demonstrated the expression pattern of three CS sulfotransferase genes, dermatan 4-O-sulfotransferase (D4ST), uronyl 2-O-sulfotransferase (UST), and N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST), in the mouse postnatal cerebellum. These sulfotransferases are responsible for the biosynthesis of oversulfated structures in CS chains such as B, D, and E units, which constitute the binding sites for various heparin-binding proteins. Real-time reverse transcription-polymerase chain reaction analysis indicated that the expression of UST increased remarkably during cerebellar development. The amounts of B and D units, which are generated by UST activity, in the cerebellar CS chains also increased during development. In contrast, the expression of GalNAc4S-6ST and its biosynthetic product, E unit, decreased during postnatal development. In situ hybridization experiments revealed the levels of UST and GalNAc4S-6ST mRNAs to correlate inversely in many cells including Purkinje cells, granule cells in the external granular layer, and inhibitory interneurons. In these neurons, the expression of UST increased and that of GalNAc4S-6ST decreased during development and/or maturation. D4ST was also expressed by many neurons, but its expression was not simply correlated with development, which might contribute to the diversification of CS structures expressed by distinct neurons. These results suggest that the CS structures of various cerebellar neurons change during development and such changes of CS are involved in the regulation of various signaling pathways.
Collapse
Affiliation(s)
- Maki Ishii
- Department of Developmental Neuroscience, Tokyo Metropolitan Institute for Neuroscience, Musashidai, Fuchu, Tokyo 183-8526, Japan
| | | |
Collapse
|
92
|
Galtrey CM, Kwok JCF, Carulli D, Rhodes KE, Fawcett JW. Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin-R in the rat spinal cord. Eur J Neurosci 2008; 27:1373-90. [PMID: 18364019 DOI: 10.1111/j.1460-9568.2008.06108.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Perineuronal nets (PNNs) are dense extracellular matrix (ECM) structures that form around many neuronal cell bodies and dendrites late in development. They contain several chondroitin sulphate proteoglycans (CSPGs), hyaluronan, link proteins and tenascin-R. Their time of appearance correlates with the ending of the critical period for plasticity, and they have been implicated in this process. The distribution of PNNs in the spinal cord was examined using Wisteria floribunda agglutinin lectin and staining for chondroitin sulphate stubs after chondroitinase digestion. Double labelling with the neuronal marker, NeuN, showed that PNNs were present surrounding approximately 30% of motoneurons in the ventral horn, 50% of large interneurons in the intermediate grey and 20% of neurons in the dorsal horn. These PNNs formed in the second week of postnatal development. Immunohistochemical staining demonstrated that the PNNs contain a mixture of CSPGs, hyaluronan, link proteins and tenascin-R. Of the CSPGs, aggrecan was present in all PNNs while neurocan, versican and phosphacan/RPTPbeta were present in some but not all PNNs. In situ hybridization showed that aggrecan and cartilage link protein (CRTL 1) and brain link protein-2 (BRAL 2) are produced by neurons. PNN-bearing neurons express hyaluronan synthase, and this enzyme and phosphacan/RPTPbeta may attach PNNs to the cell surface. During postnatal development the expression of link protein and aggrecan mRNA is up-regulated at the time of PNN formation, and these molecules may therefore trigger their formation.
Collapse
Affiliation(s)
- Clare M Galtrey
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Robinson Way, Cambridge, CB2 2PY, UK
| | | | | | | | | |
Collapse
|
93
|
Pantazopoulos H, Murray EA, Berretta S. Total number, distribution, and phenotype of cells expressing chondroitin sulfate proteoglycans in the normal human amygdala. Brain Res 2008; 1207:84-95. [PMID: 18374308 PMCID: PMC2696935 DOI: 10.1016/j.brainres.2008.02.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 02/07/2008] [Accepted: 02/08/2008] [Indexed: 01/09/2023]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are a key structural component of the brain extracellular matrix. They are involved in critical neurodevelopmental functions and are one of the main components of pericellular aggregates known as perineuronal nets. As a step toward investigating their functional and pathophysiological roles in the human amygdala, we assessed the pattern of CSPG expression in the normal human amygdala using wisteria floribunda agglutinin (WFA) lectin histochemistry. Total numbers of WFA-labeled elements were measured in the lateral (LN), basal (BN), accessory basal (ABN) and cortical (CO) nuclei of the amygdala from 15 normal adult human subjects. For interspecies qualitative comparison, we also investigated the pattern of WFA labeling in the amygdala of naïve rats (n=32) and rhesus monkeys (Macaca mulatta; n=6). In human amygdala, WFA lectin histochemistry resulted in labeling of perineuronal nets and cells with clear glial morphology, while neurons did not show WFA labeling. Total numbers of WFA-labeled glial cells showed high interindividual variability. These cells aggregated in clusters with a consistent between-subjects spatial distribution. In a subset of human subjects (n=5), dual color fluorescence using an antibody raised against glial fibrillary acidic protein (GFAP) and WFA showed that the majority (93.7%) of WFA-labeled glial cells correspond to astrocytes. In rat and monkey amygdala, WFA histochemistry labeled perineuronal nets, but not glial cells. These results suggest that astrocytes are the main cell type expressing CSPGs in the adult human amygdala. Their highly segregated distribution pattern suggests that these cells serve specialized functions within human amygdalar nuclei.
