51
|
Kesavapany S, Lau KF, Ackerley S, Banner SJ, Shemilt SJA, Cooper JD, Leigh PN, Shaw CE, McLoughlin DM, Miller CCJ. Identification of a novel, membrane-associated neuronal kinase, cyclin-dependent kinase 5/p35-regulated kinase. J Neurosci 2003; 23:4975-83. [PMID: 12832520 PMCID: PMC6741199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Here we characterize a novel neuronal kinase, cyclin-dependent kinase 5 (cdk5)/p35-regulated kinase (cprk). Cprk is a member of a previously undescribed family of kinases that are predicted to contain two N-terminal membrane-spanning domains and a long C terminus, which harbors a dual-specificity serine/threonine/tyrosine kinase domain. Cprk was isolated in a yeast two-hybrid screen using the neuronal cdk5 activator p35 as "bait." Cprk interacts with p35 in the yeast-two hybrid system, binds to p35 in glutathione S-transferase fusion pull-down assays, and colocalizes with p35 in cultured neurons and transfected cells. In these cells, cprk is present with p35 in the Golgi apparatus. Cprk is expressed in a number of tissues but is enriched in brain and muscle and within the brain is found in a wide range of neuronal populations. Cprk displays catalytic activity in in vitro kinase assays and is itself phosphorylated by cdk5/p35. Cdk5/p35 inhibits cprk activity. Cdk5/p35 may therefore regulate cprk function in the brain.
Collapse
Affiliation(s)
- Sashi Kesavapany
- Departments of Neuroscience and Neurology, The Institute of Psychiatry, Kings College London, London SE5 8AF, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Gong X, Tang X, Wiedmann M, Wang X, Peng J, Zheng D, Blair LAC, Marshall J, Mao Z. Cdk5-mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron 2003; 38:33-46. [PMID: 12691662 DOI: 10.1016/s0896-6273(03)00191-0] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neurotoxic insults deregulate Cdk5 activity, which leads to neuronal apoptosis and may contribute to neurodegeneration. The biological activity of Cdk5 has been ascribed to its phosphorylation of cytoplasmic substrates. However, its roles in the nucleus remain unknown. Here we investigate the mechanism by which Cdk5 promotes neuronal apoptosis. We have identified the prosurvival transcription factor MEF2 as a direct nuclear target of Cdk5. Cdk5 phosphorylates MEF2 at a distinct serine in its transactivation domain to inhibit MEF2 activity. Neurotoxicity enhances nuclear Cdk5 activity, leading to Cdk5-dependent phosphorylation and inhibition of MEF2 function in neurons. MEF2 mutants resistant to Cdk5 phosphorylation restore MEF2 activity and protect primary neurons from Cdk5 and neurotoxin-induced apoptosis. Our studies reveal a nuclear pathway by which neurotoxin/Cdk5 induces neuronal apoptosis through inhibiting prosurvival nuclear machinery.
Collapse
Affiliation(s)
- Xiaoming Gong
- The Liver Research Center, Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, Rhode Island 02903, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Weishaupt JH, Neusch C, Bähr M. Cyclin-dependent kinase 5 (CDK5) and neuronal cell death. Cell Tissue Res 2003; 312:1-8. [PMID: 12684868 DOI: 10.1007/s00441-003-0703-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2002] [Accepted: 01/10/2003] [Indexed: 12/21/2022]
Abstract
Many neurological disorders like Parkinson's and Alzheimer's disease, amyotrophic lateral sclerosis (ALS) or stroke have in common a definite loss of CNS neurons due to apoptotic or necrotic neuronal cell death. Previous studies suggested that proapoptotic stimuli may trigger an abortive and, therefore, eventually fatal cell cycle reentry in postmitotic neurons. Neuroprotective effects of small molecule inhibitors of cyclin-dependent kinases (CDKs), which are key regulators of cell cycle progression, support the cell cycle theory of neuronal apoptosis. However, growing evidence suggests that deregulated CDK5, which is not involved in cell cycle control, rather than cell cycle relevant members of the CDK family, promotes neuronal cell death. Here we summarize the current knowledge about the involvement of CDK5 in neuronal cell death and discuss possible up- or downstream partners of CDK5. Moreover, we discuss potential therapeutic options that might arise from the identification of CDK5 as an important upstream element of neuronal cell death cascades.