Collapse
Affiliation(s)
| | - Elisabeth A. Murray
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Sabina Berretta
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Med. School, Boston, MA, USA
| |
Collapse
|
94
|
Cafferty WBJ, McGee AW, Strittmatter SM. Axonal growth therapeutics: regeneration or sprouting or plasticity? Trends Neurosci 2008; 31:215-20. [PMID: 18395807 PMCID: PMC2678051 DOI: 10.1016/j.tins.2008.02.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/04/2008] [Accepted: 02/05/2008] [Indexed: 11/30/2022]
Abstract
Loss of function after neurological injury frequently occurs through the interruption of axonal connectivity, rather than through cell loss. Functional deficits persist because a multitude of inhibitory factors in degenerating myelin and astroglial scar prevent axonal growth in the adult brain and spinal cord. Given the high clinical significance of achieving functional recovery through axonal growth, substantial research effort has been, and will be, devoted toward this desirable goal. Unfortunately, the labels commonly used in the literature to categorize post-injury axonal anatomy might hinder advancement. In this article, we present an argument for the importance of developing precise terms that describe axonal growth in terms of the inciting event, the distance of axonal extension and the timing of axonal growth. The phenotypes produced by molecular interventions that overcome astroglial scar or myelin-associated inhibitors are reframed and discussed in this context.
Collapse
Affiliation(s)
- William B J Cafferty
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
95
|
Massey JM, Amps J, Viapiano MS, Matthews RT, Wagoner MR, Whitaker CM, Alilain W, Yonkof AL, Khalyfa A, Cooper NGF, Silver J, Onifer SM. Increased chondroitin sulfate proteoglycan expression in denervated brainstem targets following spinal cord injury creates a barrier to axonal regeneration overcome by chondroitinase ABC and neurotrophin-3. Exp Neurol 2008; 209:426-45. [PMID: 17540369 PMCID: PMC2270474 DOI: 10.1016/j.expneurol.2007.03.029] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Revised: 03/24/2007] [Accepted: 03/27/2007] [Indexed: 01/11/2023]
Abstract
Increased chondroitin sulfate proteoglycan (CSPG) expression in the vicinity of a spinal cord injury (SCI) is a primary participant in axonal regeneration failure. However, the presence of similar increases of CSPG expression in denervated synaptic targets well away from the primary lesion and the subsequent impact on regenerating axons attempting to approach deafferented neurons have not been studied. Constitutively expressed CSPGs within the extracellular matrix and perineuronal nets of the adult rat dorsal column nuclei (DCN) were characterized using real-time PCR, Western blot analysis and immunohistochemistry. We show for the first time that by 2 days and through 3 weeks following SCI, the levels of NG2, neurocan and brevican associated with reactive glia throughout the DCN were dramatically increased throughout the DCN despite being well beyond areas of trauma-induced blood brain barrier breakdown. Importantly, regenerating axons from adult sensory neurons microtransplanted 2 weeks following SCI between the injury site and the DCN were able to regenerate rapidly within white matter (as shown previously by Davies et al. [Davies, S.J., Goucher, D.R., Doller, C., Silver, J., 1999. Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J. Neurosci. 19, 5810-5822]) but were unable to enter the denervated DCN. Application of chondroitinase ABC or neurotrophin-3-expressing lentivirus in the DCN partially overcame this inhibition. When the treatments were combined, entrance by regenerating axons into the DCN was significantly augmented. These results demonstrate both an additional challenge and potential treatment strategy for successful functional pathway reconstruction after SCI.