Collapse
Affiliation(s)
- J H Weishaupt
- Department of Neurology, University Hospital Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | | | | |
Collapse
|
54
|
Nguyen MD, Mushynski WE, Julien JP. Cycling at the interface between neurodevelopment and neurodegeneration. Cell Death Differ 2002; 9:1294-306. [PMID: 12478466 DOI: 10.1038/sj.cdd.4401108] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2002] [Revised: 07/23/2002] [Accepted: 07/23/2002] [Indexed: 11/09/2022] Open
Abstract
The discovery of cell cycle regulators has directed cell research into uncharted territory. In dividing cells, cell cycle-associated protein kinases, which are referred to as cyclin-dependent-kinases (Cdks), regulate proliferation, differentiation, senescence and apoptosis. In contrast, all Cdks in post-mitotic neurons, with the notable exception of Cdk5, are silenced. Surprisingly, misregulation of Cdks occurs in neurons in a wide diversity of neurological disorders, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Ectopic expression of these proteins in neurons potently induces cell death with hallmarks of apoptosis. Deregulation of the unique, cell cycle-unrelated Cdk5 by its truncated co-activator, p25 and p29, contributes to neurodegeneration by altering the phosphorylation state of non-membrane-associated proteins and possibly through the induction of cell cycle proteins. On the other hand, cycling Cdks such as Cdk2, Cdk4 and Cdk6, initiate death pathways by derepressing E2F-1/Rb-dependent transcription at the neuronal G1/S checkpoint. Thus, Cdk5 and cycling Cdks may have little in common in the healthy CNS, but they likely conspire in leading neurons to their demise.
Collapse
Affiliation(s)
- M D Nguyen
- Centre for Research in Neurosciences, Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montréal, Québec, H3G 1A4, Canada
| | | | | |
Collapse
|
55
|
Zheng YL, Li BS, Amin ND, Albers W, Pant HC. A peptide derived from cyclin-dependent kinase activator (p35) specifically inhibits Cdk5 activity and phosphorylation of tau protein in transfected cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4427-34. [PMID: 12230554 DOI: 10.1046/j.1432-1033.2002.03133.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cyclin-dependent kinase-5 (Cdk5) is a serine/threonine kinase activated by its neuron-specific activator, p35, or its truncated form, p25. It has been proposed that the deregulation of Cdk5 activity by association with p25 in human brain tissue disrupts the neuronal cytoskeleton and may be involved in neurodegenerative diseases such as Alzheimer's disease. In this study, we demonstrate that a short peptide (amino acid residues 154-279; Cdk5 inhibitory peptide; CIP), derived from p35, specifically inhibits Cdk5 activity in vitro and in HEK293 cells cotransfected with the peptide and Cdk5/p25, but had no effect on endogenous cdc2 kinase activity. Moreover, we demonstrate that the phosphorylation of tau in HEK293 cells, cotransfected with Cdk5/p25 and CIP, is effectively reduced. These results suggest that CIP specifically inhibits both Cdk5/p25 complex activity and the tau hyperphosphorylation induced by Cdk5/p25. The elucidation of the molecular basis of p25 activation and CIP inhibition of Cdk5 activity may provide insight into mechanisms underlying the pathology of Alzheimer's disease and contribute to therapeutic strategies.
Collapse
Affiliation(s)
- Ya-Li Zheng
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda 20892, USA
| | | | | | | | | |
Collapse
|
56
|
Abstract
Neurones are highly specialised cells that can extend over great distances, enabling the complex networking of the nervous system. We are beginning to understand in detail the molecular mechanisms that control the shape of neurones during development. One family of proteins that are clearly essential are the Rho GTPases which have a pivotal role in regulating the actin cytoskeleton in all cell types. The Rho GTPases are responsible for the activation and downregulation of many downstream kinases. This review discusses individual kinases that are regulated by three members of the Rho GTPases, Rac, Rho and Cdc42 and their function during neurite outgrowth and remodelling.
Collapse
Affiliation(s)
- Margareta Nikolic
- Molecular and Developmental Neurobiology MRC Centre, New Hunt's House, King's College London, London SE1 1UL, UK.
| |
Collapse
|
57
|
Lefèvre K, Clarke PGH, Danthe EE, Castagné V. Involvement of cyclin-dependent kinases in axotomy-induced retinal ganglion cell death. J Comp Neurol 2002; 447:72-81. [PMID: 11967896 DOI: 10.1002/cne.10215] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have tested the role of cyclin-dependent kinases (CDKs) in the type 3B death of axotomized retinal ganglion cells, by injecting intraocularly olomoucine, roscovitine, or butyrolactone I. Each of these inhibits CDK1, CDK2, and CDK5; CDK1 and CDK2 are involved in cell proliferation, whereas CDK5 is involved in neuronal differentiation. The inhibitors partially protected ganglion cells against the effects of axotomy. These agents may affect the ganglion cells directly, because CDK1, its regulatory subunit cyclin B1, and CDK5 were identified immunohistochemically in the perikarya of ganglion cells, and this was confirmed for CDK1 and CDK5 in Western blots of the ganglion cell layer. These blots showed an axotomy-induced phosphorylation of CDK5 occurring remarkably quickly (within 6 hours of axotomy) but little if any change in the phosphorylation state of CDK1. In addition, we studied the expression of proliferation markers, including proliferating cell nuclear antigen (PCNA) and the synthesis of DNA, by immunohistochemical and autoradiographic methods. Normal or axotomized ganglion cells did not express PCNA and did not synthesize DNA. Although we cannot exclude the possibility that axotomized ganglion cells may leave their quiescent state, our data show that they did not progress beyond the G1 phase of the cell cycle. Finally, in contrast to inhibitors of CDKs, cell cycle blockers with different targets than CDKs did not protect ganglion cells. Globally, our results suggest that axotomy-induced death of ganglion cells involves the activation of CDK1, CDK2, or CDK5 (most probably CDK5) but not the full cell cycle machinery.
Collapse
Affiliation(s)
- Karine Lefèvre
- Institut de Biologie Cellulaire et de Morphologie, Université de Lausanne, 1005 Lausanne, Switzerland
| | | | | | | |
Collapse
|
58
|
Ross S, Tienhaara A, Lee MS, Tsai LH, Gill G. GC box-binding transcription factors control the neuronal specific transcription of the cyclin-dependent kinase 5 regulator p35. J Biol Chem 2002; 277:4455-64. [PMID: 11724806 DOI: 10.1074/jbc.m110771200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin-dependent kinase 5 (cdk5)/p35 kinase activity is highest in post-mitotic neurons of the central nervous system and is critical for development and function of the brain. The neuronal specific activity of the cdk5/p35 kinase is achieved through the regulated expression of p35 mRNA. We have identified a small 200-bp fragment of the p35 promoter that is sufficient for high levels of neuronal specific expression. Mutational analysis of this TATA-less promoter has identified a 17-bp GC-rich element, present twice, that is both required for promoter activity and sufficient for neuronal specific transcription. A GC box within the 17-bp element is critical for both promoter activity and protein-DNA complex formation. The related transcription factors Sp1, Sp3, and Sp4 constitute most of the GC box DNA binding activity in neurons. We have found that both the relative contribution of the Sp family proteins to GC box binding and the transcriptional activity of these proteins is regulated during neuronal differentiation. Thus, our data show that the GC box-binding Sp proteins contribute to the regulation of p35 expression in neurons, suggesting changes in the Sp transcription factors level and activity may contribute to cell type-specific expression of many genes in the central nervous system.
Collapse
Affiliation(s)
- Sarah Ross
- Department of Pathology and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
59
|
Amin ND, Albers W, Pant HC. Cyclin-dependent kinase 5 (cdk5) activation requires interaction with three domains of p35. J Neurosci Res 2002; 67:354-62. [PMID: 11813240 DOI: 10.1002/jnr.10116] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclin-dependent kinase 5 (cdk5), in contrast to other members of the cyclin-dependent kinase family, is not activated by cyclins but instead is activated by complexing with neuron-specific activator molecules (p35, p39, and p67). The most effective activator of cdk5 both in vitro and in vivo is p35. We have taken a kinetic approach to study the interaction between p35, its various truncated forms, and cdk5 to understand better the mechanism of its activation. The cdk5 complexes formed with the truncated forms p25 and p21 produced similar maximum active kinase, whereas the cdk5 complexed with full-length p35 and a further truncated form spanning amino acid residues from 138 to 291, with approximate molecular weight of 16 kDa (p16), produced slightly less (80%) activation than p25. P16 was the smallest fragment of p35 that produced activation equal to or greater than that of full-length p35. By examination of further truncations of p16, we found that a small number of residues, 11 and 4 at the N- and C-termini, respectively, of p16, are essential for cdk5 activation. Further truncation, removing both essential N- and C-terminal domains, produces a peptide with markedly higher affinity for cdk5 compared with the peptides that retain either of these domains. Using these inactive truncated peptides as inhibitors, we examined the kinetics of activation. From these studies we conclude that activation involves at least three cdk5-interacting domains, one located at each end of p16 and at least one located in a central domain. The cdk5 activation process is slow: The second-order rate constant for p16 is about 1.2 microM(-1) hr(-1). On the basis of kinetic data, we suggest that cdk5 exists in two conformations. The inactive kinase conformation predominates in the absence of the activator. Activation occurs in two stages: a rapid and reversible interaction of cdk5 with its activator, which involves only one or two binding domains, followed by a slow stabilization of the active conformation as interaction with all three domains is achieved.