Collapse
Affiliation(s)
- James M. Massey
- M.D./Ph.D. Program, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
- Department of Anatomical Sciences & Neurobiology, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
- Department of Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
| | - Jeremy Amps
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106
| | - Mariano S. Viapiano
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, 06520
| | - Russell. T. Matthews
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, 06520
| | - Michelle R. Wagoner
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
- Department of Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
| | - Christopher M. Whitaker
- Department of Anatomical Sciences & Neurobiology, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
- Department of Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
| | - Warren Alilain
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106
| | - Alicia L. Yonkof
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106
| | - Abdelnaby Khalyfa
- Department of Anatomical Sciences & Neurobiology, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
| | - Nigel G. F. Cooper
- Department of Anatomical Sciences & Neurobiology, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106
| | - Stephen M. Onifer
- Department of Anatomical Sciences & Neurobiology, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
- Department of Neurological Surgery, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
- Department of Kentucky Spinal Cord Injury Research Center, School of Medicine, University of Louisville, Louisville, Kentucky, 40292
| |
Collapse
|
96
|
Ajmo JM, Eakin AK, Hamel MG, Gottschall PE. Discordant localization of WFA reactivity and brevican/ADAMTS-derived fragment in rodent brain. BMC Neurosci 2008; 9:14. [PMID: 18221525 PMCID: PMC2263047 DOI: 10.1186/1471-2202-9-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 01/25/2008] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Proteoglycan (PG) in the extracellular matrix (ECM) of the central nervous system (CNS) may act as a barrier for neurite elongation in a growth tract, and regulate other characteristics collectively defined as structural neural plasticity. Proteolytic cleavage of PGs appears to alter the environment to one favoring plasticity and growth. Brevican belongs to the lectican family of aggregating, chondroitin sulfate (CS)-bearing PGs, and it modulates neurite outgrowth and synaptogenesis. Several ADAMTSs (a disintegrin and metalloproteinase with thrombospondin motifs) are glutamyl-endopeptidases that proteolytically cleave brevican. The purpose of this study was to localize regions of adult CNS that contain a proteolytic-derived fragment of brevican which bears the ADAMTS-cleaved neoepitope sequence. These regions were compared to areas of Wisteria floribunda agglutin (WFA) reactivity, a common reagent used to detect "perineuronal nets" (PNNs) of intact matrix and a marker which is thought to label regions of relative neural stability. RESULTS WFA reactivity was found primarily as PNNs, whereas brevican and the ADAMTS-cleaved fragment of brevican were more broadly distributed in neuropil, and in particular regions localized to PNNs. One example is hippocampus where the ADAMTS-cleaved brevican fragment is found surrounding pyramidal neurons, in neuropil of stratum oriens/radiatum and the lacunosum moleculare. The fragment was less abundant in the molecular layer of the dentate gyrus. Mostly PNNs of scattered interneurons along the pyramidal layer were identified by WFA. In lateral thalamus, the reticular thalamic nucleus stained abundantly with WFA whereas ventral posterior nuclei were markedly immunopositive for ADAMTS-cleaved brevican. Using Western blotting techniques, no common species were reactive for brevican and WFA. CONCLUSION In general, a marked discordance was observed in the regional localization between WFA and brevican or the ADAMTS-derived N-terminal fragment of brevican. Functionally, this difference may correspond to regions with varied prevalence for neural stability/plasticity.