Collapse
Affiliation(s)
- Niranjana D Amin
- Laboratory of Neurochemistry, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
60
|
Li BS, Zhang L, Takahashi S, Ma W, Jaffe H, Kulkarni AB, Pant HC. Cyclin-dependent kinase 5 prevents neuronal apoptosis by negative regulation of c-Jun N-terminal kinase 3. EMBO J 2002; 21:324-33. [PMID: 11823425 PMCID: PMC125822 DOI: 10.1093/emboj/21.3.324] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cyclin-dependent kinase 5 (cdk5) is a serine/threonine kinase activated by associating with its neuron-specific activators p35 and p39. Analysis of cdk5(-/-) and p35(-/-) mice has demonstrated that both cdk5 and p35 are essential for neuronal migration, axon pathfinding and the laminar configuration of the cerebral cortex, suggesting that the cdk5-p35 complex may play a role in neuron survival. However, the targets of cdk5 that regulate neuron survival are unknown. Here, we show that cdk5 directly phosphorylates c-Jun N-terminal kinase 3 (JNK3) on Thr131 and inhibits its kinase activity, leading to reduced c-Jun phosphorylation. Expression of cdk5 and p35 in HEK293T cells inhibits c-Jun phosphorylation induced by UV irradiation. These effects can be restored by expression of a catalytically inactive mutant form of cdk5. Moreover, cdk5-deficient cultured cortical neurons exhibit increased sensitivity to apoptotic stimuli, as well as elevated JNK3 activity and c-Jun phosphorylation. Taken together, these findings show that cdk5 may exert its role as a key element by negatively regulating the c-Jun N-terminal kinase/stress-activated protein kinase signaling pathway during neuronal apoptosis.
Collapse
Affiliation(s)
| | - Lei Zhang
- Laboratory of Neurochemistry, NINDS, NIH, Bethesda, MD 20892-4130, Behavioral and Endocrinology Branch, NIMH, NIH, Bethesda, MD 20892, Functional Genomics Unit, Gene Targeting Facility, NIDCR, NIH, Bethesda, MD 20892-4370 and Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA Corresponding author e-mail:
| | - Satoru Takahashi
- Laboratory of Neurochemistry, NINDS, NIH, Bethesda, MD 20892-4130, Behavioral and Endocrinology Branch, NIMH, NIH, Bethesda, MD 20892, Functional Genomics Unit, Gene Targeting Facility, NIDCR, NIH, Bethesda, MD 20892-4370 and Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA Corresponding author e-mail:
| | - Wu Ma
- Laboratory of Neurochemistry, NINDS, NIH, Bethesda, MD 20892-4130, Behavioral and Endocrinology Branch, NIMH, NIH, Bethesda, MD 20892, Functional Genomics Unit, Gene Targeting Facility, NIDCR, NIH, Bethesda, MD 20892-4370 and Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA Corresponding author e-mail:
| | | | - Ashok B. Kulkarni
- Laboratory of Neurochemistry, NINDS, NIH, Bethesda, MD 20892-4130, Behavioral and Endocrinology Branch, NIMH, NIH, Bethesda, MD 20892, Functional Genomics Unit, Gene Targeting Facility, NIDCR, NIH, Bethesda, MD 20892-4370 and Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA Corresponding author e-mail:
| | - Harish C. Pant
- Laboratory of Neurochemistry, NINDS, NIH, Bethesda, MD 20892-4130, Behavioral and Endocrinology Branch, NIMH, NIH, Bethesda, MD 20892, Functional Genomics Unit, Gene Targeting Facility, NIDCR, NIH, Bethesda, MD 20892-4370 and Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA Corresponding author e-mail:
| |
Collapse
|
61
|
Li BS, Sun MK, Zhang L, Takahashi S, Ma W, Vinade L, Kulkarni AB, Brady RO, Pant HC. Regulation of NMDA receptors by cyclin-dependent kinase-5. Proc Natl Acad Sci U S A 2001; 98:12742-7. [PMID: 11675505 PMCID: PMC60124 DOI: 10.1073/pnas.211428098] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2001] [Indexed: 11/18/2022] Open
Abstract
Members of the N-methyl-d-aspartate (NMDA) class of glutamate receptors (NMDARs) are critical for development, synaptic transmission, learning and memory; they are targets of pathological disorders in the central nervous system. NMDARs are phosphorylated by both serine/threonine and tyrosine kinases. Here, we demonstrate that cyclin dependent kinase-5 (Cdk5) associates with and phosphorylates NR2A subunits at Ser-1232 in vitro and in intact cells. Moreover, we show that roscovitine, a selective Cdk5 inhibitor, blocks both long-term potentiation induction and NMDA-evoked currents in rat CA1 hippocampal neurons. These results suggest that Cdk5 plays a key role in synaptic transmission and plasticity through its up-regulation of NMDARs.
Collapse
Affiliation(s)
- B S Li
- Laboratory of Neurochemistry, Laboratory of Adaptive Systems, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Abstract
Since it was identified a decade ago, cyclin-dependent kinase 5 (CDK5) has emerged as a crucial regulator of neuronal migration in the developing central nervous system. CDK5 phosphorylates a diverse list of substrates, implicating it in the regulation of a range of cellular processes - from adhesion and motility, to synaptic plasticity and drug addiction. Recent evidence indicates that deregulation of this kinase is involved in the pathology of neurodegenerative diseases.
Collapse
Affiliation(s)
- R Dhavan
- Department of Pathology, Harvard Medical School, Howard Hughes Medical Institute, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
63
|
Ko J, Humbert S, Bronson RT, Takahashi S, Kulkarni AB, Li E, Tsai LH. p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J Neurosci 2001; 21:6758-71. [PMID: 11517264 PMCID: PMC6763073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2001] [Revised: 06/20/2001] [Accepted: 06/20/2001] [Indexed: 02/21/2023] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) plays a pivotal role in brain development and neuronal migration. Cdk5 is abundant in postmitotic, terminally differentiated neurons. The ability of Cdk5 to phosphorylate substrates is dependent on activation by its neuronal-specific activators p35 and p39. There exist striking differences in the phenotypic severity of Cdk5-deficient mice and p35-deficient mice. Cdk5-null mutants show a more severe disruption of lamination in the cerebral cortex, hippocampus, and cerebellum. In addition, Cdk5-null mice display perinatal lethality, whereas p35-null mice are viable. These discrepancies have been attributed to the function of other Cdk5 activators, such as p39. To understand the roles of p39 and p35, we created p39-null mice and p35/p39 compound-mutant mice. Interestingly, p39-null mice show no obvious detectable abnormalities, whereas p35(-/-)p39(-/-) double-null mutants are perinatal lethal. We show here that the p35(-/-)p39(-/-) mutants exhibit phenotypes identical to those of the Cdk5-null mutant mice. Other compound-mutant mice with intermediate phenotypes allow us to determine the distinct and redundant functions between p35 and p39. Our data strongly suggest that p35 and p39 are essential for Cdk5 activity during the development of the nervous system. Thus, p35 and p39 are likely to be the principal, if not the only, activators of Cdk5.
Collapse
Affiliation(s)
- J Ko
- Department of Pathology and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Grant P, Sharma P, Pant HC. Cyclin-dependent protein kinase 5 (Cdk5) and the regulation of neurofilament metabolism. ACTA ACUST UNITED AC 2001. [PMID: 11248670 DOI: 10.1046/j.1432-1327.2001.02025.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5), a complex of Cdk5 and its activator p35 (Cdk5/p35), phosphorylates diverse substrates which have multifunctional roles in the nervous system. During development, it participates in neuronal differentiation, migration, axon outgrowth and synaptogenesis. Cdk5, acting together with other kinases, phosphorylates numerous KSPXK consensus motifs in diverse cytoskeletal protein target molecules, including neurofilaments, and microtubule associated proteins, tau and MAPs. Phosphorylation regulates the dynamic interactions of cytoskeletal proteins with one another during all aspects of neurogenesis and axon radial growth. In this review we shall focus on Cdk5 and its regulation as it modulates neurofilament metabolism in axon outgrowth, cytoskeletal stabilization and radial growth. We suggest that Cdk5/p35 forms compartmentalized macromolecular complexes of cytoskeletal substrates, other neuronal kinases, phosphatases and activators ('phosphorylation machines') which facilitate the dynamic molecular interactions that underlie these processes.
Collapse
Affiliation(s)
- P Grant
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|