Collapse
Affiliation(s)
- Joanne M Ajmo
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida USA
| | - Autumn K Eakin
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida USA
| | - Michelle G Hamel
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida USA
| | - Paul E Gottschall
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida USA
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas USA
| |
Collapse
|
97
|
Crook J, Hendrickson A, Erickson A, Possin D, Robinson F. Purkinje cell axon collaterals terminate on Cat-301+ neurons in Macaca monkey cerebellum. Neuroscience 2007; 149:834-44. [PMID: 17936513 PMCID: PMC2267770 DOI: 10.1016/j.neuroscience.2007.08.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 08/06/2007] [Accepted: 09/18/2007] [Indexed: 12/30/2022]
Abstract
The monoclonal antibody Cat-301 identifies perineuronal nets around specific neuronal types, including those in the cerebellum. This report finds in adult Macaca monkey that basket cells in the deep molecular layer; granule cell layer (GCL) interneurons including Lugaro cells; large neurons in the foliar white matter (WM); and deep cerebellar nuclei (DCN) neurons contain subsets of Cat-301 positive (+) cells. Most Cat-301+ GCL interneurons are glycine+ and all are densely innervated by a meshwork of calbindin+/glutamic acid decarboxylase+ Purkinje cell collaterals and their synapses. DCN and WM Cat-301+ neurons also receive a similar but less dense innervation. Due to the heavy labeling of adjacent Purkinje cell dendrites, the innervation of Cat-301+ basket cells was less certain. These findings suggest that several complex feedback circuits from Purkinje cell to cerebellar interneurons exist in primate cerebellum whose function needs to be investigated. Cat-301 labeling begins postnatally in WM and DCN, but remains sparse until at least 3 months of age. Because the appearance of perineuronal nets is associated with maturation of synaptic circuits, this suggests that the Purkinje cell feedback circuits develop for some time after birth.
Collapse
Affiliation(s)
- J.D. Crook
- Neurobiology and Behavior Graduate Program, University of Washington, Seattle WA 98195
- Department of Biological Structure, University of Washington, Seattle WA 98195
| | - A. Hendrickson
- Department of Biological Structure, University of Washington, Seattle WA 98195
- Department of Ophthalmology, University of Washington, Seattle WA 98195
| | - A. Erickson
- Regional Primate Research Center, University of Washington, Seattle WA 98195
| | - D. Possin
- Department of Ophthalmology, University of Washington, Seattle WA 98195
| | - F.R. Robinson
- Department of Biological Structure, University of Washington, Seattle WA 98195
- Regional Primate Research Center, University of Washington, Seattle WA 98195
| |
Collapse
|
98
|
Iaci JF, Vecchione AM, Zimber MP, Caggiano AO. Chondroitin Sulfate Proteoglycans in Spinal Cord Contusion Injury and the Effects of Chondroitinase Treatment. J Neurotrauma 2007; 24:1743-59. [DOI: 10.1089/neu.2007.0366] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
99
|
Chondroitin/dermatan sulfate in the central nervous system. Curr Opin Struct Biol 2007; 17:536-45. [DOI: 10.1016/j.sbi.2007.08.015] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/29/2007] [Accepted: 08/17/2007] [Indexed: 11/17/2022]
|
100
|
Reimers S, Hartlage-Rübsamen M, Brückner G, Rossner S. Formation of perineuronal nets in organotypic mouse brain slice cultures is independent of neuronal glutamatergic activity. Eur J Neurosci 2007; 25:2640-8. [PMID: 17561838 DOI: 10.1111/j.1460-9568.2007.05514.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Perineuronal nets (PNs) are a specialized form of the extracellular matrix and cover specific sets of neurons in distinct brain areas. Animal experiments on sensory visual deprivation have demonstrated that the generation of PNs around neurons of the visual cortex is dependent on neuronal activity during the critical period of visual experience. The importance of the activity of specific neurotransmitter systems for PN formation has, however, not yet been demonstrated. Based on the predominantly glutamatergic innervation of the visual cortex we hypothesized that reduced glutamatergic activity impairs the development of PNs. To address this question, genetic mouse models with compromised glutamate release [Munc13-1-knockout (KO) and Munc13-1/2 double-KO (DKO)] and chronic pharmacological treatments interfering with specific steps of glutamatergic transmission were used. Under experimental conditions of glutamatergic hypofunction PN formation was studied in organotypic brain slice cultures with Wisteria floribunda lectin binding and with aggrecan immunohistochemistry. After cultivation for 21 days a regular PN formation was observed in brain slices (i) derived from Munc13-1-KO and Munc13-1/2-DKO mice, (ii) after blockade of metabotropic and ionotropic glutamate receptors with MCPG and kynurenate, and (iii) after suppression of glutamate release by blockade of presynaptic Ca++ channels with riluzole. Nonselective suppression of neuronal activity by blockade of voltage-gated sodium channels with tetrodotoxin clearly inhibited PN formation. These results indicate that neuronal activity is required but that the glutamatergic system is not essential for PN development.
Collapse
Affiliation(s)
- Sabrina Reimers
- Paul Flechsig Institute for Brain Research, Department of Neurochemistry, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | | | | | | |
Collapse
|